

DynaPDF 4.0

Reference & Manual

API Reference Version 4.0.87

April 12, 2024

Legal Notices
Copyright: © 2003-2024 Jens Boschulte, DynaForms GmbH. All rights reserved.

DynaForms GmbH
Bokel 3
D-49626 Bippen, Germany
Trade Register HRB 218421, District Court Osnabrueck
CEO Jens Boschulte
Phone: ++49 5435-955 3226
Fax: ++49 5435-956 7922

If you have questions please send an email to info@dynaforms.com, or contact us by phone.

This publication and the information herein is furnished as is, is subject to change without
notice, and should not be construed as a commitment by DynaForms GmbH. DynaForms
assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of
any kind (express, implied or statutory) with respect to this publication, and expressly
disclaims any and all warranties of merchantability, fitness for particular purposes and no
infringement of third-party rights.

Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Inc. AIX, IBM, and
OS/390, are trademarks of International Business Machines Corporation. Microsoft,
Windows, and Windows NT are trademarks of Microsoft Corporation. Apple, Mac OS, and
Safari are trademarks of Apple Computer, Inc. registered in the United States and other
countries. TrueType is a trademark of Apple Computer, Inc. Unicode and the Unicode logo
are trademarks of Unicode, Inc. UNIX is a trademark of The Open Group. Solaris is a
trademark of Sun Microsystems, Inc. Tru64 is a trademark of Hewlett-Packard. Linux is a
trademark of Linus Torvalds. Other company product and service names may be
trademarks or service marks of others.

DynaPDF uses parts or modified versions of the following third-party software:

AiCrypto. This product includes software developed by Akira Iwata Laboratory, Nagoya
Institute of Technology in Japan (http://mars.elcom.nitech.ac.jp/).

Antigrain Geometry Version 2.4. Copyright (C) 2002-2005 Maxim Shemanarev (McSeem).

Clipper, Copyright 2010-2012 by Angus Johnson.

Expat, Copyright 1998-2000 Thai Open Source Software Center Ltd and Clark Cooper.

FreeType2, Copyright 2006-2018 by David Turner, Robert Wilhelm, and Werner Lemberg.

LibJPEG, Independent JPEG Group's JPEG Software, Copyright 1991-1998 Thomas G. Lane.

Little CMS Copyright (c) 1998-2011 Marti Maria Saguer

mailto:info@dynaforms.com

LibPNG, PNG Reference Library, Copyright 1998-2004 Glenn Randers-Pehrson.

LibTIFF, TIFF Image Library, Copyright 1988-1997 Sam Leffler, Copyright 1991-1997 Silicon
Graphics, Inc.

OpenJPEG, JPEG 2000 Image Library

Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
Copyright (c) 2002-2014, Professor Benoit Macq
Copyright (c) 2001-2003, David Janssens
Copyright (c) 2002-2003, Yannick Verschueren
Copyright (c) 2003-2007, Francois-Olivier Devaux
Copyright (c) 2003-2014, Antonin Descampe
Copyright (c) 2005, Herve Drolon, FreeImage Team
Copyright (c) 2006-2007, Parvatha Elangovan
Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr>
Copyright (c) 2010-2011, Kaori Hagihara
Copyright (c) 2011-2012, Centre National d'Etudes Spatiales (CNES), France
Copyright (c) 2012, CS Systemes d'Information, France

Zint barcode library, Copyright 2008 - 2020 Robin Stuart.

Further copyright holders:

• Copyright 2016 - 2020 Harald Oehlmann (CodablockE, Codablock-F)
• Copyright 2004 Adrian Kennard, Andrews & Arnold Ltd, Cliff Hones, Stefan

Schmidt (Data Matrix ECC 200)
• Copyright 2004 Grandzebu, KL Chin (PDF417)
• Copyright 2006 Kentaro Fukuchi (QR Code)
• Copyright 2004 Cliff Hones (Reed-Solomon encoder)

Zlib compression library, Copyright 1995-1998 Jean-Loup Gailly and Mark Adler.

The JBIG2 encoder in DynaPDF based on jbig2enc, Copyright 2006 Google Inc. Author:
Adam Langley (agl@imperialviolet.org).

DynaPDF contains the RSA Security Inc. MD5 message digest algorithm as well as RC2,
RC4, AES 128, and AES 256 encryption algorithms. DynaPDF contains also the Lempel-Ziv-
Welch (LZW) compression algorithm, US Patent 4,558,302 Unisys Corporation. The patent
expired worldwide in June 2004.

Table of Contents
Legal Notices .. 2
Table of Contents .. 4
Data types ... 14

Var Parameters .. 15
Structures ... 15
Multi-byte Strings ... 15
Data types used by different programming
languages ... 17

Exception handling ... 18
Exception handling in C, C++, C#, Delphi 18
Exception handling in Visual Basic, Visual Basic
.Net .. 19
Special issues in Visual Basic and .Net 20
Customized Exception handling 21

Custom Library Changes ... 22
Compiler Switches .. 22
Main object types .. 22
General design requirements............................... 23
Requirements to add your own code to
DynaPDF .. 24

DPI Aware .Net applications 26
Enabling High DPI support in Windows Forms
Apps .. 26
Scrolling issues on high dpi devices 27
Static contents in dpi aware applications 27

Language bindings ... 27
Differences between DynaPDF interfaces 27
Embarcadero C++ Builder 29
Microsoft Visual C++ .. 31
Microsoft Visual Basic 6.0 33
Visual Basic .Net .. 37
Visual C# .. 41
Embarcadero Delphi ... 44

Compiling DynaPDF on Linux / UNIX 48
Compiling DynaPDF on macOS 50

Compiling with XCode... 50
Compiling on the Command Line 50

Content parsing & editing 52
Include files .. 52
Abort ... 52
ChangeAltFont .. 52
ClearSelection .. 53
CreateParserContext ... 53
DeleteOperator .. 54
DeleteOperatorInObject 54
DeleteParserContext ... 54

DeleteText .. 55
ExtractText ... 55
FindText ... 56
GetSelBBox .. 57
GetSelBBox2 .. 59
GetSelText .. 60
ParsePage ... 61
ReplaceSelText .. 62
SetAltFont .. 63
WriteToPage .. 64

Complex Text Layout ... 65
How to enable Complex Text Layout? 65
Automatic Font Substitution 65
Font embedding .. 66
Complex text layout and form fields 66

JSON Parser ... 67
Interactive Forms .. 69

Field Appearance .. 69
Field Properties ... 70
What is a Group Type? .. 71
How to change the tabulator order? 72
Field Names .. 73

Actions .. 74
Digital Signatures .. 76

Supported Certificate Formats 76
External Signatures... 76
How to export a Windows Certificate? 77
Importing signed PDF files 77
How to sign a PDF file? 77
How to create a signature field? 77
How to modify the appearance of a signature
field? ... 78
What is stored in a signature field? 78
How to validate a signature? 78

PDF/A and PDF/X Compatibility 79
PDF/X ... 79
PDF/A ... 81

Path Painting and Construction 83
Nonzero Winding Number Rule 83
Even-Odd Rule ... 84

Color Spaces .. 88
Device Color Spaces ... 88
Device Independent Color Spaces 89
Special Color Spaces ... 89
Color Spaces and Images 92

Layers (Optional Content) 96
PDF Transparency .. 98

Alpha Blending ... 98

Transparency Groups / Soft Masks 100
Blend Modes .. 101

Tables .. 105
General properties .. 105
Error Handling .. 105
Borders, Cell Spacing, Cell Padding 105
Background Objects .. 106
Foreground Objects ... 107
Cell Alignment and Orientation........................ 107
ColSpan, RowSpan .. 107
Page breaks .. 107
Table and cell properties 108
Table color spaces ... 108
Table Creation ... 109

Table Functions ... 110
AddColumn ... 110
AddRow ... 110
AddRows.. 111
ClearColumn.. 111
ClearContent .. 111
ClearRow .. 112
CreateTable .. 112
DeleteCol .. 113
DeleteRow .. 113
DeleteRows .. 113
DeleteTable .. 113
DrawTable .. 114
GetFirstRow ... 114
GetFlags .. 115
GetNextHeight .. 115
GetNextRow .. 116
GetNumCols .. 116
GetNumRows .. 116
GetPDFInstance ... 116
GetTableHeight ... 116
GetTableWidth .. 117
HaveMore .. 117
SetBoxProperty .. 117
SetCellAction ... 118
SetCellDashPattern ... 118
SetCellImage .. 119
SetCellImageEx .. 120
SetCellOrientation ... 121
SetCellTable ... 121
SetCellTemplate .. 122
SetCellText ... 123
SetColor .. 124
SetColorEx .. 124

SetColWidth .. 125
SetFlags .. 126
SetFont ... 127
SetFontSelMode .. 127
SetFontSize .. 128
SetGridWidth .. 128
SetPDFInstance ... 128
SetRowHeight ... 129
SetTableWidth ... 129

Function Reference .. 131
Abort (Rendering Engine) 131
ActivateAltFontList .. 131
AddActionToObj .. 132
AddAnnotToPage ... 133
AddArticle ... 133
AddBookmark ... 134
AddBookmarkEx .. 137
AddBookmarkEx2 .. 138
AddButtonImage .. 139
AddButtonImageEx.. 140
AddButtonImageEx2 .. 140
AddContinueText ... 141
AddDeviceNProcessColorants 141
AddDeviceNSeparations 142
AddDPartNode ... 143
AddFieldToFormAction 148
AddFieldToHideAction 148
AddFileComment ... 149
AddFontSearchPath ... 149
AddHeaderFooter .. 151
AddImage .. 157
AddInkList .. 158
AddJavaScript ... 158
AddLayerToDisplTree 159
AddMaskImage .. 162
AddObjectToLayer ... 163
AddOCGToAppEvent 163
AddOutputIntent ... 165
AddOutputIntentEx ... 166
AddPageLabel ... 166
AddRasImage (Rendering Engine) 167
AddRenderingIntent (obsolete) 169
AddRenderingIntentEx (obsolete).................... 169
AddValToChoiceField 169
Append .. 171
ApplyAppEvent ... 172
ApplyPattern ... 172
ApplyShading ... 176

AssociateEmbFile .. 178
AttachFile ... 179
AttachFileEx ... 179
AttachImageBuffer (Rendering Engine) 180
AutoTemplate .. 181
BeginClipPath (Obsolete) 182
BeginContinueText ... 182
BeginLayer ... 184
BeginPageTemplate .. 185
BeginPattern... 186
BeginTemplate ... 188
BeginTransparencyGroup 190
Bezier_1_2_3 .. 194
Bezier_1_3 .. 195
Bezier_2_3 .. 195
BuildFamilyNameAndStyle............................... 196
CalcPagePixelSize (Rendering Engine) 197
CalcWidthHeight .. 197
CaretAnnot... 198
ChangeAnnotName .. 199
ChangeAnnotPos .. 199
ChangeBookmark .. 200
ChangeNamedDest ... 201
ChangeFont .. 201
ChangeFontEx ... 202
ChangeFontSize ... 202
ChangeFontStyle ... 203
ChangeFontStyleEx ... 203
ChangeJavaScript .. 203
ChangeJavaScriptAction 204
ChangeJavaScriptName 204
ChangeLinkAnnot... 205
ChangeOCGName .. 205
ChangeSeparationColor 206
CheckCollection .. 206
CheckConformance... 206
CheckFieldNames ... 219
CircleAnnot .. 219
ClearAutoTemplates ... 220
ClearErrorLog .. 220
ClearHostFonts .. 220
ClipPath .. 221
CloseAndSignFile .. 222
CloseAndSignFileEx ... 223
CloseAndSignFileExt .. 225
CloseFile ... 227
CloseFileEx ... 228
CloseImage ... 232

CloseImportFile .. 232
CloseImportFileEx .. 232
ClosePath ... 233
CloseTag .. 234
ComputeBBox ... 234
ConnectPageBreakEvent.................................... 234
ConvColor ... 235
ConvertColors ... 238
ConvertEMFSpool .. 239
ConvToUnicode .. 241
CopyChoiceValues ... 243
Create3DAnnot ... 244
Create3DBackground ... 245
Create3DGotoViewAction 245
Create3DProjection ... 246
Create3DView ... 247
CreateAltFontList ... 249
CreateAnnotAP ... 249
CreateArticleThread ... 250
CreateAxialShading ... 251
CreateBarcodeField .. 252
CreateButton ... 255
CreateCheckBox .. 257
CreateCIEColorSpace ... 258
CreateColItemDate ... 260
CreateColItemNumber 261
CreateColItemString... 261
CreateCollection ... 262
CreateCollectionField ... 264
CreateComboBox .. 265
CreateDeviceNColorSpace 267
CreateDPartRoot ... 274
CreateExtGState .. 275
CreateGeospatialMeasure 278
CreateGoToAction .. 280
CreateGoToActionEx ... 282
CreateGoToEAction ... 282
CreateGoToRAction ... 283
CreateGoToRActionEx 284
CreateGroupField ... 285
CreateHideAction ... 286
CreateICCBasedColorSpace 286
CreateICCBasedColorSpaceEx 288
CreateImage .. 288
CreateImportDataAction 289
CreateIndexedColorSpace 290
CreateJSAction .. 291
CreateLaunchAction .. 291

CreateLaunchActionEx 292
CreateListBox ... 293
CreateNamedAction ... 294
CreateNamedDest ... 295
CreateNewPDF .. 296
CreateOCG ... 299
CreateOCMD ... 301
CreateRadialShading .. 302
CreateRadioButton .. 303
CreateRasterizer (Rendering Engine) 304
CreateRasterizerEx (Rendering Engine)........... 305
CreateRectilinearMeasure 306
CreateResetAction ... 308
CreateSeparationCS .. 308
CreateSetOCGStateAction 310
CreateSigField.. 314
CreateSigFieldAP .. 316
CreateSoftMask ... 317
CreateStdPattern ... 319
CreateStructureTree .. 322
CreateStructureTreeEx 323
CreateSubmitAction ... 323
CreateTextField ... 327
CreateURIAction ... 329
CreateViewport ... 329
CreateXFAStream .. 330
DecryptPDF ... 330
DeleteAcroForm .. 331
DeleteActionFromObj ... 332
DeleteActionFromObjEx 332
DeleteAltFontList .. 333
DeleteAnnotation .. 333
DeleteAnnotationFromPage 334
DeleteAppEvents .. 334
DeleteBookmark .. 335
DeleteDPartNode .. 335
DeleteEmbeddedFile... 335
DeleteField ... 336
DeleteFieldEx ... 336
DeleteJavaScripts ... 337
DeleteNamedDest ... 337
DeleteNamedDestByIndex 337
DeleteOCGFromAppEvent 338
DeleteOCGFromDisplayTree 338
DeleteOCUINode .. 339
DeleteOutputIntent ... 339
DeletePage.. 340
DeletePageLabels .. 340

DeletePDF .. 340
DeleteRasterizer (Rendering Engine) 340
DeleteSeparationInfo .. 341
DeleteTemplate ... 341
DeleteTemplateEx .. 341
DeleteWatermark.. 342
DeleteXFAForm .. 343
DrawArc .. 343
DrawArcEx .. 345
DrawChord ... 345
DrawCircle .. 346
DrawNGon .. 346
DrawPie ... 347
EditPage ... 350
EditTemplate ... 350
EditTemplate2 ... 351
Ellipse ... 351
EnableImageCache (Rendering engine) 352
EncryptPDF ... 352
EndContinueText (obsolete) 354
EndLayer ... 354
EndPage ... 354
EndPattern ... 354
EndTemplate ... 354
EnumDocFonts ... 355
EnumHostFonts .. 357
EnumHostFontsEx.. 358
ExchangeBookmarks .. 359
ExchangePages .. 360
ExtractText ... 360
FileAttachAnnot ... 361
FileAttachAnnotEx ... 362
FileLink .. 363
FindBookmark .. 364
FindEmbeddedFile ... 364
FindField .. 365
FindLinkAnnot ... 365
FindNextBookmark .. 366
FinishSignature ... 366
FlattenAnnotOrField .. 366
FlattenAnnots .. 367
FlattenForm ... 368
FlushPageContent .. 369
FlushPages ... 369
FlushPagesEx .. 370
FreeImageBuffer ... 370
FreeImageObj .. 371
FreeImageObjEx.. 371

FreePDF .. 371
FreeTextAnnot ... 372
FreeUniBuf ... 373
Get3DAnnotStream ... 373
GetActionCount .. 374
GetActionHandle .. 374
GetActionType .. 374
GetActionTypeEx .. 375
GetActiveFont .. 376
GetAllocBy ... 376
GetAnnot (obsolete) .. 376
GetAnnotBBox ... 377
GetAnnotCount ... 377
GetAnnotEx ... 378
GetAnnotFlags ... 381
GetAnnotLink .. 382
GetAnnotType ... 383
GetAscent ... 384
GetBarcodeDict .. 384
GetBBox .. 385
GetBidiMode .. 386
GetBookmark (obsolete) 387
GetBookmarkEx .. 387
GetBookmarkCount .. 388
GetBorderStyle .. 388
GetBuffer .. 388
GetCapHeight .. 389
GetCharacterSpacing .. 389
GetCheckBoxChar ... 390
GetCheckBoxCharEx .. 391
GetCheckBoxDefState ... 391
GetCMap .. 391
GetCMapCount ... 392
GetCollectionInfo .. 392
GetColorSpace ... 393
GetColorSpaceCount .. 394
GetColorSpaceObj ... 394
GetColorSpaceObjEx .. 395
GetCompressionFilter... 395
GetCompressionLevel .. 396
GetContent ... 396
GetDefBitsPerPixel .. 397
GetDescent ... 397
GetDeviceNAttributes .. 398
GetDocInfo ... 398
GetDocInfoCount .. 399
GetDocInfoEx .. 399
GetDocUsesTransparency 400

GetDrawDirection .. 400
GetDynaPDFVersion .. 400
GetDynaPDFVersionInt 400
GetEmbeddedFile ... 401
GetEmbeddedFileCount 402
GetEmbeddedFileNode 402
GetEMFPatternDistance 403
GetErrLogMessage ... 403
GetErrLogMessageCount 404
GetErrorMessage .. 404
GetErrorMode ... 405
GetField (obsolete) .. 405
GetFieldBackColor ... 407
GetFieldBorderColor .. 407
GetFieldBorderStyle ... 407
GetFieldBorderWidth... 408
GetFieldCalcOrder ... 408
GetFieldChoiceValue ... 409
GetFieldColor .. 410
GetFieldCount ... 411
GetFieldEx ... 411
GetFieldEx2 ... 414
GetFieldExpValCount .. 415
GetFieldExpValue... 415
GetFieldExpValueEx .. 416
GetFieldFlags .. 418
GetFieldGroupType ... 421
GetFieldHighlightMode 422
GetFieldIndex .. 422
GetFieldMapName ... 423
GetFieldName ... 423
GetFieldOrientation ... 424
GetFieldTextAlign .. 424
GetFieldTextColor .. 425
GetFieldToolTip .. 425
GetFieldType ... 425
GetFileSpec .. 426
GetFillColor ... 426
GetFont (obsolete) .. 427
GetFontCount.. 429
GetFontEx (obsolete) .. 429
GetFontInfo ... 429
GetFontInfoEx ... 432
GetFontOrigin ... 432
GetFontMetrics ... 433
GetFontSearchOrder .. 434
GetFontSelMode ... 434
GetFontSize ... 434

GetFontWeight .. 434
GetFTextHeight ... 435
GetFTextHeightEx ... 435
GetFullyQualifiedFieldName 436
GetGlyphIndex .. 436
GetGlyphOutline ... 437
GetGoToAction.. 439
GetGoToRAction ... 441
GetGStateFlags .. 441
GetHideAction... 441
GetIconColor .. 442
GetImageBuffer ... 442
GetImageCount ... 442
GetImageCountEx ... 442
GetImageHeight .. 443
GetImageObj .. 443
GetImageObjCount ... 444
GetImageObjEx ... 444
GetImageWidth ... 444
GetImportDataAction ... 445
GetImportFlags .. 445
GetImportFlags2 .. 445
GetInBBox .. 445
GetInDocInfo ... 446
GetInDocInfoCount .. 447
GetInDocInfoEx ... 447
GetInEncryptionFlags ... 448
GetInFieldCount .. 448
GetInIsCollection... 448
GetInIsEncrypted .. 448
GetInIsSigned .. 449
GetInIsTaggedPDF .. 449
GetInIsTrapped ... 450
GetInIsXFAForm ... 450
GetInkList ... 450
GetInMetadata ... 451
GetInNamedDest (obsolete) 452
GetInNamedDestCount (obsolete) 452
GetInOrientation ... 452
GetInPageCount .. 453
GetInPDFVersion .. 453
GetInPDFVersionEx .. 453
GetInPrintSettings ... 454
GetInRepairMode .. 454
GetIsFixedPich ... 455
GetIsTaggingEnabled ... 455
GetItalicAngle .. 455
GetJavaScript ... 456

GetJavaScriptAction (obsolete) 457
GetJavaScriptAction2 (obsolete) 457
GetJavaScriptActionEx....................................... 458
GetJavaScriptCount .. 459
GetJavaScriptEx .. 459
GetJavaScriptName .. 460
GetJPEGQuality .. 460
GetLanguage ... 460
GetLastTextPosX, GetLastTextPosY 461
GetLaunchAction .. 462
GetLayerConfig .. 463
GetLayerConfigCount.. 463
GetLeading .. 464
GetLineCapStyle ... 464
GetLineJoinStyle ... 464
GetLineWidth.. 465
GetLinkHighlightMode 465
GetLogMetafileSize .. 465
GetLogMetafileSizeEx .. 467
GetMatrix ... 468
GetMaxFieldLen ... 468
GetMeasureObj ... 468
GetMetaConvFlags ... 470
GetMetadata .. 470
GetMissingGlyphs .. 471
GetMiterLimit ... 473
GetMovieAction.. 473
GetNamedAction .. 474
GetNamedDest ... 475
GetNamedDestCount... 475
GetNeedAppearance .. 475
GetNumberFormatObj 476
GetObjActionCount (obsolete).......................... 477
GetObjActions ... 477
GetObjEvent .. 478
GetOCG ... 479
GetOCGContUsage .. 480
GetOCGCount ... 481
GetOCGUsageUserName 481
GetOCHandle ... 481
GetOCUINode .. 482
GetOpacity ... 484
GetOrientation .. 484
GetOutputIntent ... 484
GetOutputIntentCount 485
GetPageAnnot (obsolete) 485
GetPageAnnotEx .. 486
GetPageAnnotCount .. 486

GetPageBBox (Rendering Engine) 486
GetPageCoords .. 487
GetPageCount .. 487
GetPageField (obsolete) 487
GetPageFieldCount ... 488
GetPageFieldEx ... 488
GetPageHeight .. 489
GetPageLabel ... 490
GetPageLabelCount .. 491
GetPageLayout .. 491
GetPageMode .. 491
GetPageNum ... 491
GetPageObject (Rendering Engine) 492
GetPageOrientation (Rendering Engine) 492
GetPageText ... 492
GetPageWidth ... 503
GetPDFVersion .. 504
GetPDFVersionEx ... 504
GetPrintSettings .. 506
GetPtDataArray ... 506
GetPtDataObj ... 507
GetRelFileNode ... 507
GetResetAction .. 508
GetResolution .. 508
GetSaveNewImageFormat 508
GetSeparationInfo ... 509
GetSigDict .. 509
GetSpaceWidth .. 510
GetStrokeColor .. 511
GetSubmitAction ... 511
GetSysFontInfo .. 511
GetTabLen .. 513
GetTemplCount ... 513
GetTemplHandle ... 513
GetTemplHeight.. 514
GetTemplWidth ... 514
GetTextDrawMode ... 514
GetTextFieldValue .. 515
GetTextRect .. 515
GetTextRise .. 515
GetTextScaling ... 516
GetTextWidth .. 516
GetTextWidth (Font API) 517
GetTextWidthEx .. 518
GetTransparentColor .. 518
GetTrapped .. 519
GetTypoLeading ... 519
GetURIAction .. 519

GetUseExactPwd .. 520
GetUseGlobalImpFiles 520
GetUserRights ... 521
GetUserUnit .. 521
GetUseStdFonts .. 522
GetUseSystemFonts.. 522
GetUsesTransparency .. 523
GetUseTransparency .. 524
GetUseVisibleCoords ... 524
GetViewerPreferences .. 524
GetViewport .. 526
GetViewportCount ... 526
GetWMFDefExtent ... 527
GetWMFPixelPerInch .. 527
GetWordSpacing... 527
GetXFAStream .. 528
GetXFAStreamCount ... 528
HaveDPartRoot ... 529
HaveOpenDoc ... 529
HaveOpenPage ... 529
HighlightAnnot .. 530
ImportBookmarks ... 530
ImportCatalogObjects .. 531
ImportDocInfo .. 531
ImportEncryptionSettings 532
ImportOCProperties ... 532
ImportPage .. 533
ImportPageEx ... 534
ImportPDFFile .. 536
InitBarcode2 .. 537
InitColorManagement .. 538
InitColorManagementEx 539
InitExtGState ... 540
InitHeaderFooter .. 540
InitOCGContUsage .. 541
InitStack ... 541
InkAnnot .. 542
InsertBarcode .. 543
InsertBMPFromBuffer (obsolete) 549
InsertBMPFromHandle 549
InsertBookmark .. 549
InsertBookmarkEx .. 551
InsertImage (obsolete) .. 552
InsertImageEx ... 552
InsertImageFromBuffer 560
InsertMetafile .. 561
InsertMetafileEx .. 566
InsertMetafileExt .. 567

InsertMetafileExtEx... 567
InsertMetafileFromHandle 568
InsertMetafileFromHandleEx 568
InsertRawImage .. 569
InsertRawImageEx .. 571
IsBidiText ... 573
IsColorPage .. 573
IsEmptyPage .. 574
IsWrongPwd .. 574
LineAnnot .. 575
LineTo ... 576
LoadCMap ... 576
LoadFont .. 579
LoadFontEx .. 580
LoadFDFData .. 581
LoadFDFDataEx .. 582
LoadHeaderFooterSettings 582
LoadLayerConfig .. 584
LockLayer ... 584
MarkTemplateAsWatermark 585
MovePage ... 585
MoveTo ... 586
MultiplyMatrix .. 586
NewPDF ... 587
OpenImportBuffer .. 587
OpenImportFile ... 589
OpenOutputFile .. 593
OpenOutputFileEncrypted 594
OpenTag ... 595
OpenTagBBox .. 598
OpenTagEx .. 598
Optimize ... 599
PageLink ... 607
PageLink2 ... 608
PageLink3 ... 608
PageLinkEx .. 609
ParseContent .. 612
PlaceImage ... 636
PlaceSigFieldValidateIcon 636
PlaceTemplate.. 637
PlaceTemplateEx ... 638
PlaceTemplByMatrix .. 641
PolygonAnnot.. 642
PolyLineAnnot .. 643
PrintPage .. 644
PrintPDFFile .. 644
ReadImageFormat (obsolete) 647
ReadImageFormat2 ... 648

ReadImageFormatEx .. 649
ReadImageFormatFromBuffer 649
ReadImageResolution .. 650
ReadImageResolutionEx 650
Rectangle.. 651
Redraw (Rendering Engine) 651
ReEncryptPDF... 652
RenameSpotColor ... 653
RenderAnnotOrField ... 653
RenderPage (Rendering Engine) 656
RenderPageEx (Rendering Engine) 669
RenderPageToImage (Rendering Engine) 670
RenderPDFFile (obsolete) 674
RenderPDFFileEx ... 674
ReplaceFont ... 675
ReOpenImportFile .. 676
ReplaceFontEx... 676
ReplaceICCProfile .. 677
ReplaceICCProfileEx .. 677
ReplaceImage .. 678
ReplaceImageEx .. 679
ReplacePageText ... 679
ReplacePageTextEx .. 680
ResetAnnotAP ... 681
ResetEncryptionSettings 681
ResetLineDashPattern .. 681
ResizeBitmap (Rendering Engine) 682
RestoreGraphicState ... 682
RotateCoords ... 683
RoundRect ... 684
RoundRectEx ... 685
SaveGraphicState .. 686
ScaleCoords ... 687
SelfTest ... 688
Set3DAnnotProps ... 688
Set3DAnnotScript ... 690
SetAllocBy ... 690
SetAltFonts .. 691
SetAnnotBorderEffect .. 692
SetAnnotBorderStyle .. 692
SetAnnotBorderWidth 693
SetAnnotColor .. 694
SetAnnotFlags ... 694
SetAnnotFlagsEx ... 696
SetAnnotHighlightMode 696
SetAnnotIcon ... 697
SetAnnotLineEndStyle 697
SetAnnotLineDashPattern 698

SetAnnotMigrationState 698
SetAnnotOpacity ... 699
SetAnnotOpenState ... 700
SetAnnotOrFieldDate ... 700
SetAnnotQuadPoints .. 701
SetAnnotString .. 701
SetAnnotSubject .. 702
SetBBox ... 702
SetBidiMode ... 704
SetBookmarkDest .. 706
SetBookmarkStyle ... 708
SetBorderStyle ... 708
SetCharacterSpacing ... 709
SetCheckBoxChar .. 709
SetCheckBoxDefState .. 710
SetCheckBoxState .. 711
SetCIDFont ... 711
SetCMapDir ... 714
SetColDefFile ... 715
SetColSortField .. 716
SetColorMask... 716
SetColors .. 717
SetColorSpace .. 717
SetCompressionFilter ... 718
SetCompressionLevel ... 718
SetContent .. 719
SetDateTimeFormat .. 719
SetDefBitsPerPixel ... 720
SetDocInfo .. 720
SetDocInfoEx ... 721
SetDrawDirection .. 722
SetEMFFrameDPI .. 722
SetEMFPatternDistance 723
SetErrorMode .. 723
SetExtColorSpace .. 724
SetExtFillColorSpace ... 724
SetExtGState ... 725
SetExtStrokeColorSpace 725
SetFieldBackColor ... 725
SetFieldBBox .. 726
SetFieldBorderColor ... 726
SetFieldBorderStyle... 726
SetFieldBorderWidth .. 727
SetFieldCalcOrder ... 727
SetFieldColor ... 728
SetFieldExpValue .. 729
SetFieldExpValueEx .. 730
SetFieldFlags .. 731

SetFieldFont ... 734
SetFieldFontEx .. 735
SetFieldFontSize.. 736
SetFieldHighlightMode 736
SetFieldIndex ... 736
SetFieldMapName .. 738
SetFieldName .. 738
SetFieldOrientation .. 739
SetFieldTextAlign ... 739
SetFieldTextColor ... 740
SetFieldToolTip ... 740
SetFillColor .. 740
SetFillColorEx ... 741
SetFillColorF .. 741
SetFillColorSpace .. 742
SetFloatPrecision ... 742
SetFont ... 743
SetFontEx ... 753
SetFontOrigin .. 754
SetFontSearchOrder ... 754
SetFontSearchOrderEx 755
SetFontSelMode .. 756
SetFontWeight ... 756
SetGStateFlags ... 757
SetIconColor .. 759
SetImportFlags .. 760
SetImportFlags2 .. 764
SetItalicAngle .. 765
SetJPEGQuality ... 766
SetLanguage .. 766
SetLeading ... 767
SetLicenseKey ... 768
SetLineAnnotParms ... 768
SetLineCapStyle .. 770
SetLineDashPattern (obsolete) 770
SetLineDashPattern2 .. 771
SetLineDashPatternEx (obsolete) 772
SetLineJoinStyle .. 772
SetLineWidth .. 774
SetLinkHighlightMode 774
SetListFont ... 775
SetMatrix .. 775
SetMaxErrLogMsgCount 776
SetMaxFieldLen .. 776
SetMetaConvFlags .. 777
SetMetadata ... 781
SetMinLineWidth2 (Rendering Engine) 781
SetMiterLimit .. 782

SetNeedAppearance ... 782
SetNumberFormat .. 783
SetOCGContUsage .. 785
SetOCGState .. 787
SetOnErrorProc ... 787
SetOnPageBreakProc .. 788
SetOpacity .. 789
SetOrientation .. 789
SetOrientationEx ... 790
SetPageBBox .. 791
SetPageCoords ... 791
SetPageFormat ... 792
SetPageHeight ... 793
SetPageLayout ... 794
SetPageMode ... 794
SetPageOrientation ... 795
SetPageWidth .. 795
SetPDFVersion ... 796
SetPrintSettings ... 799
SetProgressProc ... 799
SetRenderingIntent ... 800
SetResolution ... 801
SetSaveNewImageFormat 801
SetScreenRes (Rendering Engine) 801
SetSeparationInfo .. 802
SetSpaceWidthFactor .. 802
SetStrokeColor ... 803
SetStrokeColorEx .. 803
SetStrokeColorF ... 804
SetStrokeColorSpace ... 805
SetTabLen ... 805
SetTemplBBox .. 806
SetTextDrawMode .. 806
SetTextFieldValue ... 809
SetTextFieldValueEx ... 810
SetTextRect ... 810
SetTextRise ... 810
SetTextScaling .. 811
SetTransparentColor ... 811
SetTrapped ... 812
SetUseExactPwd .. 812
SetUseGlobalImpFiles .. 813
SetUseImageInterpolation 814
SetUseImageInterpolationEx 815
SetUserUnit .. 815
SetUseStdFonts .. 816
SetUseSwapFile (obsolete) 816
SetUseSwapFileEx (obsolete) 817

SetUseSystemFonts .. 817
SetUseTransparency ... 818
SetUseVisibleCoords .. 818
SetViewerPreferences ... 819
SetWMFDefExtent .. 821
SetWMFPixelPerInch ... 821
SetWordSpacing ... 822
SetXFAStream ... 822
SkewCoords .. 823
SortFieldsByIndex .. 824
SortFieldsByName .. 824
SquareAnnot ... 824
StampAnnot .. 825
StrokePath ... 826
TestGlyphs ... 827
TestGlyphsEx .. 827
TextAnnot .. 827
TranslateCoords .. 829
TranslateRawCode (Font API) 829
TranslateString (obsolete) 830
TranslateString2 (Font API) 831
Triangle .. 832
UnLockLayer ... 833
UTF16ToUTF32 ... 833
UTF16ToUTF32Ex .. 833
UTF32ToUTF16 ... 834
UTF32ToUTF16Ex .. 835
WatermarkAnnot .. 836
WebLink... 836
WriteAngleText... 837
WriteFText ... 839
WriteFTextEx .. 852
WriteText ... 852
WriteTextEx ... 853
WriteTextMatrix ... 853
WriteTextMatrixEx ... 854

Data types Page 14 of 854

Data types
DynaPDF is a low level library that uses basic data types only. DynaPDF uses generally no
default string class or special C++ extensions such as STL or MFC.

The data types used by DynaPDF are defined as follows (C syntax):
typedef unsigned char BYTE;
typedef signed short SI16;
typedef unsigned short UI16;
typedef double FFLOAT; // Obsolete, do not use this data type.

#ifdef _WINDOWS
 #if defined(WIN64) || defined(_WIN64)
 typedef int SI32;
 typedef unsigned int UI32;
 #else
 typedef long SI32;
 typedef unsigned long UI32;
 #endif
#elif (SIZEOF_INT == 4) // declared in drv_conf.h (Linux/UNIX only)
 typedef int SI32;
 typedef unsigned int UI32;
#elif (SIZEOF_LONG == 4) // declared in drv_conf.h (Linux/UNIX only)
 typedef long SI32;
 typedef unsigned long UI32;
#else
 #error "Only 32 bit and 64 bit targets are supported!"
#endif

typedef SI32 LBOOL; // long boolean (0 = false, not 0 = true)
// This data type is provided for C only since this language does not
// support a Boolean data type.
#ifndef __cplusplus
 typedef enum
 {
 false = 0,
 true = 1
 }bool;
#endif

The data type char is not explicitly defined but also used by DynaPDF.

SI32 and UI32 must always be a 32 bit integer. It is not possible to use DynaPDF on a target
system that does not support a 32 bit integer type, like MS-DOS. DynaPDF can be used on 32 and
64 bit operating systems. The current version was tested with Android, IBM-AIX, HP-UX, iOS,
Linux, Mac OS X, Sun-Solaris, Tru64, and MS-Windows.

Data types Page 15 of 854

With very few exceptions, string values returned by DynaPDF are always null-terminated. A
string length returned by DynaPDF is always the length excluding the null-terminator.

Var Parameters
#ifdef __cplusplus
 #define ADDR &
#else
 #define ADDR *
#endif

Functions in DynaPDF, which pass a value to a function parameter are handled differently in C
and C++. C does not support the address operator & so that var parameters are defined as normal
pointers to pointers in C. DynaPDF checks whether a variable or NULL was passed to a function
before the function tries to access the variable. However, C++ does not allow to set a parameter to
NULL if it was declared with the address operator &.

Structures

Beginning with DynaPDF 2.5 all structures which can be extended in future versions contain the
member StructSize. This variable must be set to sizeof(StructureName). The structure size is used
to identify the version of a structure so that extensions do not break backward compatibility.

The structure size is automatically set in interfaces for C#, Visual Basic, Visual Basic .Net, and
Delphi. C/C++ programmers must set this member before the corresponding function can be
called:

Example:
...
TPDFCMap cmap;
cmap.StructSize = sizeof(TPDFCMap);
pdfGetCMap(pdf, handle, &cmap);
...

Multi-byte Strings

Unicode

DynaPDF supports Unicode strings in UTF-16-LE format on little-endian machines and UTF-16-
BE on big-endian machines. On target systems which use UTF-32 (LE or BE) as default string
format such as Linux or most UNIX OS, all strings must be converted to UTF-16 before passing to
DynaPDF.

You can use the predefined macro ToUTF16 to do this.

Data types Page 16 of 854

ToUTF16 is defined as follows:
// declared in drv_conf.h (Linux/UNIX, Mac OS X)
#if (SIZEOF_WCHAR_T == 4)
 #define ToUTF16(IPDF, s)(pdfUTF32ToUTF16((IPDF), (UI32*)(s)))
#else // UTF-16
 #define ToUTF16(IPDF, s)((s))
#endif

This macro calls pdfUTF32ToUTF16() only if the OS uses UTF-32 as Unicode string format.

On operating systems which use already UTF-16, no conversion is applied; the macro will be
removed by the compiler. The function pdfUTF32ToUTF16() holds an array of 4 independent
string buffers so that the macro can be used in functions which support up to four string
parameters. If DynaPDF will ever support a function with more than 4 string parameters, the
number of internal string buffers will be incremented.

However, take care when using the macro to initialize string variables of structures which contain
more than 6 string members:

Example:
SOME_STRUCT myStruct;
myStruct.String1 = ToUTF16(pdf, L”String1”); // OK
myStruct.String2 = ToUTF16(pdf, L”String2”); // OK
myStruct.String3 = ToUTF16(pdf, L”String3”); // OK
myStruct.String4 = ToUTF16(pdf, L”String4”); // OK
myStruct.String5 = ToUTF16(pdf, L”String5”); // OK
myStruct.String6 = ToUTF16(pdf, L”String6”); // OK
myStruct.String7 = ToUTF16(pdf, L”String7”); // Wrong!

The seventh call above overrides the string buffer of String1 because only 6 internal string buffers
are available. If you need to store more than 6 string variables then you must copy the converted
string into another variable!

Unicode File Paths

Unicode file paths are encoded differently depending on the used operating system. While NT
based Windows system use UTF-16 encoded Unicode file paths, non-Windows systems use
usually UTF-8 encoded Unicode file paths. All DynaPDF functions which open a file convert
UTF-16 strings to UTF-8 on non-Windows operating systems. However, to avoid this conversion
step it is usually best to use directly the Ansi version of a function and passing an UTF-8 file path
to it.

CJK Multi-byte Strings

CJK multi-byte strings contain mixed 8 bit / 16 bit character codes. A CJK string can be defined as
an Ansi string (data type char*) and as multi-byte string (data type UI16*). The multi-byte format

Data types Page 17 of 854

uses two bytes for every character and the byte ordering of the CPU must be considered to get
correct results on little-endian and big-endian machines.

However, the multi-byte format is only supported in combination with native CJK fonts and
character sets (cpBig5, cpShiftJIS, cpGB2312 and so on), see SetFont() for further information.

The Ansi format is the usual format for CJK strings and supported by all CJK code pages.

When using CJK to Unicode code pages, DynaPDF must convert the incoming CJK string to
Unicode before it can be used with the selected font. The required conversion algorithms are only
available in the Ansi version of a string function. Because of this it is not possible to use the multi-
byte format with CJK to Unicode code pages.

Data types used by different programming languages

Not all programming languages support all data types which are available in C or C++. The
following table describes the data types which are used by a specific programming language.
Types in black color are not natively supported.

C type C++ type Delphi type VB type VB .Net type C#

char* char* PAnsiChar String String String
UI16* UI16* PWideChar String String String
UI32* UI32* Pointer N/A N/A N/A
SI32 SI32 Integer Long Integer int
UI32 UI32 Cardinal Long Integer int
double double Double Double Double double
LBOOL LBOOL LongBool Long Integer lbool (Int32)
bool bool Boolean Boolean Boolean bool
void* void* Pointer Long IntPtr IntPtr

VB .Net and C# support also unsigned data types such as unsigned integer and so on. However,
the .Net framework requires always an explicit conversion if an unsigned type should be passed
to a signed type or vice versa. Because of this, the unsigned data types are used for very few
functions in VB .Net and C#.

Prior versions of DynaPDF used the abbreviations LONG, ULONG, SHORT, and USHORT in the
C/C++ interfaces. For compatibility reasons these data types are still defined on 32 bit Windows,
Linux, and UNIX. However, these declarations conflict with existing declarations on 64 bit
Windows operating systems so that these types should no longer be used.

Exception handling Page 18 of 854

Exception handling
The DynaPDF library uses no native exception handling. It is not required to leave a function
block after an error occurred. All DynaPDF functions are leaved immediately when a fatal error
occurred without displaying further error messages.

The library always holds its internal state consistent, regardless what happens.

Exception handling in C, C++, C#, Delphi

Error messages and warnings are passed to a callback function (see SetOnErrorProc()) if set. If no
callback function is set, you must check the return value of important functions. Negative return
values indicate by default that an error occurred. Call GetErrorMessage() to get the last error
message in this case.

The Delphi interface uses native language exceptions in the following reasons:

• When loading the dynapdf.dll (Cannot find dynapdf.dll)
• When loading a DynaPDF function (Cannot find function: …)
• When creating a new instance of the wrapper class TPDF (Out of memory).

Only these three exceptions can occur when using DynaPDF with Delphi. All other errors do not
raise an exception; the error callback function is called instead if any.

The error callback function is defined as follows (C/C++):
typedef SI32 PDF_CALL TErrorProc(
 const void* Data, // User defined pointer
 SI32 ErrCode, // Error code
 const char* ErrMessage, // Error message
 SI32 ErrType) // Error type

#define PDF_CALL __stdcall // Windows only, otherwise empty

All callback functions contain a parameter named "Data" which holds a user defined pointer. Data
can be set with SetOnErrorProc(). If you don't need this pointer, set it to NULL. The pointer Data
is always passed unchanged to the callback function.

ErrCode is a positive error number starting at zero. ErrType is a bit mask to determine what kind
of error occurred. The following constants are defined:
#define E_WARNING 0x02000000
#define E_SYNTAX_ERROR 0x04000000
#define E_VALUE_ERROR 0x08000000
#define E_FONT_ERROR 0x10000000
#define E_FATAL_ERROR 0x20000000
#define E_FILE_ERROR 0x40000000

Exception handling Page 19 of 854

At time of publication only one flag is set at any one time. Future versions maybe set multiple
flags, e.g. E_SYNTAX_ERROR and E_WARNING.

Because of this, it is required to mask out the error type:
if (ErrType & E_SYNTAX_ERROR)
{
 // some code
 return 0; // continue processing
}

If the error callback function returns a value other than zero, processing stops immediately.

All callback functions must use the correct calling convention. The C definition above contains the
macro PDF_CALL that is defined as __stdcall under Windows. Note that a wrongly defined
calling convention causes an access violation!

When using DynaPDF with C or C++, you can change the calling convention to __fastcall or
__cdecl by changing the macro PDF_CALL in the main interface dynapdf.h and in the project
settings. However, standard call is strongly recommended. Note that the library must be
recompiled when changing the calling convention. Delphi, Visual Basic, and VB .Net require
standard call!

Exception handling in Visual Basic, Visual Basic .Net

The Visual Basic wrapper class CPDF uses events instead of callback functions to pass error
messages and warnings to the user; native language exceptions are not used.

The usage of the event functions is quite easy; just declare a local instance variable of the wrapper
class CPDF in the Option Explicit section of the unit as follows:
Private WithEvents FPDF As CPDF

The command above enables the event support of the class CPDF. The instance variable FPDF is
now listed in the left combo box of the VB code editor.

The right combo box contains the available events, when selecting the event "Error" VB adds
automatically an empty event procedure to your source code:

Exception handling Page 20 of 854

Private Sub FPDF_Error(ByVal Description As String, ByVal ErrType As
Long, DoBreak As Boolean)
 ' Add your code here
End Sub

Now you can enter some code that should be executed when the event is fired. Note that you
must still create an instance of the class CPDF before a DynaPDF function can be executed (see
Language bindings/Visual Basic for further information).

The handling of events in VB .Net is exactly the same as in VB 6.0.

Special issues in Visual Basic and .Net

The usage of events in Visual Basic or VB .Net is quite easy; however, there is a special behaviour
that must be taken into account when developing VB applications. When using the DoEvents
procedure in a VB function you must make sure that the function cannot be executed again while
a previous call of the function is still running.

DoEvents enables the asynchronous processing of the message loop so that the user interface can
be updated and the user can execute something while a function is running (e.g. break
processing). DoEvents is often used because it is an easy way to avoid blocking of an application
without using of threads.

However, when using DoEvents it is possible that a user clicks on the button again that executes
DynaPDF functions while a previous call is still running. This is normally no problem but it is
impossible to execute an event function inside of a cloned function. When DynaPDF tries to raise
an event inside the cloned function an access violation occurs and VB crashes. VB .Net does not
crash but raises a System.NullReference exception in that case.

To avoid such problems check whether the function is still running:
Option Explicit
Private WithEvents FPDF As CPDF 'Enable event support
Private FRunning As Boolean

Private Sub Command1_Click()
 If FRunning Then Exit Sub 'Check whether a previous call is running
 FRunning = True
 'Call some DynaPDF functions here...
 DoEvents 'Process messages
 FRunning = False
End Sub

The code above simply checks whether a previous call of the function is running before the
function can be executed again.

Exception handling Page 21 of 854

Customized Exception handling

By default, only fatal errors will stop processing. Warnings, syntax errors and so on are all
ignored. You can customize the exception handling to your own requirements with the property
Get/SetOnErrorMode(). With the following constants you can determine what kind of error
should be treated as fatal error:
typedef SI32 TErrMode;
#define emIgnoreAll 0x00000000 // default
#define emSyntaxError 0x00000001
#define emValueError 0x00000002
#define emWarning 0x00000004
#define emFileError 0x00000008
#define emFontError 0x00000010
#define emAllErrors 0x0000FFFF
#define emNoFuncNames 0x10000000 // Do not output function names

If a specific flag is set, DynaPDF treats this error type as fatal error; the internal resources will be
freed and all changes made before are lost.

DynaPDF never produces a damaged PDF file if a warning or error message was ignored, but
certain functions may be not executed. For example, if SetFont() cannot find the selected font, it
returns with a warning and no font is set, the active font (if any) is left unchanged.

If no other font was set before, it is not possible to output text. All text functions also return then
with a warning because there is no active font, but nothing more happens than a warning is
issued.

When a fatal error occurred, all functions are leaved immediately. No further warnings or error
messages are displayed. It is not possible to execute a function (except global properties which do
not change PDF objects directly) after a fatal error occurred.

There is no need to check the return value of each function, and there is no need to leave a
function block after a fatal error occurred. The internal error flag is cleared when
CreateNewPDF() is called the next time.

The special flag emNoFuncNames names can be used to avoid the output of the function name in
error messages. Error messages start normally always with the function name in which the error
occurred. While this information is useful during development, it is often not useful in an end
user application.

Remarks:

The constants are defined as enum in Visual Basic, VB .Net, and C#.

Language Bindings Page 22 of 854

Custom Library Changes
This section is only of interest if you have a copy of the source codes. If you use a version
without source codes you can skip this chapter.

Compiler Switches

DynaPDF supports several compiler switches to disable unnecessary features. The following
macros disable or enable one of the image libraries used by DynaPDF as well as other features.
The macros are defined in the header file /main/drv_type.h.
#define DRV_SUPPORT_AES 1 // AES encryption and decryption
#define DRV_SUPPORT_BCDE 1 // about 400 KB -> Barcode engine
#define DRV_SUPPORT_CJK 1 // about 150 KB (CJK to Unicode conversion)
#define DRV_SUPPORT_EMF 1 // EMF Converter
#define DRV_SUPPORT_GIF 1 // about 1 KB
#define DRV_SUPPORT_IMP 1 // about 50 KB (PDF import)
#define DRV_SUPPORT_JP2K 1 // about 180 KB
#define DRV_SUPPORT_JPEG 1 // about 90 KB (no effect if TIFF is enabled)
#define DRV_SUPPORT_PGM 1 // PBM, PGM, PNM, PPM Image formats, ~1 KB
#define DRV_SUPPORT_PNG 1 // about 100 KB
#define DRV_SUPPORT_PSD 1 // about 1 KB
#define DRV_SUPPORT_RAS 1 // about 700 KB -> Rendering engine
#define DRV_SUPPORT_RC4 1 // RC4 encryption and decryption
#define DRV_SUPPORT_SIGN 1 // Self sign signatures -> AiCrypto Library
#define DRV_SUPPORT_TIFF 1 // about 310 KB

To disable a specific feature set the constant to zero or comment it out. Note that the TIFF
library uses also the JPEG library. Because of this, disabling the JPEG library only does not
reduce the library size.

The following constants are used by WriteFText() (defined in dynapdf.h).
#define PDF_MAX_LIST_COUNT 6 // Maximum count of nested list levels
#define PDF_LIST_SEP_WIDTH 10.0 // Default list separator with
#define DEFAULT_LIST_CHAR 159 // Default list character
#define PDF_LIST_FONT "Wingdings-Regular" // Default list font

The list font must be the PostScript name of the font (see SetFont() for further information).
When changing the list font you may also change the default list character. When using
DynaPDF under Linux or UNIX you may define a font that is available in one of your font
search directories.

Note that the list font can be overridden at runtime with the function SetListFont(). So, it is
usually better to load the font at runtime with SetListFont() since you can properly handle cases
in which the font cannot be found.

Main object types

In PDF, two basic object types can be created, resource objects such as fonts, images and so on
which are used by content streams and global objects such as annotations, bookmarks, form
fields and so on. Global objects can use resource objects but not vice versa.

Language Bindings Page 23 of 854

In most cases both object types are defined as normal classes, which contain their own
constructors and destructors to initialize and destroy allocated memory.

Global objects can be deleted or marked as deleted at runtime. Resource objects must never be
deleted if the object was already used.

General design requirements

We describe here only the general rules which must be taken into account when extending
DynaPDF with certain features. We do not explain how the entire library works; this would fill
an entire book. To understand how an object must be written to the file we recommended that
you debug especially the function CloseFile(). All objects must be prepared for writing in a two
stage phase to reserve object numbers. The first stage assignes object numbers to all objects and
the second run writes all objects to file. Objects must be written in the exact order in which they
were previously prepared for writing.

A PDF file is described in memory as large set of classes which can be referenced or used
multiple times by other classes. Due to the references which are stored in certain classes we
must define a strict set of rules so that no exception occurs if an object must be deleted:

1. The owner of all resources and global objects is CPDF. No other class is permitted to
destroy an object class or change its values.

2. All object classes must be derived from CBaseObject. This class holds the object number
as well as several flags to determine whether the object was used, created, or already
written, and whether it is part of the first page. This class contains the function
CreateObject() which must be called in CPDF::PreparePageObjects() if the object is part
of a page. If the object is not included in a page object then CreateObject() must be called
in CPDF::PrepareObjects().

3. All classes which hold pointers to other object classes must check the "Used" flag before
writing the object data to the file (GetUsed() is a member of CBaseObject and returns
true if the used flag was set).

4. All classes must be well initialized so that the class can be deleted at any time without
causing memory leaks or other unwanted side effects.

5. No object class is permitted to unset the "Used" flag of other object classes.

6. Page resources such as fonts, images, templates and so on must NEVER be deleted at
runtime and their "Used" flag must NEVER be unset.

7. All resource classes must be derived from CBaseResource.

8. Object classes must set the "Used" flag of the resource object, if the class is used by this
object.

Language Bindings Page 24 of 854

9. The "Used" flag of non-page resources can be unset at runtime with SetUnUsed(). This
will mark the class as an unused or deleted object. When writing the file, such an object
must be ignored.

10. Never delete an object if you don't know exactly what you are doing. If a destroyed
object is referenced in any other object, the library will crash.

11. If a used page resource is deleted or if the "Used" flag is unset at runtime when it was
already set, the resulting PDF file will be damaged.

12. Make sure that the function FreePDF() can be called at any time without causing
memory leaks or other unwanted side effects.

Requirements to add your own code to DynaPDF

If you want to make your own features permanent, you are welcome to send us your source
codes including a description what kind of feature it enables.

However, we cannot accept any old code; your code must be properly written in C++ and tested
with certain operating systems and compilers. It must not produce warnings of any kind and it
must not use external libraries, except those are already used by DynaPDF (see drv_type.h for a
full list).

Basic C functions such as strcpy, strcat, memcpy and so on, as well as templates from the STL
are NOT allowed to use. Take a look into drv_base_func.h, drv_templ.h, or pdf_utils.h before
using an external function or template. The implementations used by DynaPDF are faster and
work on all operating systems in the same way.

Windows GDI functions are normally not permitted too. However, under certain circumstances
GDI functions are permitted. DynaPDF uses already a few GDI functions to convert WMF files
to EMF or to raster EMF files. Windows specific code must be encapsulated into a #ifdef
_WINDOWS section.

If your code handles strings, it must NOT use an external string class which is available in any
standard C++ library. Use the DynaPDF class CString or CPDFString() instead. These classes
support many PDF specific functions.

Your code should be tested with Microsoft Visual C++ 6.0 AND Visual Studio 2005 or higher. If
possible, you should test your code also with GCC 4.0 or higher under Linux or Mac OS X.

Language Bindings Page 25 of 854

The following important defines are available depending on the operating system and
characteristics of the target CPU:

Constant Test code Comment
_WINDOWS #ifdef _WINDOWS Set on Windows.
MAC_OS_X #ifdef MAC_OS_X Set on Mac OS X.
DRV_BIG_ENDIAN #if (DRV_BIG_ENDIAN == 1) Endian configuration.
VS_2005_OR_HIGHER #if (VS_2005_OR_HIGHER == 1) Functions which are considered as

unsafe in Visual Studio 2005 or
higher must be replaced with their
safe versions. Use this macro to
test the compiler version.

To get the full list of available defines take a look into the header file /main/drv_type.h. On non
Windows operating systems the configure script creates also the header file /main/drv_conf.h
which contains many OS specific defines. Note that this header file can only be included on non
Windows operating systems.

Note also that the class structure in DynaPDF is not fixed. Changes can be made without further
notice at any time. So, you cannot assume that a class or member of a class that exists today
exists in a newer version too. Although most classes and templates do seldom change, changes
can always occur!

To avoid dependencies to a specific source code version it is usually best to ask us for the best
strategy if you want to add certain features to the library.

Language Bindings Page 26 of 854

DPI Aware .Net applications
The difference of dpi aware applications in comparison to regular applications is that the latter
one do not properly scale on high resolution displays. Blurry text is an indication that an
application is not dpi aware.

C# PDF viewer example with disabled and enabled high dpi support:

As you can see above the treeview control does not properly scale. The same control looks much better when rendered in a lower resolution. Such
issues require some fine tuning for optimal results.

A user can of course right click on the executable and change the high dpi settings in the
compatibility section of the application properties. This works pretty well with Windows 10
Version 2004 but every major version of Windows 10 behaves differently and we have currently
11 major versions of Windows 10!

A bit annoying is also the fact that these settings do generally not work if the application was
copied to a RAM disk on Windows 10 Version 2004. This was no issue in earlier versions.

So, it would be much better to enable high dpi support without additional user interaction. In
earlier days high dpi support needed to be enabled with a dpi aware manifest. This worked for
a while until the way was changed how high dpi support must be enabled.

The new way of enabling high dpi support is to add a section to the app.config file.

Enabling High DPI support in Windows Forms Apps

To get high dpi support enabled in Windows Forms Apps you must first change the version of
the used .Net framework to 4.7 or higher.

If you do this in the settings of the PDF viewer example, for example, then you'll notice that the
required app.config fille will be added automatically to the solution. Double click on it and copy
the code marked in yellow into the configuration tag:
<?xml version="1.0" encoding="utf-8"?><configuration>
<startup><supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.7.2"/></startup>
<System.Windows.Forms.ApplicationConfigurationSection>
 <add key="DpiAwareness" value="PerMonitorV2" />
</System.Windows.Forms.ApplicationConfigurationSection>
</configuration>

Language Bindings Page 27 of 854

The above settings are for Windows Forms Apps. Note that this is how it works today,
tomorrow you must maybe change other settings.

WPF and UWP apps come out of the box with high dpi support but using native code for UI
elements in WPF or UWP is difficult and not recommended. WPF and UWP apps function more
or less like a web site. When speed is no concern it is better to use pure .Net code in these
environments.

Scrolling issues on high dpi devices

Scrolling issues are one of the major issues on high dpi devices. Almost every application scrolls
differently on Windows 10. Some scroll way to fast, others scroll too slow, and again others are
stuttering or have weird scroll behavior.

To avoid scrolling issues is probably best to get users a chance to adjust the scrolling speed in
your application since the settings of the system are often not helpful.

If you use the rendering control of DynaPDF or the page cache then you can adjust the scroll
line delta with SetScrollLineDelta(). Smooth scrolling is not yet supported.

Static contents in dpi aware applications

Something that must be considered when turning on high dpi support is that static contents like
the application icon or cursors must be delivered in different sizes since no scaling occurs.

Especially cursors are critical because an unscaled cursor made for Windows 7, for example,
becomes very small. Microsoft recommends to add at least icons and cursors for the resolutions
96, 120, 144, and 196 DPI for desktop apps. You'll find many tools in the internet which help to
create icons and curors in different sizes.

Language bindings

Differences between DynaPDF interfaces

DynaPDF can be used with most programming languages which support standard DLLs. The
usage of DynaPDF is nearly identical in all programming languages. However, this help file
describes all DynaPDF functions in C syntax.

All DynaPDF functions contain an instance pointer of the active PDF instance (const PPDF*
IPDF) as first parameter. This pointer is hidden for the user in the programming languages
Visual Basic, Visual Basic .Net, Visual C#, and Delphi. We deliver native wrapper classes for
these programming languages which handle the PDF instances automatically.

However, this help file describes the raw API of DynaPDF that is used by the programming
languages C and C++. The C/C++ interface is a direct interface that does not encapsulate the
DynaPDF API into a class or other structures to improve processing speed.

Language Bindings Page 28 of 854

The usage of DynaPDF is almost identical in all programming languages; you must only
consider that the instance pointer IPDF is contained in the C/C++ interface only.

Visual Basic, Visual C#, or Delphi users must create an instance of the wrapper class CPDF or
TPDF in Delphi before a DynaPDF function can be executed. The instance of the wrapper class
must also be deleted by calling the destructor of the class.

C or C++ programmers must create a PDF instance with the function pdfNewPDF() before a
DynaPDF function can be executed. This instance must be deleted with the function
pdfDeletePDF() when it is no longer needed.

We tried also to consider the specific requirements for each programming language so that
DynaPDF can always be used without limitations. This causes slightly differences because of
the differences between programming languages. For instance, the Visual Basic interfaces uses
events instead of callback functions because the usage of callback functions is more complicated
in VB as in other programming languages.

Language Bindings Page 29 of 854

Embarcadero C++ Builder

To use DynaPDF with Embarcadero's C++ Builder, proceed as follows:

1. Open a new project or your favourite project in C++ Builder.

2. Include the header file /include/C_CPP/dynapdf.h into the units which will use
DynaPDF functions.

3. Add the import library /borland_lib/dynapdf.lib to your project.

4. Copy the dynapdf.dll into a Windows search path (e.g. Windows/System32) or into the
output directory.

5. Finished!

If you want to use DynaPDF with a C++ project, add the line "using namespace DynaPDF;" after
including the header file dynapdf.h.

The usage in C is essentially the same as in C++, with the exception that the namespace
DynaPDF must not be declared.

A PDF instance can be used to create an arbitrary count of PDF files. All used resources are
automatically freed when the PDF file is closed (except when the PDF file was created in
memory). To improve processing speed, use one instance as long as possible.

If you want to use DynaPDF with an older version of C++ Builder, you may rebuild the lib file
by using implib.exe. Implib is delivered with C++ Builder; you find it in the Bin directory of
your C++ Builder installation directory.

To create a new import library run implib from the command line as follows:
implib dynapdf.lib dynapdf.dll

DynaPDF uses standard call as calling convention. C++ Builder requires for that calling
convention no underscores before function names. Because of this the option -a must not be
used to build the import library (see your C++ Builder help for further information).

Copy implib and the dynapdf.dll into the same directory and execute the command above.

Example (C++ Builder):
// Standard includes by all C++ Builder projects
#include <vcl.h>
#pragma hdrstop

#include "Unit1.h"
//--
#pragma package(smart_init)
#pragma resource "*.dfm"

Language Bindings Page 30 of 854

// Include the DynaPDF header file (change the path if necessary)
#include "dynapdf.h"
// All data types and functions are declared in the namespace DynaPDF.
using namespace DynaPDF;
// First, we declare an error callback function that is called by
// DynaPDF if an error occurred.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 char errMsg[PDF_MAX_ERR_LEN + 30];
 // An error message returned by DynaPDF is a pointer to a null-
 // terminated static string.
 sprintf(errMsg, "%s\n\nAbort processing?\n", ErrMessage);
 if (MessageDlg(errMsg, mtError,
 TMsgDlgButtons() << mbYes << mbNo, 0) == mrYes)
 return -1; // break processing
 else
 return 0; // ignore the error
}

// Place a button on the form and double click on it. Add the
// following code to the function.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 void* pdf = pdfNewPDF(); // Create a new PDF instance
 if (!pdf) return; // Out of memory?
 // Set the error callback first
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfCreateNewPDF(pdf, "c:/myfirst.pdf");
 pdfSetDocInfo(pdf, diSubject, "My first C++ output");
 pdfSetDocInfo(pdf, diProducer, "C++ Builder test application");
 pdfSetDocInfo(pdf, diTitle, "My first C++ output");
 // We want to use top-down coordinates
 pdfSetPageCoords(pdf, pcTopDown);

 pdfAppend(pdf);
 pdfSetFont(pdf, "Arial", DynaPDF::fsItalic, 40.0, true, cp1252);
 pdfWriteFText(pdf, DynaPDF::taCenter, "My first C++ output!");
 pdfEndPage(pdf);

 pdfCloseFile(pdf); // Close the file and free all used resources
 pdfDeletePDF(pdf); // Do not forget to delete the PDF instance
}

Language Bindings Page 31 of 854

Microsoft Visual C++

To use DynaPDF with Microsoft's Visual C++, proceed as follows:

1. Open a new project, or your favourite project, in Visual Studio.

2. Include the header file /include/C_CPP/dynapdf.h into the units which will use
DynaPDF functions.

3. VC++ 6.0 only: Add the file /include/C_CPP/dynapdf.cpp to your project (see comment
below).

4. Add the import library /mvs_lib/dynapdf.lib or /mvs_lib/dynapdfm.lib to your project.

5. Copy the dynapdf.dll or dynapdfm.dll into a Windows search path (e.g.
Windows/System32).

6. Finished!

The file dynapdf.cpp contains dummy declarations of all exported DynaPDF functions; because
the functions are not exported, they do not conflict with the original declarations. These
declarations enable the usage of Microsoft's Intellisense (code completion) in Visual C++ 6.0.
Due to implementation limits of Microsoft's Intellisense, code completion does maybe not work
without this file. However, it seems that this issue was partially solved with Update Pack 6 of
Microsoft's Visual Studio. If code completion does not work in your environment then include
this file.

See also bug report „190974 PRB: Function Prototypes Do Not Generate Parameter Info“,
(www.microsoft.com).

DynaPDF was compiled and developed with Microsoft Visual Studio 6.0 SP 6 and Visual Studio
2005. Two versions of the library are delivered:

• dynapdf.dll // Compiled with Multithreaded

• dynapdfm.dll // Compiled with Multithreaded DLL

Both versions are fully compatible to VC++ 7.0 or higher (Visual Studio .Net). To avoid conflicts
with different standard library versions choose the right DynaPDF DLL and import library
depending on your project settings. A pre-compiled single threaded version of DynaPDF is not
available.

Please note that the dynapdfm.dll does not support PDF files larger than 2 GB. When the library
is compiled with Visual Studio 2005 or higher, then this limitation does no longer exist.
However, in this case, you must deliver the Visual Studio Runtime library MSVCR80.DLL or
higher with your application. This library causes often problems since it must be installed on
the system and cannot be placed in the application folder.

http://www.microsoft.com/

Language Bindings Page 32 of 854

If possible, then use the dynapdf.dll instead. This library requires no additional dependencies to
enable 64 bit file support.

If you want to use DynaPDF with a C++ project, add the line "using namespace DynaPDF;" after
including the header file dynapdf.h.

The usage in C is essentially the same as in C++, with the exception that the namespace
DynaPDF must not be declared.

A PDF instance can be used to create an arbitrary count of PDF files. All used resources are
automatically freed when the PDF file is closed (except when the PDF file was created in
memory). To improve processing speed, use one instance as long as possible.

Most examples are written in C or C++ which can directly be used with a Embarcadero or
Microsoft Compiler.

Example (C++):
// Include the DynaPDF header file (change the path if necessary)
#include "dynapdf.h"
// All data types and functions are declared in the namespace DynaPDF.
using namespace DynaPDF;
// First, we declare an error callback function that is called by
// DynaPDF if an error occurred.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0; // Any other return value break processing
}
// Place a button on the form and double click on it. Add the
following
// code to the function.
int main(int argc, char* argv[])
{
 void* pdf = pdfNewPDF(); // Create a new PDF instance
 if (!pdf) return 2; // Out of memory?
 // Set the error callback first
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfCreateNewPDF(pdf, "c:/myfirst.pdf");
 pdfSetPageCoords(pdf, pcTopDown); // We use top-down coordinates
 pdfAppend(pdf);
 pdfSetFont(pdf, "Arial", fsItalic, 40.0, true, cp1252);
 pdfWriteFText(pdf, taCenter, "My first C++ output!");
 pdfEndPage(pdf);
 pdfCloseFile(pdf); // Close the file and free all used resources
 pdfDeletePDF(pdf); // Do not forget to delete the PDF instance
}

Language Bindings Page 33 of 854

Microsoft Visual Basic 6.0

The usage of DynaPDF with Visual Basic is essentially the same as with C or C++ except that the
exported DLL functions are encapsulated in the wrapper class CPDF to make the usage easier.
The instance pointer IPDF which is used by every DynaPDF function is hidden for the user in
Visual Basic. The instance pointer is controlled by the wrapper class so that you don't need to
create PDF instances manually.

To use DynaPDF with Visual Basic proceed as follows:

• Add the file /include/Visual_Basic/DynapPDFInt.bas to your project (menu Project/Add
Module/Existing…).

• Add the file /include/Visual_Basic/CPDF.cls to your project (menu Project/Add Class
Module/Existing…).

• Add the file /include/Visual_Basic/IPDFCallback.cls to your project (menu Project/Add
Class Module/Existing…).

• If you want to use the table class then add also the file
/include/Visual_Basic/CPDFTable.cls to your project (menu Project/Add Class
Module/Existing…).

• Finally, make sure that the dynapdf.dll can be found by Visual Basic in debug mode; just
copy the DLL into Windows/System32 or into Windows/SysWow64 on a 64 bit system,
finished!

Note that Visual Basic supports the 32 bit dynapdf.dll only. If you work on a 64 bit OS then
copy the library into Windows/SysWow64. Yes, this is the right folder for 32 bit DLLs!

All DynaPDF functions are encapsulated in the wrapper class CPDF. This class makes sure that
the library can be used without limitations and programming is more comfortable since you can
work with a native VB class. You don't need to consider specific return values of the DLL, the
class converts special data types automatically to VB data types.

Exception handling in Visual Basic

The standard exception handling of DynaPDF uses a callback function to pass error messages
and warnings to the client application. However, in Visual Basic we use events instead. The
usage of events is quite easy and frees you from dealing with DynaPDF API function calls.

To enable the event support of the wrapper class CPDF declare a local instance variable as
follows:
Option Explicit
Private WithEvents FPDF As CPDF 'Enable event support

The instance variable FPDF is now listed in the left combo box of the VB code editor.

Language Bindings Page 34 of 854

The right combo box contains the available events, when selecting the event "Error" VB adds
automatically an empty event procedure to your source code:
Private Sub FPDF_Error(ByVal Description As String, ByVal ErrType As
Long, DoBreak As Boolean)
 ' Add your code here
 ' To break processing after an error occurred set the variable
 ' DoBreak to True
End Sub

Now you can enter some code that should be executed when the event is fired. Note that you
must still create an instance of the class CPDF before a DynaPDF function can be executed (see
the example below).

Note also that VB exceptions are not used so that an error block will normally never be
executed. The following declaration has effect in the means of the DynaPDF exception handling:
On Error GoTo errPDF
...
' Call some DynaPDF functions...
: errPDF
If Err.Number <> 0 Then
 MsgBox Err.Description
 Exit Sub
End If

The error block cannot be executed because DynaPDF does never raise an exception (except the
class constructor). If an error occurred, the event "Error" is raised instead. However, there are
still cases in which a VB exception can occur, e.g. when passing an empty array to a function
that requires some values in it. So, the code should still be encapsulated in an error block. All
you need to know that this error block does not affect the normal exception handling of
DynaPDF.

The DoEvents problem

The usage of events in Visual Basic is quite easy but there is a special behaviour that must be
taken into account when developing VB applications. When using the DoEvents procedure in a
VB function you must make sure that the function cannot be executed again while a previous
call of the function is still running.

DoEvents enables the asynchronous processing of the message loop so that the user interface
can be updated and the user can execute something while a function is still running (e.g. press a

Language Bindings Page 35 of 854

break button). DoEvents is often used because it is an easy way to avoid blocking of an
application without using of threads.

However, when using DoEvents it is possible that a user clicks on the button again that executes
DynaPDF functions while a previous call is still running. This is normally no problem but it is
impossible to execute an event functions inside of a cloned function. When DynaPDF tries to
raise an event inside the cloned function an access violation occurs and VB crashes.

To avoid such problems check whether the function is still running:
Option Explicit
Private WithEvents FPDF As CPDF 'Enable event support
Private FRunning As Boolean

Private Sub Command1_Click()
 If FRunning Then Exit Sub 'Check whether a previous call is running
 FRunning = True
 'Call some DynaPDF functions here...
 DoEvents 'Process messages
 FRunning = False
End Sub

The code above checks whether a previous call of the function is running before the function
can be executed again; a quite simple but effective solution that makes your application stabile.

Example:
Option Explicit
Private WithEvents FPDF As CPDF ' Enable event support
Private Sub Form_Load()
 ' We hold one instance of the class CPDF in memory
 Set FPDF = new CPDF
 If FPDF Is Nothing Then
 MsgBox "Out of memory!", vbCritical, "Fatal error"
 End If
End Sub
Private Sub Form_Terminate()
 ' Delete the class instance
 Set FPDF = Nothing
End Sub
Private Sub Command1_Click()
 FPDF.CreateNewPDFA "c:/vbout.pdf"
 FPDF.SetDocInfoA diAuthor, "Jens Boschulte"
 FPDF.SetDocInfoA diSubject, "My first VB output"
 FPDF.SetDocInfoA diTitle, "My first VB output"
 FPDF.Append
 FPDF.SetFont "Arial", fsItalic, 30#, True, cp1252
 FPDF.WriteFTextA taCenter, "My first VB output"
 FPDF.EndPage

Language Bindings Page 36 of 854

 FPDF.CloseFile
End Sub
' Error event procedure
Private Sub FPDF_Error(ByVal Description As String, ByVal ErrType As
Long, DoBreak As Boolean)
 DoBreak = (MsgBox(Description, vbExclamation Or vbYesNo,
 "Error") = vbYes)
End Sub

Language Bindings Page 37 of 854

Visual Basic .Net

The usage of DynaPDF with Visual Basic .Net is essentially the same as with C or C++ except
that the exported DLL functions are encapsulated in the wrapper class CPDF to make the usage
easier. The instance pointer IPDF that is used by every DynaPDF function is hidden for the user
in VB .Net. The instance pointer is controlled by the wrapper class so that you don't need to
create PDF instances manually.

To use DynaPDF with VB .Net proceed as follows:

• Add the file /include/Visual_Basic_Net/CPDF.vb to your project (menu Project/Add
Existing Element…).

• Finally, make sure that the dynapdf.dll can be found; just copy the DLL into
Windows/System32, finished!

64 Bit Applications

With VB .Net you can develop 32 bit and 64 bit applications. One thing that must be considered
is that the target CPU type in Visual Studio must not be set to UseAny. This is impossible since
you can either link the 32 bit dynapdf.dll or the 64 bit version but not both.

So, a 32 bit and 64 bit version must be compiled separately. Another thing that is often
misunderstood is the right system directory for the dynapdf.dll. If you develop a 32 bit
application on a 64 bit Windows version then copy the 32 bit version of the dynapdf.dll into
Windows/SysWow64 and the 64 bit version into Windows/System32. Yes, this is correct!

Both versions can be used simultaneously. Windows loads automatically the right version if
you have copied the DLLs into the right directories.

Note that the DLL should be copied into the system folder on your development machine only
so that Visual Studio is able to load it. The installer of your application should copy the DLL
into the application directory instead.

General Note:

Visual Studio .Net copies the interface files into your project directory if the option “Link file” is
not selected when adding the files to your project. Make sure that you always link the files to
your project. Otherwise you must update the interface files manually whenever you install a
newer version of DynaPDF.

All DynaPDF functions are encapsulated in the wrapper class CPDF. This class makes sure that
the DynaPDF functions can be used without limitations and programming with DynaPDF
becomes more comfortable. You don't need to consider specific return values of the DLL; the
class converts API data types automatically to VB .Net data types.

Language Bindings Page 38 of 854

VB .Net supports more data types than VB 6.0 but the usage of the new data types is
complicated. For instance, a signed integer cannot be passed to an unsigned integer variable
without explicit conversion. The same behaviour is required for nearly all other new data types.
This makes the usage of the new types practically impossible.

However, to make the usage of DynaPDF less complicated the VB .Net interface uses only base
data types which are already available since VB 6.0. An exception is the definition of pointers.
VB .Net supports the new Data IntPtr that is a variable pointer type with a length of 32 bit on a
32 bit Windows machine and 64 bit on a 64 bit Windows machine. This data type is used for all
pointers so that the .Net interface can also be used on a 64 bit Windows machine. Note that the
64 bit version of DynaPDF must be used in this case.

Data types used by DynaPDF

DynaPDF uses a large set of enums and other data types which are mostly declared within the
class CPDF. However, a few data types are declared in the file DynaPDFInt.vb, this must be
taken into account when developing VB .Net applications. If you cannot find a data type in the
class CPDF then take a look into the file DynaPDFInt.vb.

Exception handling in VB .Net

The exception handling in Visual Basic .Net is the same as in Visual Basic 6.0. The class CPDF
uses per default events instead of callback functions. This makes the usage easier and frees you
from handling with unmanaged data types. Please take a look into Visual Basic Exception
handling for a detailed description.

It is also possible to declare callback functions instead of events but the use of callback functions
is rather complicated in VB .Net. While C# handles callback functions correctly without further
considerations, VB .Net users must test their callback function properly. It seems that VB .Net
invalidates sometimes the pointers of callback functions if memory must be reallocated. This
error occurs mostly if DynaPDF functions are executed in different classes. If you get a
NullReference exception check whether the same error occurs if no error callback function is set.
If the exception does no longer occur use the error event handling of DynaPDF instead.

The DoEvents problem

The usage of events in VB .Net is quite easy; however, there is a special behaviour that must be
taken into account when developing .Net applications. When using the DoEvents procedure in
a function you must make sure that the function cannot be executed again while a previous call
of the function is still running.

DoEvents enables the asynchronous processing of the message loop so that the user interface
can be updated and the user can execute something while a function is still running (e.g. press a
break button). DoEvents is often used because it is an easy way to avoid blocking of an
application without using of threads.

Language Bindings Page 39 of 854

However, when using DoEvents it is possible that a user clicks on the button again that executes
DynaPDF functions while a previous call is still running. This is normally no problem but when
using events the event functions become invalid. This is the same behaviour as in Visual Basic
6.0 with the exception that .Net does not crash, a System.NullReferenceException is raised
instead.

It is not clear why this exception occurs, it seems that this is a general bug in the event handling
of Visual Basic 6.0 and VB .Net. A native programming language like C/C++ or Delphi would
never cause an access violation or exception here.

However, to avoid such problems check whether the function is still running:
Private WithEvents FPDF As CPDF 'Enable event support
Private FRunning As Boolean

Private Sub Command1_Click(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles Command1.Click
 If FRunning Then Exit Sub 'Check whether a previous call is running
 FRunning = True
 'Call some DynaPDF functions here...
 DoEvents 'Process messages
 FRunning = False
End Sub

The code above checks whether a previous call of the function is running before the function
can be executed again. A quite simple but effective solution that makes your application stabile.

Example (Visual Basic .Net):
Private WithEvents FPDF As CPDF 'Enable event support

Private Sub Form1_Load(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles MyBase.Load
 ' We hold one instance of the class CPDF in memory
 FPDF = New CPDF()
End Sub

Private Sub Command1_Click(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles Command1.Click
 FPDF.CreateNewPDFA("c:/vbout.pdf")
 FPDF.SetDocInfoA(CPDF.TDocumentInfo.diAuthor, "Jens Boschulte")
 FPDF.SetDocInfoA(CPDF.TDocumentInfo.diSubject, "My first VB output")
 FPDF.SetDocInfoA(CPDF.TDocumentInfo.diTitle, "My first VB output")

 FPDF.Append()
 ' The data type TFStyle is defined in DynaPDFInt.vb
 FPDF.SetFontA("Arial", TFStyle.fsItalic, 30.0, True, CPDF.TCodepage.cp1252)
 FPDF.WriteFTextA(CPDF.TTextAlign.taCenter, "My first VB .Net output")
 FPDF.EndPage()
 FPDF.CloseFile()

Language Bindings Page 40 of 854

End Sub

' Error event procedure
Private Sub FPDF_PDFError(ByVal Description As String, ByVal ErrType
As Integer, ByRef DoBreak As Boolean) Handles FPDF.PDFError
 DoBreak = (MsgBox(Description, _
 MsgBoxStyle.Exclamation Or _
 MsgBoxStyle.YesNo, _
 "Error") = MsgBoxResult.Yes)
End Sub

Language Bindings Page 41 of 854

Visual C#

The usage of DynaPDF with Visual C# is essentially the same as with C or C++ except that the
exported DLL functions are encapsulated in the wrapper class CPDF to make the usage easier.
The instance pointer IPDF that is used by every DynaPDF function is hidden for the user in C#.
The instance pointer is controlled by the wrapper class so that you must not create PDF
instances manually.

.Net Core compatibility

.Net Core applications can be compiled with Visual Studio for Windows, Linux, and macOS. In
order to use DynaPDF on these operating systems, copy the DynaPDF DLL or shared library
into the output folder. The library can be found in the dynapdf directory on Windows or
download the corresponding Linux or macOS archive respectively:

• Windows 32 bit: /dynapdf/win32/dynapdf.dll

• Windows 64 bit: /dynapdf/win64/dynapdf.dll

• Linux 64 bit: /dynapdf/dynapdf/libdynapdf.so

• macOS 64 bit: /dynapdf/dynapdf/libdynapdf.dylib

Using DynaPDF with Visual Studio

To use DynaPDF with Visual C# proceed as follows:

• Add the file /include/Visual_C#/CPDF.cs to your project (menu Project/Add Existing
Element…).

• Make sure that the dynapdf.dll can be found. On the development machine execute the
msi installer (dynapdf.msi). The installer copies the the 32 and 64 bit library into
Windows/System32 and Windows/SysWow64. On Windows 7 or earlier it is also
possible to copy the library manually into the system folders but this is not possible on
Windows 10.

• Note that an installation into the system folders is recommended on a development
machine only. On the target system the DLL should be copied into the application folder
to avoid issues with different DynaPDF versions which might be installed on the system.

64 Bit Applications

With C# you can develop 32 bit and 64 bit applications. One thing that must be considered is
that the target CPU type in Visual Studio must not be set to UseAny. This is impossible since
you can either link the 32 bit dynapdf.dll or the 64 bit version but not both.

So, a 32 bit and 64 bit version must be compiled separately. Another thing that is often
misunderstood is the right system directory for the dynapdf.dll. If you develop a 32 bit

Language Bindings Page 42 of 854

application on a 64 bit Windows version then copy the 32 bit version of the dynapdf.dll into
Windows/SysWow64 and the 64 bit version into Windows/System32. Yes, this is correct!

Both versions can be used simultaneously. Windows loads automatically the right version if
you have copied the DLLs into the right directories.

Note that the DLL should be copied into the system folder on your development machine only
so that Visual Studio is able to load it. The installer of your application should copy the DLL
into the application directory instead.

General Note:

Visual Studio .Net copies the interface file CPDF.cs into your project directory if the option
“Link file” is not selected when adding the file to your project. Make sure that you always link
the files to your project. Otherwise you must update the interface manually whenever you
install a newer version of DynaPDF.

All DynaPDF functions are encapsulated in the wrapper class CPDF. This class makes sure that
the DynaPDF functions can be used without limitations and programming with DynaPDF
becomes more comfortable. You don't need to consider specific return values of the DLL; the
class converts API data types automatically to C# data types.

However, C# uses a very restrictive data type handling that causes that already signed integers
cannot be passed to unsigned integer variables of the same type without explicit conversion.

To make the usage of DynaPDF less complicated most function parameters which would
normally declared as unsigned integer, e.g. PDF object handles, are declared as signed integer
to get rid of permanent explicit data type conversions.

The usage of DynaPDF with C# is nearly identical in comparison to C++. The interface does
generally not use events like in VB .Net because callback functions work very well in C#.

Data types in C#

All structures and enums used by DynaPDF are declared in the namespace DynaPDF. Because
it is not possible to declare constants in a namespace, such constants are declared in the class
CPDF. All data types, structures, and constants are defined in the file CPDF.cs. No further files
are required to use DynaPDF.

Example (Visual C#):
using System;
using DynaPDF;
using System.Runtime.InteropServices.Marshal;

namespace hello_world
{
 class Hello_World
 {
 // Error callback function.
 static int PDFError(IntPtr Data, int ErrCode, IntPtr ErrMessage,

Language Bindings Page 43 of 854

 int ErrType)
 {
 // The error type is a bitmask.
 Console.Write("{0}\n", PtrToStringAnsi(ErrMessage));
 Console.Write("\n");
 return 0; // We try to continue if an error occurs.
 }

 [STAThread]
 static void Main(string[] args)
 {
 try
 {
 String outFile = "c:/c#out.pdf";
 CPDF pdf = new CPDF();
 // Error messages are passed to the callback function.
 pdf.SetOnErrorProc(IntPtr.Zero, new DynaPDF.TErrorProc(PDFError));
 // We open the output file later if no error occurs.
 pdf.CreateNewPDF(null);
 // We use top down coordinates in this example
 pdf.SetPageCoords(DynaPDF.TPageCoord.pcTopDown);
 // Add an empty page to the file
 pdf.Append();
 // Before printing text you must set a font
 pdf.SetFont("Arial", DynaPDF.TFStyle.fsItalic, 20, true, DynaPDF.TCodepage.cp1252);
 pdf.WriteText(50.0, 50.0, "My first PDF output...");
 pdf.WriteText(50.0, 80.0, "File created: " + DateTime.Now.ToString());
 pdf.EndPage(); // Close the open page

 // No fatal error occurred?
 if (pdf.HaveOpenDoc())
 {
 // OK, now we can open the output file.
 if (!pdf.OpenOutputFile(outFile))
 {
 // An error message was already passed to the error callback function
 Console.Read();
 return;
 }
 if (pdf.CloseFile())
 {
 Console.Write("PDF file \"{0}\" successfully created!\n", outFile);
 }
 }
 pdf = null;
 }catch(Exception e)
 {
 Console.Write(e.Message);
 }
 Console.Read();
 }
 }
}

Language Bindings Page 44 of 854

Embarcadero Delphi

The usage of DynaPDF with Embarcadero's Delphi is essentially the same as with C or C++
except that the exported DLL functions are encapsulated in the wrapper class TPDF to make the
usage easier. The instance pointer IPDF that is used by every DynaPDF function is hidden for
the user in Delphi. The instance pointer is controlled by the wrapper class so that you don't
need to create PDF instances manually.

To use DynaPDF with Delphi, proceed as follows:

• Add the interface file /include/Delphi/dynapdf.pas to your project.

• Add the unit dynapdf in the uses section in every source file where you want to use
DynaPDF.

• Copy the dynapdf.dll into a Windows search path (e.g. Windows/System32) or into your
application directory, finished!

64 Bit Applications

Since Rad Studio XE2 you can develop 32 bit and 64 bit applications with Delphi. One thing that
is often misunderstood is where the 32 bit and 64 bit versions of dynapdf.dll must be stored. If
you develop a 32 bit application on a 64 bit Windows version then copy the 32 bit version of the
dynapdf.dll into Windows/SysWow64 and the 64 bit version into Windows/System32. Yes, this
is correct!

Both versions can be used simultaneously. Windows loads automatically the right version if
you have copied the DLLs into the right directories.

Note that the DLL should be copied into the system folder on your development machine only
so that Delphi is able to load it. The installer of your application should copy the DLL into the
application directory instead.

General Usage

The Delphi interface encapsulates all DLL functions in the wrapper class TPDF. This class can
be used like any other VCL class. The class is thread-safe and can be used without
synchronization in multithreading applications.

However, some details must be known about the class. When the first instance is created, the
constructor loads the dynapdf.dll with the API function LoadLibrary(). When creating a further
instance of the wrapper class TPDF, also a new PDF instance is created inside the DLL. Each
instance of the wrapper class uses its own DLL instance.

If an instance of the wrapper class TPDF is destroyed, the destructor deletes the used PDF
instance; if no other instance uses the library then it will be unloaded with the API function
FreeLibrary().

Language Bindings Page 45 of 854

However, the DLL is unloaded each time if the reference count of the DLL is zero. In most cases
it makes sense to hold one instance of the wrapper class in memory to avoid unloading the
library. The internal resources used by DynaPDF are always freed when CloseFile() is called
(except when the file is created in memory), so that there is no need to destroy the main instance
of TPDF.

Exception handling in Delphi

DynaPDF itself uses no native Delphi exception handling. Error messages and warnings are
passed to an error callback function if any (see SetOnErrorProc()). If no callback function is
used, then use the function GetErrorMessage() to get information about the last error.

However, the wrapper class TPDF uses native exceptions in the following cases:

• When creating a new instance of the wrapper class TPDF.
• When loading a DLL function with the API function GetProcAddress() (all functions).

If a function listed above fails, then an exception is raised by the class TPDF. Always
encapsulate all function calls into a try / except block. Only a few exceptions can occur but these
exceptions must not be ignored. Especially when using DynaPDF in multi-threading
applications it is highly recommended to use try / except or try / finally blocks. A thread must
always catch all exceptions inside the thread.

Using DynaPDF in Multithreading Applications

The usage of DynaPDF inside a thread is the same as in single-threaded applications.

However, if a callback function should be used, you must make sure that the callback function
is declared in the same thread or that each thread uses its own copy of the callback function. In
addition, it is highly recommended that only thread-safe functions are called inside the callback
function. If any unsafe function must be executed the function that causes the execution of the
callback function must be synchronized because it is impossible to synchronize a callback
function itself.

Threads should be used completely isolated from the main-thread of the application. Function
calls to and from the main-thread must be synchronized. The entire PDF file should be created
inside the thread including the instance of the wrapper class TPDF. The class instance must also
be deleted before the thread is terminated.

A running thread can be terminated at any time but it is highly recommended to wait for any
running functions to end before a thread will be terminated. This can be done easily by
checking the property Terminated within the thread before a new function is executed.

After a running function returns, the class instance can be destroyed by using the Free() method
for that instance. This will clean up the used resources and the thread can be terminated. The
instance of the wrapper class TPDF can be safely destroyed at any time after a running function

Language Bindings Page 46 of 854

returned. All internal used resources will be freed, there is no need to call FreePDF() manually
beforehand.

Example (Single threaded):

In the following example we use a simple message box inside the error callback function.
However, in a larger project it makes sense to output error messages into an error log or list
box. DynaPDF ignores non-fatal errors by default so that it is possible to continue, but you can
protocol each warning and errors during PDF creation.
unit Unit1;

interface

uses Windows, Messages, SysUtils, Classes, Controls, Forms, Dialogs,
StdCtrls, dynapdf; // Include the file dynapdf.pas to the unit
type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 public
end;
var Form1: TForm1;
implementation
// First, we define our callback function that is called if an
// error occurred. Note: The calling convention is stdcall!
function ErrProc(const Data: Pointer; ErrCode: Integer; const
ErrMessage: PAnsiChar; ErrType: Integer): Integer; stdcall;
var s: String;
begin
 s := Format('%s'#13'Abort processing?', [ErrMessage]);
 if MessageDlg(s, mtError, [mbYes, mbNo], 0) = mrYes then
 Result := -1 // break processing
 else
 Result := 0; // try to continue
end;
procedure TForm1.Button1Click(Sender: TObject);
var pdf: TPDF;
begin
 pdf := nil;
 try
 pdf := TPDF.Create;
 // set the error callback function first
 pdf.SetOnErrorProc(nil, @ErrProc);
 pdf.SetDocInfoA(diAuthor, 'Jens Boschulte');
 pdf.SetDocInfoA(diCreator, 'Delphi sample project');
 pdf.SetDocInfoA(diSubject, 'My first PDF file...');

Language Bindings Page 47 of 854

 pdf.SetDocInfoA(diTitle, 'My first Delphi PDF output');
 pdf.SetViewerPreferences(vpDisplayDocTitle, avNone);

 pdf.CreateNewPDFA('c:\dout.pdf');
 pdf.Append;
 pdf.SetFontA('Arial', fsItalic, 40, true, cp1252);
 pdf.WriteFTextA(taCenter, 'My first Delphi output!!!');
 pdf.EndPage;
 pdf.CloseFile;
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOK], 0);
 end;
 if pdf <> nil then pdf.Free;
end;

Compiling DynaPDF on Linux / UNIX Page 48 of 854

Compiling DynaPDF on Linux / UNIX
The build process of DynaPDF was designed to enable the compilation on most Linux or UNIX
operating systems as easy as possible. All Linux and UNIX versions of DynaPDF can be
compiled with GCC 4.2 or higher. GCC is freely available for most machine types.

The pre-compiled Unix libraries are usually compiled with the default compiler that is
common for the specific system, e.g. Solaris Studio on Solaris or Visual Age on AIX.

The configuration files are mainly designed for use with GCC and autoconf. If you want to use
another compiler you must maybe change the compiler flags in the file configure.in and rebuild
the configure script with autoconf. This can be done on an arbitrary Linux machine if no
working autoconf is installed on the Unix machine.

If you get compilation issues just ask for a solution! We have a lot of experience with Unix
systems, maybe we can help.

System requirements:

1. Properly installed GCC (4.2 or higher) C and C++ compiler. We strongly recommended
GCC 4.2 or higher!

2. GNU make
3. To create a static library of DynaPDF you need also ar and ranlib

Build process

1. Copy first the entire directory dynapdf_ent to your Linux or UNIX machine.
2. Change the access permissions of the following files as follows (subdirectory /source):

a. chmod 777 config.guess
b. chmod 777 config.sub
c. chmod 777 confrel
d. chmod 777 install-sh

3. Type "./confrel" and press enter. This command creates the make files for your machine
and starts the compilation.

4. Clean up the directory with "make clean", finished!

Make install creates a static and shared library of DynaPDF and copies the libraries and header
files, which are required to bind DynaPDF, into the subdirectory /source.

You find the following files in the subdirectory /source after compiling DynaPDF:

• dynapdf.h // Main header file of DynaPDF

• drv_conf.h // Required configuration file

• libdynapdf.a // Static library

• libdynapdf.so // Extension ".sl" on HP-UX or ".dylib" on Mac OS X

Compiling DynaPDF on Linux / UNIX Page 49 of 854

Changing the configuration scripts

DynaPDF uses the freely available tool autoconf to create the main configuration script
configure. Autoconf requires the file configure.in as input file which is located in the
subdirectory /source. The final configure script can be executed without changes on all
supported Linux and UNIX operating systems as well as on macOS. It creates the make files
from the input files makefile.in which are located in all library directories; these files can
normally be left unchanged. The top level makefile.in, which is stored in the subdirectory
/source too, can be modified if further installation scripts should be executed after the library
was successfully compiled. Note that the makefile.in files can be modified without rebuilding
the configure script.

If you want to change certain compiler settings, or the compiler itself, modify the file
configure.in and execute autoconf without parameters. Autoconf will rebuild the configure
script with the new settings.

Linker flags

The used linker flags are designed to create a library with minimal dependencies so that
DynaPDF can be delivered without other OS specific libraries. Depending on the target OS the
linker flags can be changed so that OS specific libraries can be bind dynamically. This results in
a smaller library but with more dependencies. To change the linker flags, modify the variable
LD_LIBS in the file configure.in and rebuild the configure script with autoconf. The library can
also be build LSB 3.0 compatible on Linux.

Compiler flags

When compiling DynaPDF on HP-UX the flag -fPIC (Position Independent Code) must be set at
the minimum to enable the usage as shared library.

Optimization Level

DynaPDF is compiled with optimization level 3. This level is a good compromise between
stable and fast code. The highest optimization level 4 causes a very long compilation time and it
is possible that the resulting code is less stabile. Test the library properly before using this
optimization level by default.

However, a release build should use the optimization level 3 or 4 because certain dependencies
to internal GCC specific libraries are only removed if the optimization level is higher than 2.

Recommended compiler version

All Linux and Unix versions can be compiled with GCC 4.2. Older versions are not tested and
maybe don't work. The GCC compiler should be configured with enabled POSIX compatible
thread handling if possible, although the library does not depend on it.

Compiling DynaPDF on macOS Page 50 of 854

Compiling DynaPDF on macOS

Compiling with XCode

DynaPDF Enterprise contains a pre-configured XCode workspace with targets for macOS and
iOS. tvOS would probably work too but this was never tested.

The default target is macOS. An important thing to note is that the FreeType workspace has no
separate target for iOS. Therefore, the target must be changed to iOS before the library can be
compiled for this target. Changing the target is very easy, just click on the blue FreeType
workspace, activate the tab "Build Settings", and select iOS as new base SDK:

That's it, click on compile & run and the library will be compiled. When the scheme
dynapdfApp is selected the emulator will start and a simple test app will be executed. This app
calls just the DynaPDF function SelfText() to check whether the library works well. The output
of SelfText() can be seen in XCode console.

Compiling on the Command Line

The build process via the command line is very similar in comparison to Linux and UNIX
operating systems. On macOS we compile the library usually with CLang or with GCC if you
work with an older Mac OS X version. All you need is a properly installed XCode including the

Compiling DynaPDF on macOS Page 51 of 854

command line tools. XCode is freely available in the app store if not already installed on your
system. The current configuration creates a Universal Binary for the targets x86_64 and ARM64.

Which targets are supported can be checked with the command file.

Example:
file libdynapdf.a

or
file libdynapdf.dylib

If you don't want to create Universal binaries or if you need another CPU target then open the
file configure.in in a text editor and modify the variable ARCH as needed.

Example (add the target Power PC 64):

ARCH="-arch x86_64 -arm64 -arch ppc64"

When finish save the file and execute autoconf. This command rebuilds the configure script.
Finally type ./confrel and press enter. The configure script is now executed to build the make
files and finally the script compiles the library. When finish execute make clean to clean up the
build directory. The finish libraries are stored in the subdirectory /source.

Content parsing & editing Page 52 of 854

Content parsing & editing
DynaPDF contains a very powerful content parser that is already used since several years by
Optimize() and CheckConformance(). The very same parser can also be used to extract text, find
and replace text, delete arbitrary operators, convert text to outline, convert colors, or
downscaling and recompressing images, for example.

ParsePage() parses a page and creates a C object structure from it. This structure can be edited
with various functions like Find- / ReplaceText(), or by DeleteOperator(), for example. Note that
changes made on the C object structure do not take effect until the structure was written back
with WriteToPage().

Include files

The parser API is defined in the file parser_interface.h (C/C++) or CPDFContentParser.cls for
VB 6. Other programming languages do not need to include a separate file but the API is
encapsulated in the class CPDFContentParser(), or TPDFContentParser() in Delphi respectively
to make the usage easy as possible.

Abort

Syntax:
void psrAbort(
 const IPSR* Ctx) // PDF instance pointer

The function can be used to abort parsing whenever needed. However, parsing can be aborted
only if ParsePage() was called in a separate thread. Note that it is not allowed to execute
different functions of the same PDF instance in different threads. Every thread requires either
its own PDF instance or function calls must be synchronized.

ChangeAltFont

Syntax:
LBOOL psrChangeAltFont(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 UI32 Handle) // Font handle

The function changes the active alternate font that is used by ReplaceSelText() when the original
font is not available. The font handle must be a handle that was returned by SetFont(),
SetFontEx(), SetCIDFont(), or SetAltFont().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Content parsing & editing Page 53 of 854

ClearSelection

Syntax:
void psrClearSelection(
 const IPSR* Ctx) // Parser instance pointer

The function clears the selection. This function is declared for future use. FindText() clears the
text selection automatically before it is executed. There is currently no need to clear the selection
manually.

CreateParserContext

Syntax:
IPSR* psrCreateParserContext(
 const PPDF* IPDF, // Instance pointer
 TOptimizeFlags Flags, // Optimization flags
 struct TOptimizeParams* Parms) // Optional parameters

The function creates a parser context that can be used to edit and extract text, or do delete
arbitrary operators of a page.

The content parser is used by Optimize() too. Therefore, the same flags and optimization
parameters are supported. Please have a look at Optimize() for a description of the available
flags and parameters. The parameter Parms can be set to NULL and Flags to ofDefault if nothing
special should be achieved. Parms is considered only if the member StructSize is set to
sizeof(TOptimizeParams).

The function makes a copy of the structure if set. This makes sure that no error occurs when the
structure becomes out of scope.

Remarks:

To determine how the parser can be used, have a look at the example edit_text. The example is
available for C/C++, C#, Delphi, VB .Net, and VB 6.

The parser context must be deleted with DeleteParserContext() when no longer needed.

Return values:

If the function succeeds the return value is a pointer of the parser context. If the function fails
the return value is NULL.

Content parsing & editing Page 54 of 854

DeleteOperator

Syntax:
LBOOL psrDeleteOperator(
 const IPSR* Ctx, // Parser instance pointer
 UI32 Index) // Operator index

The function deletes an operator from the array of operators returned by ParsePage().

Please note that there is no error checking. Deleting operators can lead to errors, e.g. an operator
like BeginText has the counterpart EndText, as well as additional operators inside this block
which might not be allowed to occur standalone.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteOperatorInObject

Syntax:
LBOOL psrDeleteOperatorInObject(
 const IPSR* Ctx, // Parser instance pointer
 IPDFObj* ObjPtr, // Object pointer
 UI32 Index) // Operator index

The function deletes an operator of an object that has its own content stream like templates,
transparency groups, or patterns. The object pointer is provided in the structure of the
corresponding operator (see TDrawTemplateOP, TDrawGroupOP, or TSetPatternOP). This is
the member Template or Pattern of these structures.

For all other operators use DeleteOperator() instead.

Please note that there is no error checking. Deleting operators can lead to errors, e.g. an operator
like BeginText has the counterpart EndText, as well as additional operators inside this block
which might not be allowed to occur standalone.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteParserContext

Syntax:
void psrDeleteParserContext(
 IPSR** Ctx) // Parser instance pointer

The function deletes a parser context that was created by CreateParserContext() and sets the
variable Ctx to NULL. If the parameter Ctx is NULL, the function returns immediately without
error.

Content parsing & editing Page 55 of 854

DeleteText

Syntax:
LBOOL psrDeleteText(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 struct TFltRect* Area, // Required
 TDeleteTextFlags Flags) // See below

The function deletes every glyph or character that touches or lies inside the rectangle Area.

Area must be defined as if the page would be viewed in a PDF viewer. That means in bottom up
coordinates and the orientation must be considered (see GetPageOrientation()). The width and
height of a page must be calculated from the crop box if set, or from the media box otherwise
(see GetPageBBox()). Note also that the width and height must be exchanged if the orientation is
90, -90, 270, or -270 degrees.

Note that this function deletes text only. Text can also occur in form of images or vector
graphics. There are no functions yet to identify and delete text in such objects.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ExtractText

Syntax:
LBOOL psrExtractText(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 TTextExtractionFlags Flags, // See below
 struct TFltRect* Area, // Optional search area
 UI16** Text, // Required, address of UI16* variable
 UI32* TextLen) // Required, address of a UI32 variable

typedef enum TTextExtractionFlags
{
 tefDefault = 0, // Create text lines in the original order.
 tefSortTextX = 1, // Sort text records in x-direction.
 tefSortTextY = 2, // Sort text records in y-direction.
 tefSortTextXY = tefSortTextX | tefSortTextY,
 tefDeleteOverlappingText = 4 // Text extraction only.
}TTextExtractionFlags;

The function extracts the text of a page with the same algorithm that FindText() uses to find text
on a page. In order to get exactly the same result the flag tefSortTextX must be set.

The function ExtractText() of the PDF instance calls in fact this function internally.

The optional parameter Area can be set to restrict text extraction to that rectangle. The rectangle
must be defined as if the page would be viewed in a PDF viewer. That means in bottom up

Content parsing & editing Page 56 of 854

coordinates and the orientation must be considered. The page coordinate system is de-rotated
before text extraction starts since this produces better results. The width and height must be
calculated from the crop box if set, or from the media box otherwise. Note also that the width
and height must be exchanged if the orientation is 90, -90, 270, or -270 degrees.

Remarks:

Note that Text can be NULL, and TextLen zero, also if the function returned with no error. The
page contained no text in this case.

Return value:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FindText

Syntax:
LBOOL psrFindText(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 struct TFltRect* Area, // Optional search area
 TSearchType SearchType, // See below
 struct TTextSelection* Last, // The previous selection if any
 const UI16* Text, // Search text
 UI32 TextLen, // Text length in characters
 struct TTextSelection* SelText) // Required output structure

typedef enum TSearchType
{
 stDefault = 0, // Case sensitive search
 stWholeWord = 1, // Only whole words
 stCaseInSensitive = 2, // Case insensitive search
 stMatchAlways = 4 // Return on every single character. Text and TextLen are ignored when
 // this flag is set.
}TSearchType;

The function searches for text and stores the result so that further editing actions can be applied.
The parameter SelText is required. The member StructSize must be set to sizeof(TTextSelection)
before the function can be called. The parameter Text is required unless the flag stMatchAlways
is set. When this flag is set, the function returns for every single character.

The bounding box of the found text can be computed with GetSelBBox().

Optional search area

Area must be defined as if the page would be viewed in a PDF viewer. That means in bottom up
coordinates and the orientation must be considered (see GetPageOrientation()). The width and
height of a page must be calculated from the crop box if set, or from the media box otherwise
(see GetPageBBox()). Note also that the width and height must be exchanged if the orientation is
90, -90, 270, or -270 degrees.

Content parsing & editing Page 57 of 854

The page coordinate system is de-rotated since this produces better results and it is much easier
to find the location of text in rotated pages.

FindText() is usually called inside a loop until no more occurrences of the search string can be
found. The search result of the last call must be passed to the parameter Last so that the function
knows where to continue. In the first call, Last must be set to NULL. That means start at the
beginning.

SelText and Last can point to the same structure. The values are copied before the function is
executed.

Example (C++):
...
TTextSelection sel, *curr;
for (SI32 i = 1; i <= pdfGetPageCount(pdf); i++)
{
 curr = NULL; // Important! Must be NULL in the first call.
 if (psrParsePage(pdf, ctx, NULL, NULL, i, cpfEnableTextSelection, 0, &out))
 {
 while (psrFindText(pdf, ctx, NULL, stDefault, curr, sText, sLen, &sel))
 {
 psrReplaceSelText(pdf, ctx, rtfDefault, &sel, rText, rLen);
 curr = &sel; // Required! Otherwise the search run starts over and over again at the
 // beginning and this would cause an endless loop.
 }
 psrWriteToPage(pdf, ctx, ofDefault, NULL);
 }
}

Return values:

If text was found the return value is 1. If no text was found or if an error occurred the return
value is false.

GetSelBBox

Syntax:
LBOOL psrGetSelBBox(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 TTextSelection* SelText, // Required. Structure filled with data by
 // FindText().
 TBBox* BBox) // Required. Address of a TBBox structure

The function computes the bounding box of the current selection created by FindText().

Notice:

The bounding box is calculated in top down coordinates! This differs in comparison to
almost all other functions which return PDF coordinates.

Content parsing & editing Page 58 of 854

In order to place objects on this position it is usually best to enable visible coordinates with
SetUseVisibleCoords() and to rotate the coordinate system with SetOrientationEx() according to
the page orientation after the page was opened for editing. See example on the next page.

Example:
This example draws a rectangle over every letter to check whether the coordinates are correct.

void TestContentParser(const PPDF* PDF, const wchar_t* InFile, wchar_t* OutFile, SI32 Page)
{
 IPSR* ctx;
 IPGE* page;
 SI32 i, j, n, cnt;
 TBBox b, list[8192];
 TContent out = {0, 0};
 TTextSelection sel, *curr;

 pdfCreateNewPDF(PDF, NULL);
 // No need to override the original producer
 pdfSetDocInfo(PDF, diProducer, NULL);

 // Do not convert pages to templates
 pdfSetImportFlags(PDF, ifImportAll | ifImportAsPage);
 // Reduce the memory usage
 pdfSetImportFlags2(PDF, if2UseProxy);
 pdfOpenImportFileW(PDF, InFile, ptOpen, NULL);
 if (!Page)
 pdfImportPDFFile(PDF, 1, 1.0, 1.0);
 else
 {
 pdfAppend(PDF);
 pdfImportPageEx(PDF, Page, 1.0, 1.0);
 pdfEndPage(PDF);
 }

 cnt = pdfGetPageCount(PDF);
 ctx = psrCreateParserContext(PDF, ofDefault, NULL);

 sel.StructSize = sizeof(sel);

 // Important! GetSelBBox() returns top down coordinates.
 pdfSetPageCoords(PDF, pcTopDown);

 for (i = 1; i <= cnt; i++)
 {
 curr = NULL;
 if (psrParsePage(PDF, ctx, NULL, NULL, i, cpfEnableTextSelection, 0, &out))
 {
 n = 0;
 // The function returns on every single letter if the flag stMatchAlways is set
 while (psrFindText(PDF, ctx, NULL, stMatchAlways, curr, NULL, 0, &sel))
 {
 if (psrGetSelBBox(PDF, ctx, &sel, &b) && n < 8192)
 list[n++] = b;
 curr = &sel;
 }
 if (n > 0)
 {
 pdfEditPage(PDF, i);
 pdfSetOrientationEx(PDF, pdfGetOrientation(PDF));
 pdfSetLineWidth(PDF, 0.0);
 for (j = 0; j < n; j++)
 {
 TBBox &r = list[j];
 pdfRectangle(PDF, r.x1, r.y1, r.Width(), r.Height(), fmClose);

Content parsing & editing Page 59 of 854

 }
 pdfClosePath(PDF, fmStroke);
 pdfEndPage(PDF);
 }
 }
 }
 psrDeleteParserContext(&ctx);

 if (pdfOpenOutputFileW(PDF, OutFile) && pdfCloseFile(PDF))
 printf("Ok : \"%S\"\n", OutFile);
 else
 printf("Error: \"%S\"\n", OutFile);
}

Return value:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetSelBBox2

Syntax:
LBOOL psrGetSelBBox2(
 const PPDF* IPDF, // PDF instance pointer
 struct TTextSelection* SelText, // Required. Structure filled with
 // data by FindText().
 struct TFltPoint QuadPoint[4]) // Required. Array of TFltPoint

The function returns the bounding box as quad points of a single node or glyph of the current
selection. This function is useful for rotated text.

The four points are computed in top down coordinates and in the following order:

 p2

p1

 p3

 p0

The structure TTextSelection is a single linked list. The next node, if any, is stored in the member
Next.

Example (C++):

This code shows how to access all nodes of a selection but note that the contents of a page will
be overriden when WriteToPage() will be called. Therefore, it is sometimes required to
temporarily store the quad points in an array so that they can be drawn after WriteToPage() was
called.
...
void DrawSelection(PPDF* PDF, TTextSelection &Curr)
{

TFltPoint q[3];

Content parsing & editing Page 60 of 854

TTextSelection* next = &Curr;
while (next)
{
 if (psrGetSelBBox2(PDF, next, q))
 {

 if (fabs(q[0].y - q[3].y) < 0.0001f) // Is this a rotated node?
 pdfRectangle(PDF, q[0].x, q[0].y, q[3].x-q[0].x, q[1].y-q[0].y, fmStroke);
 else
 {
 pdfMoveTo(PDF, q[0].x, q[0].y);
 pdfLineTo(PDF, q[1].x, q[1].y);
 pdfLineTo(PDF, q[2].x, q[2].y);
 pdfLineTo(PDF, q[3].x, q[3].y);
 pdfClosePath(PDF, fmStroke);
 }
}
next = next->Next;

}

}

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetSelText

Syntax:
LBOOL psrGetSelText(
 const PPDF* IPDF, // PDF instance pointer
 struct TTextSelection* SelText, // Required. Structure filled with
 // data by FindText().
 UI16** Text, // Address of UI16* variable
 UI32* TextLen) // Address of UI32 variable

The function retrieves the text and text length of the current selection or found text.

This function is mainly a helper function for programming languages which do not support
pointers like VB 6, VB .Net, C#, and so on. However, the function is also useful if FindText() was
called with the search type stMatchAlways. In this case, and only in this case, it is not known
which text FindText() has found.

In C/C++, or Delphi you can access the text directly as follows:
UI16* text = selText->TextOP->Text->UniText;
UI32 textLen = selText->TextOP->Text->UniTextLength;

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Content parsing & editing Page 61 of 854

ParsePage

Syntax:
LBOOL psrParsePage(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 const void* UserData, // Optional user data
 struct TPDFParseCallbacks* Funcs, // Optional callback functions
 UI32 PageNum, // Page number to parse
 TContentParseFlags Flags, // See below
 struct TContentParseParms* Parms, // Optional parameters
 struct TContent* Out) // Required output variable

typedef enum TContentParseFlags
{
 cpfDefault = 0x00000000, // Nothing special to do.
 cpfComputeBBox = 0x00000001, // Compute bounding boxes of all objects.
 cpfFlattenLayers = 0x00000002, // Flatten layers.
 cpfSkipInvisibleObjects = 0x00000004, // Ignore invisible objects.
 cpfFullRecursive = 0x00000008, // Parse all objects recursively.
 cpfNoInlineTemplate = 0x00000010, // Do not resolve templates if reference count = 1.
 cpfCalcDeviceColors = 0x00000020, // Compute device colors of all colors which are set in
 // the content streams.
 cpfImidiateMode = 0x00000040, // Internal. This flag is always set if the
 // TPDFParseCallbacks structure is passed to
 // ParsePage(). It disables certain optimisations.
 cpfNewLinkNames = 0x00000080, // Internal. Create new link names for all objects.
 // Used by Optimize() and CheckConformance().
 cpfEnableTextSelection = 0x00000100, // This flag is required to enable text selection and
 // text extraction.
 cpfInitMatrix = 0x00000200, // The transformation matrix must be set in the
 // TContentParseParms structure.
 cpfSkipClipPaths = 0x00000400, // Useful for debugging purposes.
 cpfSkipImages = 0x00000800, // Ignore all images. This flag is useful for text
 // extraction.
 cpfSkipShadings = 0x00001000, // Useful for debugging purposes.
 cpfSkipText = 0x00002000, // Useful for debugging purposes.
 cpfSkipVector = 0x00004000 // Useful for debugging purposes. Exclude vector
 // graphics with exception of clipping paths.
}TContentParseFlags;

#pragma pack(1)
struct TContentOP
{
 BYTE OP; // Operator to excecute.
 void* Param; // This pointer is set for operators which have parameters.
};
#pragma pack()

struct TContent
{
 UI32 Count; // Number of available operators.
 struct TContentOP* OP; // Array of operators.
};

The function parses a page and stores the page contents in a C object structure. Once a page was
parsed various functions can be called, e.g. to extract the text of a page, to find and replace text,
or to delete arbitrary operators.

Content parsing & editing Page 62 of 854

The page that should be parsed should be closed, that means it should not be opened for editing
beforehand with EditPage() or Append(). The function can parse an open page too but this can
lead to errors and is not recommended.

At time of publication only the minimal functionality is documented but more and more
examples and documentation will be added.

The parameters UserData and Funcs are currently available in C/C++ only. The callback API can
be used for immediate mode. That means the callback functions are executed immediatly when
a corresponding operator was found. This is comparable with ParseContent() but not identically
because the C object structure is still build so that the page contents can be modified.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ReplaceSelText

Syntax:
LBOOL psrReplaceSelText(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 TReplaceTextFlags Flags, // See below
 struct TTextSelection* SelText, // Required -> output of FindText()
 const UI16* Text, // Optional replacment text
 UI32 TextLen) // Length in characters

The function replaces or deletes the text that was found by FindText(). Coordinates of
surrounding text are not changed, this means that the new text can overlap surrounding text if
the width of the new text is larger than the original text.

So, text replacement has its limitations since at some point text must might be new formatted or
re-aligned. However, replacing placeholders with text is usually no problem as long as there is
enough room for the new text.

Note that placeholders should not contain space characters since spaces are often not stored in
PDF files and this can lead to issues finding the text.

Font substitution

Text replacement depends on the availability of the fonts which are used in a PDF file. If the
original font is not available the function loads an alternate font that matches the characteristics
of the original font as close as possible. However, font substitution is not perfect and a
substituted font looks sometimes more different as expected.

To improve text replacement it is possible to set one or more alternate fonts which should be
used if the original font cannot be found on the system. Alternate fonts can be loaded with

Content parsing & editing Page 63 of 854

SetAltFont(). However, a font loaded by SetFont(), SetFontEx() or SetCIDFont() works too. In
order to activate a font loaded by a regular font loading function call ChangeAltFont().

It is possible to load more than one alternate font but only the active font will be used when
replacing text. If more than one font must be loaded, store the handle returned by SetAltFont()
and change the font with ChangeAltFont() whenever needed.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAltFont

Syntax:
SI32 psrSetAltFont(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 const char* Name, // Font name
 TFStyle Style, // Font style
 double Size, // Font size (must be greater zero)
 LBOOL Embed, // If true, the font will be embedded
 TCodepage CP) // Code page to be used

The function sets the font as alternate font that is used by ReplaceText() if the original font is not
available.

Although the parameter Size must be greater zero, the value is in fact not used when replacing
text. The parameter is reserved for future use.

Please note that the replacement text must be defined in the code page with which the font was
loaded.

To effiently change the font whenever needed, call ChangeAltFont(). It is also possible to call
SetAltFont() but this would require more processing time.

Return values:

If the function succeeds the return value is the font handle, a value greater of equal zero. If the
function fails the return value is 0.

Content parsing & editing Page 64 of 854

WriteToPage

Syntax:
LBOOL psrWriteToPage(
 const PPDF* IPDF, // PDF instance pointer
 const IPSR* Ctx, // Parser instance pointer
 TOptimizeFlags Flags, // Flags to control optimization
 struct TOptimizeParams* Parms) // Optional optimization parameters

The function writes the C object structure, that was created by ParsePage(), back to the page.
The flags and optional parameters were taken from Optimize() because Optimize() uses the
very same parser to optimize pages. Please have a look at this function to determine which flags
and parameters are available.

Unchanged pages can be left unchanged or written back to the page. This is up to you. If
WriteToPage() is called then the content stream will be optimized. If nothing special should be
achieved set Flags to ofDefault and Parms to NULL.

CreateParserContext() accepts already its own flags and TOptimizeParams structure. The
parameter Parms that was passed to this function is used for all pages unless WritePage()
contains its own version.

If the parameter Parms is set then this structure becomes the new default until it is overriden
again by a WriteToPage() call. The flags are always overriden.

The function makes a copy of the structure if set. This makes sure that no error occurs when the
structure becomes out of scope.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Complex Text Layout Page 65 of 854

Complex Text Layout
Support for complex text layout is required for languages like Arabic, Thai, Devanagari, Lao,
and many others. At time of publication DynaPDF supports complex text layout on Windows
only.

The implementation in DynaPDF based on Microsofts Uniscribe. This is the Unicode library that
is used behind the scenes in almost all Windows controls and Unicode aware applications.

Complex text layout depends on the availability of OpenType fonts. Most fonts which are
delivered with Windows are OpenType fonts.

How to enable Complex Text Layout?

Complex text layout can be enable with the flag gfComplexText with SetGStateFlags(). Please
note that this feature requires DynaPDF Professional or higher.

Automatic Font Substitution

A major feature of complex text layout is called Automatic Font Substitution. That means if the
current font doesn't support the requested script, it will be automatically changed if another
font is available that supports it.

Although automatic font substitution produces often good results without further interaction, a
human would often use another font. In order to improve automatic font substitution it is
possible to create one or more alternate font lists. The active list of alternate fonts is tested
before any system font. This makes it possible to improve automatic font substitution because
humans have usually a better knowledge which fonts are common in their region.

In simple text layout, only one font is used to output a line of text. In complex text layout it is
generally possible that more than one font is used, e.g. if a piece of text is not supported by the
current font.

However, automatic font substitution can be implemented in many different ways. Some
applications try to replace the font whenever a glyph cannot be found. Others change the font
only for entire words or sentences. The challenge is to make all requested glyphs available
without embedding a huge number of fonts and without requiring too much processing time.

DynaPDF changes a font only for entire script items. A script item is a run of characters with
compatible properties and with the same direction. This is a good compromise between speed,
document size, and resulting output quality.

Alternate font lists

Automatic font substitution can be improved by setting an alternate font list with fonts which
support the language that must be output. It is possible to create several different lists, e.g. for
different font styles or languages.

Complex Text Layout Page 66 of 854

The alternate font list can be changed arbitrary often with no additional overhead.

The function to manage alternate font lists are:

• ActivateAltFontList() // Activate or deactivate a font list

• CreateAltFontList() // Create a font list

• DeleteAltFontList() // Delete a font list

• SetAltFonts() // Fill a list with data

Font embedding

With exception of CJK scripts (Chinese, Japanese, Korean) complex text layout depends on font
embedding. Fonts must be embedded because glyphs are usually selected with OpenType
layout features. Such glyphs have mostly no Unicode code point and can therefore not be
selected with simple algorithms.

Chinese, Japanese, and Korean scripts are exceptions, because the PDF format supports special
features like CID Fonts in combination with external cmaps, so that fonts for these scripts must
not necessarily be embedded. This is very important because Asian documents contain usually
much more glyphs in comparison to other languages. Therefore, such documents are much
larger. Non embedded CID fonts can be loaded with SetCIDFont().

Complex text layout and form fields

One thing that must be considered is that the support level of complex text layout in Adobes
Acrobat is limited. The support level is comparable with web browsers. That means basic
shaping and the bidirectional algorithm are available, but Unicode bidi control characters are
not supported and mixed languages produce not always correct results.

Since the appearance of form fields should ideally not change when a user activates a field in
Acrobat, DynaPDF strips out all bidi control characters when setting a field value.

This makes sure that the appearance stream can be created in a comparable way and Acrobat is
able to display a field value correctly.

The very same result can be achieved with regular text functions by setting the flag
gfDisableBidiCtrls with SetGStateFlags().

Interactive Forms Page 67 of 854

JSON Parser
Since version 4.0.74.216, DynaPDF contains a JSON parser (Javascript Object Notation) that
simplifies the exchange of complex data structures a lot.

The JSON parser supports a few extensions to make the definition of additional attributes as
easy as possible.

Differences in comparison to regular JSON grammar:

• A JSON string begins normally with a left brace ({) and ends with a right brace (}). This
outer left / right brace pair can be omitted.

• Name or key / value pairs must normally be delimited by a colon (:). The delimiting
colon can be omitted.

• Array values must normally be delimited by a comma (,). The delimiting comma can be
omitted if the bounds of a value can be detected by whitespace or starting character of
an object.
Example (C/C++):
const char attr[] = "\"TestArray\"[1/2\"3\"4 5]";

Result:
/TestArray[1/2(3)4 5]

That means the first value of the array is the number 1, the second is a name object with
the value "2", the third value is the string "3", the fourth is the number 4, and the fifths is
the number 5.

• Extension: A Solidus (/) begins a PDF Name object. The solidus is not part of the name
but is a prefix indicating what follows is a sequence of characters representing a name
object. A name object supports character codes between 33..126 inclusive. Any character
outside this range must be written as two digit hexadecimal code, preceded by a number
sign (#), e.g. /This#20is#20a#20name#20with#20spaces. Note that a number sign in a
name object must be written as hexadecimal code too, since the number sign is treated as
an escape character. The de-escaped string is interpreted as UTF-8 Unicode string.

A name object is terminated by character codes < 33, { (left brace), } (right brace), [(left
bracket),] (right bracket), , (comma), : (colon), and " (double quotes). If one of these
characters should be part of a name object then write it as two digit hexadecimal code
preceded by a number sign (#).

No predefined attribute key or value is defined in PDF that would require an escaping
mechanism.

Interactive Forms Page 68 of 854

• A left brace ({) creates a PDF dictionary and a right brace (}) finishes or closes it.

• A left bracked ([) creates an array and a right bracked (]) finishes or closes it.

Data types supported as value of a key are: array, dictionary, name, string, boolean true or false
(case sensitive), null, and number. A JSON string must be enclosed with double quotes.
Example: "This is a string".

In PDF, keys are always defined as name objects. The function converts a key (or name in JSON
nomenclatur) automatically to a name object. However, no such automatic conversion is
possible for values since the function does not interpret the resulting PDF keys and therefore, it
does not know which datatype a key accepts.

In order to output a string as name object add a slash as first charactert to the string, e.g. "Test
name object value" : "/PDFNameObject".

Examples (C/C++):

The examples below show that a JSON string can contain various errors which would not be
accepted by a regular JSON parser:
const char attr[] = "{/BBox[50, 450, 200, 500]/Placement/Inline}"; // Ok
const char attr[] = "/BBox :[50 450 200 500]/Placement/Inline"; // Ok
const char attr[] = "{{{{/BBox :[50 450 200 500]/Placement/Inline"; // Ok
const char attr[] = "/BBox :[50 450 200 500]/Placement/Inline}}}}"; // Ok
const char attr[] = "\"BBox\":[50 450 200 500]\"Placement\"/Inline"; // Ok
const char attr[] = "/BBox,[50 450 200 500]\"Placement\"/Inline"; // Ok
const char attr[] = "/BBox:[50 450 200 500]/Placement/Inline"; // Ok

Interactive Forms Page 69 of 854

Interactive Forms
DynaPDF supports a large set of functions to create and edit form fields incl. predefined actions
and JavaScript actions. This section describes how interactive forms can be created and how
certain features can be used.

Field Appearance

Interactive Form Fields support user defined background, text and border colors, as well as
different border styles. These properties can be set or changed with following functions:

Global properties for new created fields:

• Get/SetBorderStyle() // Border style

• Get/SetFieldBackColor() // Background color

• Get/SetFieldBorderColor() // Border color

• Get/SetColorSpace() // Color space

• Get/SetFieldTextColor() // Text color

• Get/SetLineWidth() // Line width of the border

Functions to change the appearance or format of a field:

• SetFieldBBox() // Changes the field’s bounding box

• Get/SetFieldBorderStyle() // Border style

• Get/SetFieldBorderWidth() // Line width of the border

• Get/SetFieldColor() // Background, border, or text color

• SetFieldFont() // Set or change the field font

• SetFieldFontEx() // Set or change the field font

• SetFieldFontSize() // Changes the field’s font size

• Get/SetFieldHighlightMode() // Highlight mode

• SetDateTimeFormat() // Set a date or time format

• SetNumberFormat() // Set a number format

Global field appearance properties:

• Get/SetNeedAppearance() // See below

Calc order:

• Get/SetFieldCalcOrder() // Get or change the calc order

Other:

• DeleteAcroForm() // Delete the entire AcroForm

• DeleteXFAForm() // Delete the XFA form of a hybrid form

• DeleteJavaScripts() // Delete global Javascripts and JS Actions

• LoadFDFData() // Load form data from a FDF file

The global NeedAppearance flag of an Interactive Form defines whether the viewer should
create the field appearances on demand when opening the file or whether the existing
definitions should be taken from the PDF file. DynaPDF creates always appearance streams for

Interactive Forms Page 70 of 854

all field types with exception of barcode fields. However, in certain cases it can be useful to let
the viewer render fields with their own algorithms because the exact way how Adobe’s Acrobat
builds the field appearances is not documented.

For example, when editing the contents of a text field in Adobe’s Acrobat the viewer rebuilds
first the field appearance before placing the editing cursor into the field. The new appearance
created from Adobe’s Acrobat can be slightly different in comparison to the one that was
created by DynaPDF. The visible content, especially of text fields, is sometimes not absolutely
stable.

If the NeedAppearance flag is set, the viewer uses already its own algorithms to build the field
appearances when opening the file. This avoids visible changes when editing a field. However,
the NeedAppearance flag must not be set to true if a form contains page templates.

Important field properties when creating new fields

The line width of the field border is derived from the current graphics state when a new field is
created (see SetLineWidth()). No border will be drawn if either the line width is set to zero or if
the border color is set to NO_COLOR (see SetFieldBorderColor()). The default background color
for new fields is NO_COLOR; that means the background appears transparent. Form fields
support the color spaces DeviceGray, DeviceRGB, and DeviceCMYK. The default background,
border, and text color must be defined in the current color space. Note that DynaPDF does not
convert the current color values if the color space will be changed.

Field Properties

Most field properties and values can be read and changed with DynaPDF. The following list
gives an overview over the available functions and for what they can be used.

• AddValToChoiceField() // List & combo boxes

• GetFieldChoiceValue() // List & combo boxes, radio buttons

• GetFieldCount() // Number of fields in the document

• GetFieldEx()/GetFieldEx2() // Most important properties

• GetFullyQualifiedFieldName()// Returns the fully qualified field name

• GetPageFieldCount() // Number of fields of a page

• GetFieldExpValCount() // Number of values/export values

• Get/SetFieldExpValue() // Export value of a field

• GetFieldExpValueEx() // Value and export value pair

• GetFieldGroupType() // Base type of a field group

• GetFieldType() // Field type

• SetAnnotOrFieldDate() // Sets the modification date

• SetCheckBoxState() // Changes the state of a check box

• SetCheckBoxDefState() // Changes the default state of a check box

• Get/SetFieldHighlightMode() // Field highlight mode

• Get/SetFieldIndex() // Index to change the tab order

• Get/SetFieldFlags() // Field flags

Interactive Forms Page 71 of 854

• Get/SetFieldMapName() // Mapping name -> export name

• Get/SetFieldName() // Field name

• Get/SetFieldOrientation() // Field orientation

• Get/SetFieldTextAlign() // Text alignment of a text field

• Get/SetFieldToolTip() // Tool tip or field description

• Get/SetTextFieldValue() // Text field value or default value

GetFieldEx() is the most important function to retrieve field properties. Fields can be accessed
via the global handle or via the index within the field array of the current page.

What is a Group Type?

The field type ftGroup is used for different purposes depending on how fields are organized. A
normal group field is used to create a logical hierarchy or group of fields but group fields are
also used to create a so called “Field Group”.

A normal group field is a set of fields which use a parent field of type ftGroup to achieve a
logical hierarchy, e.g. Address.Street, Address.Country, and so on. The field and group type of
the parent group field are both set to ftGroup in this case.

One important thing must be considered when accessing children of a group field: The group
field does not occur in the field array of a page; it is only available in the global AcroForm field
array. So, while GetFieldEx() returns the entire field array including group fields
GetPageFieldEx() returns never group fields! The parent group field can be accessed with the
Parent handle of the children in this case.

The second usage of a group field is to achieve a so called “Field Group”. A Field Group is an
array of fields of the same type which share the same name and value. Such fields are internally
organized into a special kind of group field which holds the field name and value, as well as
other properties which can be shared among the group.

The children of a Field Group have no name. So, if a field contains no name then you can
already assume that it is part of a Field Group because the field name is required to be present
otherwise. Children of a Field Group contain always the handle to the parent group field. The
field type of this group field is set to ftGroup as usual but the group type is set to a field type
other than ftGroup (see GetFieldGroupType()).

The unambiguous test whether a group field is an ordinary group field or a terminal field of a
Field Group is to compare the group type with the field type. If the group type is something else
than ftGroup then this is a terminal field of a Field Group.

In this case the field contains the field name of the children as well as the field value, default
value, and tooltip. The field flags, background, border and text color, border width, and the
border style are inherited from the terminal field but can be overridden by the children.

Please note that Adobe’s Designer creates mostly Field Groups also if only one child is part of
the group.

Interactive Forms Page 72 of 854

When changing a value or property of a Field Group there is nothing special that must be
considered. DynaPDF sets the wished value or property automatically to the right field.

How to create a Field Group?

Field groups can be created in two ways: When creating two fields with the same name and
type then DynaPDF creates automatically a field group. However, it is also possible to set the
handle of the parent field to indicate that the field should be added to this field as a child. The
latter variant is a little bit faster.

Example:
...
SI32 prt = pdfCreateTextField(pdf, "Test", -1,false,-1,50, 50,150,20);
 pdfCreateTextField(pdf, "Test",prt,false,-1,50, 80,150,20);
 pdfCreateTextField(pdf, "Test",prt,false,-1,50,110,150,20);
...

or

// Same result but requires more processing time
pdfCreateTextField(pdf, "Test", -1, false, -1, 50, 50, 150, 20);
pdfCreateTextField(pdf, "Test", -1, false, -1, 50, 80, 150, 20);
pdfCreateTextField(pdf, "Test", -1, false, -1, 50, 110, 150, 20);

See also section "Fields with identical names".

How to change the tabulator order?

The form fields and annotations of a page are stored in an array. The order of fields in this array
represents the tab order. New fields are added to the array in the order in which they were
created. To enable the definition of an arbitrary tab order, each form field and annotation holds
a page index variable which can be used to sort the fields.

The page indexes of new or imported fields start always at index 1000. The indexes of
annotations start at 10000. Form fields are in fact Widget Annotations and all annotations of a
page are stored in the same array.

Because the indexes of form fields start at index 1000 it is easier to move a field to the beginning
of the array because the indexes from 0 to 999 are free when starting to change the tab order.

The page indexes can be set to any value with SetFieldIndex(), but no field or annotation of a
page should use the same index. No error occurs if two fields or annotations use the same index
but the order of these fields is then of course undefined.

When all indexes are set, the fields must be sorted with SortFieldsByIndex() so that the new
tabulator order can be applied. Note that the function sorts the fields of the current open page.
If no open page is in memory then the function will fail.

Interactive Forms Page 73 of 854

Field Names

Interactive Form Fields are identified over the field name in a viewer application. A field name
is an Ansi string that should be human readable. Beginning with PDF 1.5 field names can also
be defined as Unicode string. However, all functions to create new fields in DynaPDF support
Ansi strings only. All characters within the Ansi character set (code page 1252) can be used with
exception of the period character (.) and characters below index 32 .

A field name should also not end with a space character because Adobe's Acrobat is then
sometimes unable to access such a field with a JavaScript Action or function.

The period (.) is a reserved character because it is used to build the fully qualified field name in
a viewer application. The fully qualified field name is constructed from the partial field name of
the field and all of its ancestors.

For a field with no parent group field, the partial and fully qualified names are the same. For a
field that is the child of another field, the fully qualified name is formed by appending the child
field’s partial name to the parent’s fully qualified name, separated by a period, e.g.
Address.Street.

Fields with identical names

It is possible to create two or more fields of the same type which use all the same name. Such
fields contain always the same value if the value of one field of the group is changed.

Fields with identical names are internally represented as a special type of field group, which is
automatically created by DynaPDF. This makes the handling more complicated because the
children of such a group do not contain a field name. The name is set to the parent's group field
but not to the children of the group. This can normally be ignored but when enumerating fields
with GetField() or GetPageField() you must consider that not all fields contain a name, the
parent field's handle is set instead.

However, with the exception described above, field names must be unique within the hierarchy
in which they appear. This is especially important when multiple Interactive Forms are
imported.

When importing multiple Interactive Forms it is highly recommended to check for invalid
duplicate field names. This can be done with the function CheckFieldNames(). The function
returns the handle of the first field which contains a field name that is already in use. You can
then change the field name with SetFieldName() and execute CheckFieldNames() again until all
invalid field names are changed.

After changing a field name you must also check whether the field is used within a JavaScript
Action or function. Such scripts must be changed so that they do not become invalid. Due to the
possible references of fields within JavaScript functions and Actions, merging of Interactive
Forms is very complicated and should be avoided whenever possible.

Actions Page 74 of 854

Actions
Annotations, form fields, bookmarks (also known as outline items), pages, and the global
Catalog object may specify an action to perform, such as opening another PDF file, jumping to
page, or playing a sound, for example.

Annotations (especially link annotations) and bookmarks can dirctly be associated with an
action. This action will be executed when the object is activated.

Annotations, the catalog object, pages, and form fields support also additional actions which
extend the set of events which trigger the execution of an action.

Actions are usually executed in viewer applications only. Otherwise it would be very difficult to
understand what happens behind the scenes when editing an object.

Actions can be accessed with the following functions:

• GetObjActions() / GetObjEvent()

• GetGoToAction()

• GetGoToRAction()

• GetHideAction()

• GetImportDataAction()

• GetJavaScriptActionEx()

• GetLaunchAction()

• GetMovieAction()

• GetNamedAction()

• GetURIAction()

GetObjActions() returns the first action of an object and a pointer to the first trigger event if any.

Actions and trigger events are stored as a single linked list. That means, every action and every
trigger event can reference another action or event that should be executed.

The actions which must be executed for an object should be copied to an execution list and not
directly be executed. This makes sure that a duplicate check can be applied so that no endless
loop occurs when an action references itself.

The first object that should be examined is the catalog object right after a PDF file was opened
with OpenImportFile() or OpenImportBuffer() and after the global objects were imported with
ImportCatalogObjects().

Now render the first page and add the actions of the page to the event list of this page. After
this the actions of form fields should be examined because form fields support events which
must be handled when a page was opened, when it become visible or invisible and when it will
be closed.

Actions Page 75 of 854

After this bookmarks can be imported with ImportBookmarks(). Because bookmarks support no
trigger events the application can load actions of a bookmark one demand in the OnMouseUp
event of the bookmark.

PDF objects which support trigger events do not all support the entire list of available events.
The following table shows which trigger events are supported by which objects. Bookmarks are
not listed here because bookmarks do not support trigger events.
Event Catalog Annotations Fields Pages
oeOnOpen
oeOnClose
oeOnMouseUp
oeOnMouseEnter
oeOnMouseExit
oeOnMouseDown
oeOnFocus
oeOnBlur
oeOnKeyStroke
oeOnFormat
oeOnCalc
oeOnValidate
oeOnPageVisible
oeOnPageInVisible
oeOnPageOpen
oeOnPageClose
oeOnBeforeClosing
oeOnBeforeSaving
oeOnAfterSaving
oeOnBeforePrinting
oeOnAfterPrinting

Form fields must be examined for actions right after a page was loaded. Otherwise it is not
possible to handle the highlighted events.

Digital Signatures Page 76 of 854

Digital Signatures
A digital signature (PDF 1.3) can be used to authenticate the identity of a user and the
document’s contents. It stores information about the signer and the state of the document when
it was signed. Once a PDF file was digitally signed it is impossible to change the file without
invalidating the signature. Because of this, it is always possible to check whether a document
has been changed or not.

Depending on the Acrobat version certain signature handlers are supported by Adobe's
Acrobat. DynaPDF supports the PPKLite security handler which is supported since Acrobat 4.0.

Supported Certificate Formats

DynaPDF supports internal and external signature handlers. When using the internal signature
handler of DynaPDF then you need a PKCS#12 certificate file. Certificates are available in
different file formats and different encryption key lengths. DynaPDF supports certificates in the
file format PKCS#12 with up to 4096 bits encrypted private/public key pairs on Windows.

On non-Windows operating systems the cross-platform signature library AiCrypto is used to
sign PDF files. This signature handler supports 1024 bit RSA encrypted private keys only (the
AiCrypto library supports almost all available key lengths but it creates indefined length
encoded ASN1 objkects for strong encryption key lengths wheras Adobe's Acrobat supports
defined length encoded ASN1 objects only).

The internal signature handler is mainly used with self-sign certificates but it is possible to sign
a PDF file with any certificate that is installed on the system's certificate store, including
hardware certificates.

External Signatures

In order to support software and hardware certificates with almost arbitrary encrpytion key
lengths it is possible to sign a PDF file with an external signature handler. This makes it possible
to select a certificate from the sytem's certificate store and to use system functions, for example,
to sign a PDF file.

The function CloseAndSignFileExt() can be used to create detached and non-detached
signatures. In case of a non-detached signature CloseAndSignFileExt() returns the SHA1 hash of
the PDF file and the external signature handler signs this hash and creates a PKCS#7 signature
object that must finally be written to the PDF file with FinishSignature().

A detached signature works almost identically with the exception that the signature handler
creates also the hash from the PDF buffer to be signed. This variant is not recommended for
programming languages which support no pointers like C# or VB .Net, for example, because an
additional copy of the PDF buffer must usually be created and this doubles the memory usage

Digital Signatures Page 77 of 854

and requires additional processing time. However, detached signatures enable the usage of
other hash algorithms than SHA1.

How to export a Windows Certificate?

To export a Windows certificate proceed as follows (description for Windows XP or higher):
open the control panel and double click on the icon "Internet Options". Click on the tab
"Contents" and then on the button "Certificates…". Select a certificate from the list and click on
the button "Export…". The option "Export private key" must be selected (this option is not
available if a certificate contains no private key). The private key is required; certificates without
a private key cannot be used to sign PDF files. On the next dialog you must enter a password to
encrypt the private key; this password must later be passed to the function CloseAndSignFile()
or CloseAndSignFileEx() if the file should also be encrypted. Enter now the file name and path
of the certificate file, finished! The result is a certificate file with the extension *.pfx, this file can
now be used to digitally sign PDF files.

Importing signed PDF files

Signed PDF files can only be changed, without invalidating an existing signature, when changes
are stored with an incremental update. An incremental update is a special way to modify a PDF
file; changes are appended to the end of the file, leaving its original contents intact. This
technique is required since altering any existing bytes in the file invalidates existing signatures.

However, incremental updates are not supported by DynaPDF that is the reason why only
empty signature fields can be imported. Because DynaPDF creates always a completely new
PDF file, it makes no sense to import existing signatures, they would always become invalid.

How to sign a PDF file?

Signing a PDF file with the internal signature handler of DynaPDF is quite easy; all you need is
a PKCS#12 certificate file. Instead of calling the function CloseFile() or CloseFileEx() after the
document was created, call either CloseAndSignFile() or CloseAndSignFileEx() if the file should
also be encrypted, finished! A digital signature is always stored in a signature field. If no
signature field was created beforehand, DynaPDF creates an invisible signature field on the first
page and stores the signature in this field.

If the PDF file should be signed with an external signature handler call CloseAndSignFileExt(),
sign the provided hash or byte ranges, and finally finish the signature with FinishSignature() to
insert the signed PKCS#7 object into the PDF file.

How to create a signature field?
As mentioned above, the function CloseAndSignFile() or CloseAndSignFileEx() creates an
invisible signature field on the first page if no signature field was already created or imported
beforehand. If the signature field should be visible, just create one with the function

Digital Signatures Page 78 of 854

CreateSigField() on the page where the field should appear. If multiple signature fields exist,
DynaPDF uses the last signature field to sign the PDF file.

How to modify the appearance of a signature field?

The appearance of a signature field can be fully user defined. The function CreateSigFieldAP()
can be used to create a user defined signature appearance template. You can draw anything you
want into this template such as images, vector graphics, text, and it is also possible to import a
PDF page into or to draw an EMF file into the template.

What is stored in a signature field?

When signing a PDF file a signature handler, whether internal or external, creates a PKCS#7
signature object that contains the file’s signature, optionally a time stamp, and a PKCS#1
certificate that was extracted from the PKCS#12 certificate. The difference between PKCS#1 and
PKCS#12 is that a PKCS#1 certificate contains no private key.

A viewer application validates the signature by using the public key that is stored in the
PKCS#1 certificate object. Because the private key is not stored in the PDF file it is impossible to
sign other PDF files with the certificate that can be extracted from the PDF file.

Adobe's Acrobat supports defined length encoded ASN1 objects only for encryption key lengths
stronger than 1024 bits.

How to validate a signature?

Acrobat validates signatures from unknown certificates not automatically. The certificate must
first be added to the list of trusted identities. Once a certificate was added to the list of trusted
identities, signatures of other documents which use the same certificate will be automatically
validated.

PDF/A and PDF/AX Compatibility Page 79 of 854

PDF/A and PDF/X Compatibility
PDF files can be created for different purposes such as printing, publishing, or archiving which
have all their own requirements. Due to these different requirements two separate PDF
standards were defined by the ISO Committee, PDF/X and PDF/A.

PDF/X

The PDF/X-1a standard addresses blind exchanges where all files should be delivered in CMYK
(and/or spot colors), with no RGB or device independent (color-managed) data. This is a
common requirement in many areas around the world and in many print sectors – usually tied
to an environment where the file supplier wants to retain maximum control of the print job.

PDF/X 3 is like PDF/X 1a an ISO standard for graphic content exchange. The main difference is
that PDF/X 3 allows the use of color management and device-independent color in addition to
CMYK and spot colors.

The PDF/X standard requires all fonts to be embedded, the appropriate PDF bounding boxes to
be specified, and color to appear as CMYK, spot colors, or both. In addition, PDF/X compliant
PDF files must contain information describing the printing condition for which they are
prepared (see AddRenderingIntent()).

When creating PDF/X compliant files with DynaPDF you need to know that DynaPDF does not
check whether certain features are allowed to use in the selected PDF/X standard. DynaPDF
simply writes the required PDF/X key to the file which tells the viewer application that this file
is compliant to a specific PDF/X version. Whether this is true or not depends on whether you
used allowed features only and whether all required information were added to the file, e.g. the
rendering intent (see AddRenderingIntent()), the document title (see SetDocInfo()) and the trim
box for each page (see SetBBox()). It is usually best to check the resulting PDF file with a
preflight tool before using certain features in a production environment.

However, it is not very difficult to create PDF/X compliant PDF files. The main recommendation
is that all fonts are embedded, that at the least the trim box for all pages are set, and that colors
are defined in the color space DeviceCMYK (see SetColorSpace()). In addition, an ICC profile
must be embedded in the file (see AddRenderingIntent()) and images must not be compressed
with JPEG2000 compression.

The wished output PDF version must be set with SetPDFVersion().

PDF/A and PDF/AX Compatibility Page 80 of 854

Example (C++):
// Error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return -1; // We break processing if an error occurs
}

int main(int argc, char* argv[])
{
 void* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?

 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfCreateNewPDF(pdf, "c:/cppout.pdf");
 pdfSetDocInfo(pdf, diCreator, "C++ Example project");
 pdfSetDocInfo(pdf, diTitle, "PDF/X Compatibility");

 pdfAppend(pdf);
 // Just set the trim box to the same value as the media box if no
 // better value is known.
 TPDFRect b;
 pdfGetBBox(pdf, pbMediaBox, b);
 pdfSetBBox(pdf, pbTrimBox, b.Left, b.Bottom, b.Right, b.Top);

 // The font must be embedded (this should always be the case)
 pdfSetFont(pdf, "Arial", fsItalic, 20.0, true, cp1252);
 pdfSetColorSpace(pdf, csDeviceCMYK);
 pdfSetFillColor(pdf, PDF_CMYK(0, 0, 0, 255));
 pdfWriteFText(pdf, taCenter,
 "A very simple PDF/X compliant PDF file...");
 pdfEndPage(pdf);
 // The PDF version should be set before the file is closed because
 // it can be changed when importing a PDF file.
 pdfSetPDFVersion(pdf, pvPDFX1a_2001);
 pdfAddRenderingIntent(pdf,
 "c:/WINNT/System32/spool/drivers/color/USWebCoatedSWOP.icc");
 pdfCloseFile(pdf);

 pdfDeletePDF(pdf);
 return 0;
}

PDF/A and PDF/AX Compatibility Page 81 of 854

PDF/A

PDF/A is an ISO standard for long-term preservation. These files are primarily used for
archiving. PDF/A compliant files can contain text, raster images, vector graphics, as well as
annotations, hyperlinks, or bookmarks.

However, PDF/A compliant files must not contain JavaScripts or an Interactive Form. In
addition, all fonts must be embedded and PDF/A compliant files must contain information
describing the printing condition for which they are prepared (see AddRenderingIntent()). The
output intent can be either CMYK or RGB based. However, only one device color space can be
used in a document with the exception that DeviceGray can be combined with RGB or CMYK
color spaces.

When creating PDF/A compatible files with DynaPDF it is important to know that DynaPDF
does not automatically check whether certain features are allowed to use. DynaPDF writes
simply the required PDF/A key to the file which tells the viewer application that the file is
compatible to a specific PDF/A standard. Whether this is true or not depends on whether
prohibited features were used and whether all required information were added to the file, e.g.
the rendering intent.

However, DynaPDF contains the function CheckConformance() to check and convert non-
conformant PDF files to PDF/A 1b. The function was originally developed a very powerful PDF
to PDF/A converter called myPDFConvert by the DETEC GmbH in Germany.

All DynaPDF versions provide a restricted version of CheckConformance() that does not
convert imported PDF files to PDF/A. The conversion of imported PDF files is possible if
DynaPDF was licensed with the PDF/A Extension.

CheckConformance() is a very good helper function to get your PDF file fully PDF/A 1b
compatible. CheckConformance() is not a preflight function, it automatically adjusts anything
that is possible to get the file PDF/A 1b compatible. The function supports a large set of flags to
specify what should be done if prohibited features were found in the file. Take a look into the
function description for further information.

Example (C++):
// Error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 // We do not break processing if an error occurs. However, if the
 // file was fully created with DynaPDF we should not receive any
 // warning or other errors.
 return 0;
}

http://www.detec.com/
http://www.detec.com/

PDF/A and PDF/AX Compatibility Page 82 of 854

int main(int argc, char* argv[])
{
 SI32 retval;
 char outFile[] = "c:/cppout.pdf";
 void* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfCreateNewPDF(pdf, NULL); // The output file is opened later
 pdfAppend(pdf);
 // The font must be embedded (this should always be the case).
 pdfSetFont(pdf, "Arial", fsItalic, 20.0, true, cp1252);
 pdfWriteFText(pdf, taCenter, "A very simple PDF/A 1b file...");
 pdfEndPage(pdf);
 // Check whether the file is compatible to PDF/A 1b
 retval = pdfCheckConformance(pdf,ctPDFA_1b_2005,0,NULL,NULL,NULL);
 switch(retval)
 {
 case 1: pdfAddRenderingIntent(pdf,"sRGB.icc"); break; // RGB
 case 2: pdfAddRenderingIntent(pdf,"CMYK.icc"); break; // CMYK
 case 3: pdfAddRenderingIntent(pdf,"sRGB.icc"); break; // Gray
 default: break;
 }
 // Note: CheckConformance() raises a fatal exception if the file
 // cannot be converted to PDF/A 1b. We check first whether a PDF
 // file is still in memory before we try to open the output file.
 if (pdfHaveOpenDoc(pdf))
 {
 if (!pdfOpenOutputFile(pdf, outFile))
 {
 pdfFreePDF(pdf);
 return -1;
 }
 retval = pdfCloseFile(pdf);
 }
 pdfCloseFile(pdf);
 pdfDeletePDF(pdf);
 return retval;
}

DeviceGray is the only device color space that can be combined with RGB or CMYK color
spaces. Because special DeviceGray ICC color profiles are rarely available you can safely use a
RGB or CMYK ICC profile instead.

Path Painting and Construction Page 83 of 854

Path Painting and Construction
A vector graphics in PDF consists of paths. A path can be used to draw something on screen or
to clip a specific area. A path itself is invisible until it was filled, stroked, or both. In addition,
clipping and path painting operators can be combined, e.g. a clipping path can again be stroked
or filled.

Notice:
Although the combination of clipping and path painting operators is supported in all PDF
versions, not all viewer applications support this operator combination. To avoid
unnecessary problems paths should be clipped and painted in two separate steps, also if the
same path must be output twice in this case.

When working with paths two specific rendering techniques should be known to understand
for what certain path painting operators are useful:

Nonzero Winding Number Rule

The nonzero winding number rule determines whether a given point is inside a path by
conceptually drawing a ray from that point to infinity in any direction and then examining the
places where a segment of the path crosses the ray. Starting with a count of 0, the rule adds 1
each time a path segment crosses the ray from left to right and subtracts 1 each time a segment
crosses from right to left. After counting all the crossings, if the result is 0 then the point is
outside the path; otherwise it is inside.

Note: The method just described does not specify what to do if a path segment coincides with or is
tangent to the chosen ray. Since the direction of the ray is arbitrary, the rule simply chooses a ray that
does not encounter such problem intersections.

For simple convex paths, the nonzero winding number rule defines the inside and outside as
one would intuitively expect. The more interesting cases are those involving complex or self-
intersecting paths like the ones shown in Figure below. For a path consisting of a five-pointed
star, drawn with five connected straight line segments intersecting each other, the rule
considers the inside to be the entire area enclosed by the star, including the pentagon in the
center.

Path Painting and Construction Page 84 of 854

For a path composed of two concentric circles, the areas enclosed by both circles are considered
to be inside, provided that both are drawn in the same direction. If the circles are drawn in
opposite directions, only the "doughnut" shape between them is inside, according to the rule;
the "doughnut hole" is outside (the draw direction for closed shapes can be changed with the
property Get/SetDrawDirection()).

Even-Odd Rule

An alternative to the nonzero winding number rule is the even-odd rule. This rule determines
the "insideness" of a point by drawing a ray from that point in any direction and simply
counting the number of path segments that cross the ray. If this number is odd, the point is
inside; if even, the point is outside. This yields the same results as the nonzero winding number
rule for paths with simple shapes, but produces different results for more complex shapes.

The Figure below shows the effects of applying the even-odd rule to complex paths. For the
five-pointed star, the rule considers the triangular points to be inside the path, but not the
pentagon in the center. For the two concentric circles, only the "doughnut" shape between the
two circles is considered inside, regardless of the directions in which the circles are drawn.

The rules described above are applied on vector graphics and clipping paths. DynaPDF
supports three basic functions to fill, stroke, or to mark a given path as clipping path. A clipping
path can in turn be filled, stroked, or both.

The basic path operating functions are:

• ClosePath()
• ClipPath()
• StrokePath()

ClosePath() and ClipPath() support a large set of path painting operators. Let us take a look at
the available path painting constants:
typedef enum
{
 // Nonzero Winding Number Rule

fmFillNoClose,
 fmStrokeNoClose,

Path Painting and Construction Page 85 of 854

 fmFillStrokeNoClose,
 fmFill,
 fmStroke,
 fmFillStroke,
 // Even-Odd Rule
 fmFillEvOdd,
 fmFillStrokeEvOdd,
 fmFillEvOddNoClose,
 fmFillStrokeEvOddNoClose,
 fmNoFill, // Special meaning see below
 fmClose // Close the path
}TPathFillMode;

The constant fmNoFill produces different results when using it with a function that produces a
closed shape like Rectangle(), Ellipse() and so on, or when using it with ClosePath() or
ClipPath().

Within ClipPath() the constant has the meaning, do neither fill or stroke the clipping path, just
create the clipping area.

Within ClosePath() the constant can be used to discard the previously drawn path. The path in
memory will be deleted and nothing will be written to the PDF file.

Within Rectangle(), Ellipse() and so on, the constant closes the path, the result is exactly the
same as if fmClose would be used.

Let us now take a look on the different path painting rules.

If we draw two rectangles in the same draw direction the result is different depending on the
used filling rule:
...
pdfSetFillColor(pdf, PDF_RGB(120, 120, 220));
pdfRectangle(pdf, 50.0, 50.0, 250.0, 100.0, fmNoFill);
pdfRectangle(pdf, 70.0, 70.0, 210.0, 60.0, fmNoFill);
pdfClosePath(pdf, fmFill); // Non-Zero Winding Number
...

Output:
Winding (fmFill): Even Odd (fmFillEvOdd):

Path Painting and Construction Page 86 of 854

If we change the draw direction of the second rectangle to ddClockwise (default is
ddCounterClockwise) then we get the same result as with Even Odd:
...
pdfSetFillColor(pdf, PDF_RGB(120, 120, 220));
pdfRectangle(pdf, 50.0, 50.0, 250.0, 100.0, fmNoFill);
pdfSetDrawDirection(pdf, ddClockwise); // Change the draw direction
pdfRectangle(pdf, 70.0, 70.0, 210.0, 60.0, fmNoFill);
pdfClosePath(pdf, fmFill); // Non-Zero Winding Number
...

Output:
Winding (fmFill): Even Odd (fmFillEvOdd):

The filling rules work also with clipping paths and more complex paths:
#include "dynapdf.h"
// First we declare our error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage); return 0;
}

void DrawPath(const void* PDF, double x, double y, TClippingMode Mode,
TDrawDirection Direction, UI32 Color)
{
 pdfSaveGraphicState(PDF);
 pdfSetFillColor(PDF, Color);
 pdfTriangle(PDF, x+100, y+50, x+150, y+150, x+50, y+150, fmNoFill);
 pdfSetDrawDirection(PDF, Direction);
 pdfTriangle(PDF, x+100, y+180, x+50, y+80, x+150, y+80, fmNoFill);
 pdfClipPath(PDF, Mode, fmFillStroke);
 pdfSetFont(PDF, "Arial", fsBold | fsItalic, 40, true, cp1252);
 pdfSetFillColor(PDF, 0);
 pdfWriteText(PDF, x+50, y+90, "CLIPPING");
 pdfRestoreGraphicState(PDF);
}

int main(int argc, char* argv[])
{
 void* pdf = pdfNewPDF();
 if (!pdf) return 2;

Path Painting and Construction Page 87 of 854

 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfSetDocInfo(pdf, diAuthor, "Jens Boschulte");
 pdfSetDocInfo(pdf, diCreator, "C sample project");
 pdfSetDocInfo(pdf, diSubject, "How to use clipping paths");
 pdfSetDocInfo(pdf, diTitle, "Clipping paths");
 pdfSetViewerPreferences(pdf, vpDisplayDocTitle, avNone);
 pdfCreateNewPDF(pdf, "c:/cppout.pdf");
 pdfSetPageCoords(pdf, pcTopDown);
 pdfAppend(pdf);
 // Nonzero Winding Number Rule
 DrawPath(pdf, 0, 0, cmWinding, ddCounterClockwise, PDF_SKYBLUE);
 DrawPath(pdf, 110, 0, cmWinding, ddClockwise, PDF_SKYBLUE);
 // Even Odd Rule
 DrawPath(pdf, 220, 0, cmEvenOdd, ddCounterClockwise, PDF_YELLOW);
 DrawPath(pdf, 330, 0, cmEvenOdd, ddClockwise, PDF_YELLOW);
 pdfEndPage(pdf);
 pdfCloseFile(pdf);
 pdfDeletePDF(pdf);
}

 Winding Even-Odd

A clipping path is part of the graphics state. The only way to disable a clipping path is to restore
the graphics state. If the graphics state was not saved beforehand it is impossible to deactivate
the clipping region.

If a second clipping path is drawn while another one is still active then it will be intersected
with the current clipping path. The clipping area of the intersected clipping paths is never larger
than the initial clipping path.

CLIPPINGCLIPPINGCLIPPINGCLIPPING

Color spaces Page 88 of 854

Color Spaces
DynaPDF supports all color spaces defined in PDF 1.7. This section describes how color spaces can
be created and used with DynaPDF.

Color spaces in PDF can be divided into 3 types:

• Device color spaces such as DeviceRGB, DeviceCMYK, and DeviceGray.

• Device independent color spaces such as CalGray, CalRGB, Lab, and ICCBased. All these
color spaces are CIE based color spaces. The ICCBased color space is a special case of a CIE
based color space; it uses a color profile to convert colors into the destination space.

• Special color spaces like Indexed, Separation, DeviceN, or NChannel. Pattern is also a special
color space but not listed here because DynaPDF uses separate functions to create and apply
pattern color spaces.

Device Color Spaces

The device color spaces enable a page description to specify color values that are directly related to
their representation on an output device. Color values in these spaces map directly (or by simple
conversions) to the application of device colorants, such as quantities of ink or intensities of display
phosphors. This enables a PDF document to control colors precisely for a particular device, but the
results may not be consistent from one device to another.

Device color spaces are supported within page descriptions and for interactive objects like
annotations and form fields. While form fields support all three available device color spaces,
annotations support DeviceRGB only. This behavior must be taken into account when creating such
objects. The use of an unsupported color space results in an error and the wished object is not
created.

The use of device color spaces is very easy because no creation of a color space object is required
before such a color space can be used. All three device color spaces can be set directly with the
functions SetColorSpace(), SetFillColorSpace(), and SetStrokeColorSpace().

Once the color space was set the functions SetFillColor(), SetStrokeColor(), or SetColors() accept color
values of the particular color space:

• DeviceGray controls the intensity of achromatic light, on a scale from black to white. It ranges
from 0 to 255 inclusive.

• DeviceRGB controls the intensities of red, green, and blue light, the three additive primary
colors used in displays. RGB colors can be created with the macro PDF_RGB() or with
comparable functions like rgb() which are available in most programming languages. See also
Color Values.

• DeviceCMYK controls the concentrations of cyan, magenta, yellow, and black inks, the four
subtractive process colors used in printing. CMYK colors can be created with the macro

Color spaces Page 89 of 854

PDF_CMYK() or with the function CMYK() defined in the DynaPDF interfaces for the used
programming language. See also Color Values.

Device color spaces can be set directly with the functions SetColorSpace(), SetFillColorSpace(), and
SetStrokeColorSpace().

Device Independent Color Spaces

Calibrated color in PDF is defined in terms of an international standard used in the graphic arts,
television, and printing industries. CIE-based color spaces enable a page description to specify color
values in a way that is related to human visual perception. The goal is for the same color
specification to produce consistent results on different output devices, within the limitations of each
device. PDF 1.1 supports three CIE-based color space families, named CalGray, CalRGB, and Lab;
PDF 1.3 adds a fourth, named ICCBased.

While CalGray, CalRGB, or Lab use relatively simple formulas to convert colors into a device color
space, an ICCBased color space uses a color profile instead. A color profile offers much more control
over the color conversion process to match the characteristics of an output device precisely.

Device independent color spaces require a color space object that must be created before the color
space can be used:

• CreateCIEColorSpace() creates a CalGray, CalRGB, or Lab color space.

• CreateICCBasedColorSpace() creates an ICCBased color space.

The functions above return a color space handle on success which is required to set the color space
with SetExtColorSpace(). Color values for CIE based color spaces can be created in the very same
way as for device color spaces (see previous section) with the exception of Lab colors which require a
special treatment depending on the used programming language (see CreateCIEColorSpace() for
further information).

Special Color Spaces

Special color spaces add features or properties to an underlying color space. There are four special
color space families: Pattern, Indexed, Separation, and DeviceN. The Pattern color space is not
described here since DynaPDF provides separate functions to create and apply pattern color spaces
(see BeginPattern() for further information).

Indexed Color Space

An Indexed color space allows a PDF content stream to use small integers as indices into a color map
or color table of arbitrary colors in some other space. A PDF consumer application treats each sample
value as an index into the color table and uses the color value it finds there. Indexed color spaces are
mostly used to reduce the amount of data for sampled images. The usage within a page description
is possible but there is normally no advantage to do so. DynaPDF creates indexed color spaces for
sampled images automatically if the original data was organized in this way.

Color spaces Page 90 of 854

However, it is also possible to create an Indexed color space manually and to apply it to an image.
This can be useful if a DeviceN color space should be used for an image, e.g. to create a duotone
image. An Indexed color space can be used for images with a color depth of 1, 2, 4, or 8 bits with or
without a color table. An already existing color table stored in the image file will be replaced with
the one of the Indexed color space.

DynaPDF assigns an indexed color space to an image if the graphics state flag
gfUseImageColorSpace is not set (see SetGStateFlags()) and if an indexed color space is active when
inserting the image.

The color table of the Indexed color space should contain 2 ^BitDepth color values. It is allowed to
use a color table with less colors but this is bad practice and should be avoided.

An indexed color space can be created with the function CreateIndexedColorSpace() and must be set
with SetExtColorSpace(). If you want to use the color space for vector graphics or texts pass the
wished index to SetFillColor(), SetStrokeColor(), or SetColors(). The color table is zero based; index 0
refers to the first color; NumColors -1 refers to the last color in the table. An Indexed color space can
contain up to 256 color values.

Separation Color Space

Color output devices produce full color by combining primary or process colorants in varying
amounts. On an additive color device such as a display, the primary colorants consist of red, green,
and blue phosphors; on a subtractive device such as a printer, they typically consist of cyan,
magenta, yellow, and sometimes black inks. In addition, some devices can apply special colorants,
often called spot colorants, to produce effects that cannot be achieved with the standard process
colorants alone. Examples include metallic and fluorescent colors and special textures.

When printing a page, most devices produce a single composite page on which all process colorants
(and spot colorants, if any) are combined. However, some devices, such as imagesetters, produce a
separate, monochromatic rendition of the page, called a separation, for each colorant. When the
separations are later combined - on a printing press, for example - and the proper inks or other
colorants are applied to them, the result is a full-color page.

A Separation color space (PDF 1.2) provides a means for specifying the use of additional colorants or
for isolating the control of individual color components of a device color space for a subtractive
device. When such a space is the current color space, the current color is a single-component value,
called a tint, that controls the application of the given colorant or color components only.

A color value in a Separation color space consists of a single tint component in the range 0 to 255.
The value 0 represents the minimum amount of colorant that can be applied; 255 represents the
maximum. Tints are always treated as subtractive colors, even if the device produces output for the
designated component by an additive method. Thus, a tint value of 0 denotes the lightest color that
can be achieved with the given colorant, and 255 is the darkest. This convention is the same as for
DeviceCMYK color components but opposite to the one for DeviceGray and DeviceRGB.

Color spaces Page 91 of 854

If the colorant name associated with a Separation color space does not correspond to a colorant
available on the device, the application arranges for subsequent painting operations to be performed
in an alternate color space. The intended colors can be approximated by colors in a device or CIE-
based color space, which are then rendered with the usual primary or process colorants.

The alternate color space is a required parameter of the function CreateSeparationCS(). Therefore, if
a CIE based color space should be used as alternate color space then this color space must be created
before the Separation color space.

Once the color space was created it can be set with SetExtColorSpace().

A Separation color space can be applied to vector graphics and images with a color depth of 1, 2, 4,
or 8 bits. See also Color Spaces and Images.

DeviceN Color Space

DeviceN color spaces (PDF 1.3) can contain up to 32 color components. They provide greater
flexibility than is possible with standard device color spaces such as DeviceCMYK or with individual
Separation color spaces. For example, it is possible to create a DeviceN color space consisting of only
the cyan, magenta, and yellow color components, with the black component excluded.

DeviceN color spaces are used in applications such as these:

• High-fidelity color is the use of more than the standard CMYK process colorants to produce
an extended gamut, or range of colors. A popular example is the PANTONE Hexachrome
system, which uses six colorants: the usual cyan, magenta, yellow, and black, plus orange and
green.

• Multitone color systems use a single-component image to specify multiple color components.
In a duotone, for example, a single-component image can be used to specify both the black
component and a spot color component. The tone reproduction is generally different for the
different components. For example, the black component might be painted with the exact
sample data from the single-component image; the spot color component might be generated
as a nonlinear function of the image data in a manner that emphasizes the shadows.

DeviceN was designed to represent color spaces containing multiple components that correspond to
colorants of some target device. As with Separation color spaces, PDF consumer applications must
be able to approximate the colorants if they are not available on the current output device, such as a
display. To accomplish this, the color space definition provides a tint transformation function that
can be used to convert all the components to an alternate color space.

While the transformation function is automatically created for a Separation color space this is not
possible for DeviceN color spaces. The transformation function consists always of a Postscript
Calculator Function and it is a required parameter of the function CreateDeviceNColorSpace().

Note that the alternate color space is a required parameter too. Therefore, if a CIE based color space
should be used as an alternate color space then this color space must be created before the DeviceN
color space can be created.

Color spaces Page 92 of 854

Once the color space was created it can be set with SetExtColorSpace(). Colors of a DeviceN color
space should be set with SetFillColorEx() or SetStrokeColorEx() because these functions accept up to
32 color channels.

A DeviceN color space can be applied to text, vector graphics and images with a color depth of 1, 2,
4, or 8 bits, and in addition to images with up to 32 color channels using 8 bits per component. See
Color Spaces and Images below and CreateDeviceNColorSpace().

Color Spaces and Images

All color spaces can be used with text, vector graphics, and images. While the usage with text and
vector graphics requires no further considerations the usage with images is more complicated.

Prior versions of DynaPDF supported device color spaces only and due to this limitation images
were always converted to the nearest device color space that was active when inserting an image.
This default conversion is not optimal if the original image is defined in a device independent color
space. However, in certain circumstances it's a nice to have feature, especially when creating PDF/X-
1a compatible PDF files (this standard prohibits the usage of device independent color spaces).

To preserve backward compatibility the following default rules apply depending on the active
device color space (the color conversion rules can be modified, see below):

Active color space Description
DeviceGray Images defined in another color space are converted to DeviceGray. 1 bit images

are always left unchanged.

DeviceRGB Images defined in a color space with 3 or more color components are converted
to DeviceRGB. 1 channel images are converted to DeviceGray. 1 bit images are
left unchanged.

DeviceCMYK Images defined in a 3 channel color space are converted to DeviceCMYK. This
conversion is applied to preserve backward compatibility. 1 channel images are
converted to DeviceGray. 1 bit images are left unchanged.

Handling of non-device color spaces

Non-device color spaces can be used to replace an image color space with the active color space. The
active color space and the image color space must be compatible. For example, a Lab color space
cannot be replaced with a CalRGB color space because this would require a physical conversion of
the pixel data. The source and destination color space must contain the same number of color
components. If the active color space is not compatible to the image color space DynaPDF reports an
error and the image is not inserted.

The following rules apply only if the flag gfUseImageColorSpace is not set (default). See
SetGStateFlags() for further information.

Color spaces Page 93 of 854

Active color space Description
CalGray The color space can be set to 1 channel images without a color table. The image

data should be defined in a color depth of 1 or 8 bits per pixel. Color depths of 2
or 4 bits are unusual and maybe not supported in all versions of Adobe's
Acrobat or on the output device. Consider the special treatment of 1 bit images.

CalRGB The image color space can be any 3 channel color space with exception of Lab.

ICCBased The image color space and the input color space of the corresponding ICC
profile must be compatible.

Indexed The color space can be set to 1 channel images with or without a color table. An
already existing color table in the image file will be replaced. Consider the
special treatment of 1 bit images.

Separation The color space can be set to 1 channel images without a color table. The image
data should be defined in a color depth of 1 or 8 bits per pixel. Color depths of 2
or 4 bits are unusual and maybe not supported in all versions of Adobe's
Acrobat or on the output device. 1 channel images without a color table are
normally defined in DeviceGray or CalGray but these color spaces are additive
color spaces while Separation is a subtractive color space. To get an image in a
compatible range DynaPDF inverts the pixel data. This behaviour must be taken
into account when creating images for a Separation color space. Consider also
the special treatment of 1 bit images.

DeviceN The supported bit depths and image color spaces depend on the number of
color components defined in the DeviceN color space and which function is
used to insert the image. The default function to insert images defined in a
DevicN color space is InsertRawImage(). This function supports images with up
to 32 color channels.

However, it is also possible to exchange the color space of arbitrary images with
a DeviceN color space. The following sub clauses describe the handling if the
image is loaded from an arbitrary image file with InsertImage(),
InsertImageEx(), or InsertImageFromBuffer().

Images with less than 4 color channels will be inverted because DeviceN is a
subtractive color space and images with less than 4 color components are
defined in an additive color space in normal image files.

Num Comp. Supported image formats

1 The image can be any 1 channel image without a color table.
However, the image data should be defined in a color depth of
1 or 8 bits per pixel. Color depths of 2 or 4 bits are unusual and
maybe not supported in all versions of Adobe's Acrobat or on
the output device.

Color spaces Page 94 of 854

2 DeviceN color spaces with 2 color components can be used
with 1 bit images without a color table.

3 The image color space can be any 3 channel color space with
exception of Lab.

4 The image data must be defined in DeviceCMYK.

up to 32 Images with more than 4 color components are supported by
InsertRawImage() only.

Special treatment of 1 bit images

1 bit images without a color table are treated as an image mask if image transparency is enabled (see
SetUseTransparency()). In this case black pixels are drawn in the current fill color while white pixels
produce no visible output. The fill color can be defined in an arbitrary color space.

If image transparency is disabled the active color space will be assigned to the image as long as it is
compatible to the image color space which is usually DeviceGray. Note that a 1 bit image with a
color table is treated as a color image. However, this format is unusual and not supported by all
devices and Acrobat versions. The usage of this image format should be avoided if possible.

How to preserve the image color space?

The default conversion rules can be changed if necessary with SetGStateFlags(). The most important
flag is gfUseImageColorSpace. If set, the color space is taken from the image file and the active color
space is ignored.

Another important flag is gfIgnoreICCProfiles. If set, an ICC profile available in the image file is not
used to create an ICCBased color space for the image. The image is inserted in the base color space in
this case. This flag is not meaningful is the flag gfUseImageColorSpace is absent.

The creation of ICCBased color spaces should only be enabled if it is known that the image contains
an ICC profile that is compatible to the output device.

Note that many PDF workflows are not able to replace the ICC profile of an ICCBased color space
and this can cause big problems if an image contains a profile that is not compatible to the output
device.

It is usually better to add a global rendering intent to the document (see AddRenderingIntent())
instead of using automatically created ICCBased color spaces on a per image basis.

A rendering intent is essentially the same as an ICCBased color space but it is used for all images in
the file, as well as for text and vector graphics, which are defined in the underlying base color space.
The advantage is that the ICC profile of a rendering intent can be easily replaced with another one
and this change affects the entire document. The entire document should of course be created in the
same base color space, e.g. DeviceCMYK, DeviceRGB, DeviceGray, or Lab.

Color spaces Page 95 of 854

Image Resolution

DynaPDF supports a high quality scaling algorithm to enable downscaling of high resolution images
to a specified output resolution (see SetResolution()). This algorithm is applied if an image is
provided in a higher resolution than specified and if image scaling is enabled (see
SetSaveNewImageFormat()).

However, the scaling algorithm supports device color spaces as well as CalGray, CalRGB, ICCBased,
Separation, and DeviceN (one channel only) color spaces as long as the underlying base or alternate
color space is a device space. Images defined in an incompatible color space are inserted unchanged.

Layers (Optional Content) Page 96 of 854

Layers (Optional Content)
Layers in PDF are defined with so called Optional Content Groups (OCGs). When we talk about a
layer then we mean a piece of content that belongs to an OCG.

Layers provides the ability to dynamically hide or unhide graphical contents. The available API
functions to create and manipulate the visibility state of layers with DynaPDF are:

• AddLayerToDisplTree() // Builds the layer tree for the GUI

• AddObjectToLayer() // Adds an object to a layer

• AddOCGToAppEvent() // Adds a layer to an application event

• DeleteOCGFromAppEvent() // Deletes a layer from an application event

• DeleteOCGFromDisplayTree() // Deletes a layer from the display tree

• DeleteOCUINode() // Deletes an OCUINode from the display tree

• BeginLayer() // Opens a layer to add contents to it

• EndLayer() // Closes the last open layer

• ChangeOCGName() // Changes an OCG or Layer name

• CreateOCG() // Optional Content Group (OCG)

• CreateOCMD() // Optional Content Membership Dictionary (OCMD)

• CreateSetOCGStateAction() // Changes the visibility of a layer

• GetOCG() // Returns the properties of a layer

• GetOCGContUsage() // Returns a Content Usage dictionary (CUD)

• GetOCUINode() // Returns the properties of an OCUINode

• GetOCGUsageUserName() // Returns a user name of a CUD

• GetOCGCount() // Returns the number of OCGs or layer

• SetOCGContUsage() // Creates, changes, or deletes a CUD

• SetOCGState() // Changes the visibility state of a layer

• LockLayer() // Locks a layer in the GUI
• UnLockLayer() // Unlocks a layer

The creation of a layer begins always with the creation of an OCG. If we talk about a "layer" then we
mean in fact an OCG. An OCG specifies the layer name, the initial visibility state, and whether the
layer should be displayed in the user interface.

Note that the visibility of a layer in the user interface has nothing to do with the visibility of the
contents that belongs to it. Invisible layers can be used to avoid interaction with the user interface.
This can be useful if the document contains SetOCGState or JavaScript actions, or application events
which change the visibility states depending on certain criteria, e.g. when printing the document, or
if the user should not be able to change the visibility.

Normal page contents, such as text, images, and vector graphics can be connected with a layer with
BeginLayer() / EndLayer(). Anything that is drawn between these function calls becomes part of the
layer. BeginLayer() calls can be nested to express dependencies to more than one layer. The visibility
of an inner layer depends then also on the visibility of the outer layer(s).

Annotations and Form Fields are not automatically added to a layer when created between
BeginLayer() / EndLayer() calls. These objects must be added to a layer with AddObjectToLayer()
since interactive objects are not part of the page contents.

Layers (Optional Content) Page 97 of 854

Annotations and Form Fields can be connected with exactly one OCG or OCMD (Optional Content
Membership Dictionary). OCMDs are used if the visibility should depend on more than one layer.
An OCMD accepts an array of OCG handles and a visibility expression that specifies when the
associated contents should become visibile or invisible. OCMDs can also be used with BeginLayer()
to create more complex visibility expressions.

Images and templates can be explicitely connected with an OCG or OCMD too. This can be useful in
situations where too many nested BeginLayer() calls would be required to create the same visibility
expression or if these object types belong to a specific layer. For example, if a document contains a
layer "Images" then it is easier and much more efficient to connect all images directly with that layer
in comparison to BeginLayer() / EndLayer() calls.

Viewer applications display layers in a tree structure like bookmarks. Which layers should appear in
the tree can be configured with AddLayerToDisplTree() as well as with CreateOCG(). It is not
required to add any layer to the layer tree. The visibility state of a layer that is not included in the
tree cannot be changed interactively in a viewer application. This can be useful in various situations,
e.g. to hide helper layers or simply to avoid changes by the user.

The visibility of layers can be changed dynamically with SetOCGState actions, Javascript, and with
application events. SetOCGState actions can be used if a user should be able to change the visibility
of a layer. Javascripts are useful if the visibility depends on calculations or other more complex
criteria.

The last way to change the visibility state dynamically is the usage of application events. PDF defines
events for exporting, printing, and viewing the document. The visibility of certain layers can be
changed in each of these events. See AddOCGToAppEvent() for further information.

Transparency Page 98 of 854

PDF Transparency
The PDF format supports different types of transparency for images, vector graphics, and text. The
simplest type of transparency is called Color Key Masking. This kind of transparency is used to mask
areas of a specific color in an image so that they become transparent. Color Key Masking works with
a transparent color that must be specified beforehand.

Color Key Masking can produce unpredictable results with JPEG or JPEG2000 compressed images
because these filters are lossy filter. The use of a lossy filter means that the output is only an
approximation of the original data. Therefore, these filters may lead to slight changes in the color
values of image samples, possibly causing samples that were intended to be masked to be
unexpectedly painted instead, in colors slightly different from the mask color.

Another technique to mask images is the use of an explicit image mask (see AddMaskImage()). This
type of masking does not depend on the source color and produces predictable results with all kinds
of compression filters. The PDF format supports 1 bit image masks (PDF 1.3) as well as soft masks
(PDF 1.4) which can be defined as 1 bit or 8 bit grayscale image. The latter format represents
essentially the alpha channel of an image.

When inserting an image with an alpha channel DynaPDF converts the alpha channel to a soft mask
to preserve the transparency effect. The current transparency color or the value of
SetUseTransparency() does not affect such images. If an image with an alpha channel should appear
opaque then draw a rectangle in the wished background color behind the image.

It is also possible to add a separate image or soft mask to a base image with AddMaskImage(). This is
useful if the mask is stored in a separate image or if the mask uses another resolution as the base
image.

Alpha Blending

PDF 1.4 introduced a new kind of transparency that based on alpha blending. Alpha blending
combines the backdrop and shape colors with an arbitrary opacity factor (alpha) which can be in the
range 0.0..1.0. The alpha constant can be defined separately for fillings and strokes. Note that the fill
alpha value is considered for images and text if the text draw mode is dmNormal.

The wished alpha values can be defined in an extended graphics state object that must be created
with CreateExtGState() and applied with SetExtGState(). An extended graphics state is valid until the
modified values are restored with another extended graphics state that sets the values back to their
defaults.

Note that the functions Save/RestoreGraphicState() do not affect members of an extended graphics
state. This circumstance must be considered when creating transparent objects.

Example (C++):
int main(int argc, char* argv[])
{

pdfCreateNewPDF(PDF, "c:/cppout.pdf");

Transparency Page 99 of 854

pdfSetPageCoords(PDF, pcTopDown);

TPDFExtGState gs;
pdfInitExtGState(&gs);
gs.FillAlpha = 0.5f;
SI32 gs1 = pdfCreateExtGState(PDF, &gs);

gs.FillAlpha = 1.0f;
SI32 gs2 = pdfCreateExtGState(PDF, &gs);

double x = 150.0;
double y = 150.0;

pdfAppend(PDF);

pdfSetExtGState(PDF, gs1); // Apply the extended graphics state
pdfSetFillColor(PDF, PDF_RGB(255, 0, 0));
pdfDrawCircle(PDF, x, y, 50.0, fmFill);

pdfSetFillColor(PDF, PDF_RGB(0, 255, 0));
pdfDrawCircle(PDF, x + 75.0, y, 50.0, fmFill);

pdfSetFillColor(PDF, PDF_RGB(0, 0, 255));
pdfDrawCircle(PDF, x + 37.5, y + 50.0, 50.0, fmFill);

 // Restore the fill alpha to fully opaque

pdfSetExtGState(PDF, gs2);

x += 200.0;
pdfSetFillColor(PDF, PDF_RGB(255, 0, 0));
pdfDrawCircle(PDF, x, y, 50.0, fmFill);

pdfSetFillColor(PDF, PDF_RGB(0, 255, 0));
pdfDrawCircle(PDF, x + 75.0, y, 50.0, fmFill);

pdfSetFillColor(PDF, PDF_RGB(0, 0, 255));
pdfDrawCircle(PDF, x + 37.5, y + 50.0, 50.0, fmFill);

pdfEndPage(PDF);
return pdfCloseFile(PDF);

}

Output:

Transparency Page 100 of 854

Transparency Groups / Soft Masks

To achieve more complex transparency effects PDF supports transparency groups and soft masks. A
transparency group can be created with BeginTransparencyGroup(), it is an extended template that
supports the same contents as regular templates, such as vector graphics, text, shadings, or images
(see BeginTemplate() for further information).

The difference between a normal template and a transparency group is that a transparency group is
composited with the backdrop as hole. This property is very important when working with soft
masks.

A soft mask consists in turn of a transparency group and a corresponding dictionary that describes
the properties of the mask. The rendered result is then used as an alpha channel to mask arbitrary
objects with it. A soft mask can be created with CreateSoftMask().

Once a soft mask was created and activated in the graphics state anything that will be drawn will
now will be masked.

However, a soft mask is designed to mask exactly one object at time since the effect on overlapping
objects would be as if the mask is applied twice. To enable the usage on arbitrary artwork, the
contents can be drawn into a transparency group since a transparency group is composited with the
backdrop as a hole. This makes sure that the soft mask causes no side effects when overlapping
objects must be masked.

Transparency groups can also be used stand alone, that means outside an active soft mask or other
transparency group, but most effects which can be achieved in this way can also be achieved with
regular drawing techniques. When a specific effect can be achieved without a transparency group
then this way is preferred!

Transparency groups are expensive in terms of memory usage and processing time because a viewer
must mostly render the group into an intermediate image buffer so that it can be composited with
backdrop as a hole.

Because transparency groups cause already a considerable overhead, a document should be more
carefully created in regard to efficiency and rendering speed. Especially the usage of useless clipping
paths and JPEG 2000 compressed images should be avoided.

Transparency Page 101 of 854

Blend Modes

In addition to alpha blending the PDF standard defines several predefined blend modes (PDF 1.4) to
achieve certain special effects. Like the alpha constants the blend mode is part of an extended
graphics state object. The usage is identically in comparison to alpha transparency; that means the
wished blend mode must be applied with an extended graphics state object and the only way to
disable it is to apply another extended graphics state that sets the blend mode back to bmNormal.

Blend functions are applied in a blend color space which is normally the current color space. Valid
blend color spaces are DeviceGray, DeviceRGB, DeviceCMYK, CalGray, CalRGB, and ICCBased
color spaces which are equivalent to the other ones.

Lab and corresponding ICCBased color spaces are no valid blend color spaces because the blend
functions produce no meaningful results with these color spaces.

However, the ICC profile of an ICCBased color space must contain both AToB and BToA
transformations. This condition can be problematic because there is no easy way to determine
whether this is the case. DynaPDF provides no function to determine whether an ICC profile
contains both transformations.

Notice:

Note that Adobe's Acrobat uses always color management to render device colors when a blend
mode or alpha transparency is used on a page. The default output color space is always a CMYK
color space in PDF! That means, Acrobat or Reader applies a soft-proof on the default CMYK
ICC profile if the file contains no Output Intent. Therefore, it is strongly recommended to attach
an ICC profile with AddOutputIntent() to achieve predictable results.

Note also that the result of most blend modes depend strongly on the used color space. Due to
the way how blend modes compute color values the results for additive and subtractive color
spaces are very different.

Example (C++):
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode,
const char* ErrMessage, SI32 ErrType)
{

printf("%s\n", ErrMessage);
return 0;

}

void AddCircles(const void* PDF, SI32 Templ, TPDFExtGState &ExtGS,
SI32 DefGS, TBlendMode Mode, double &x, double &y)
{
 ExtGS.BlendMode = Mode;

 pdfSetExtGState(PDF, DefGS);
 pdfSetFillColor(PDF, PDF_BLACK);
 x += 30.0;
 y -= 20.0;

Transparency Page 102 of 854

 switch(Mode)
 {
 case bmNormal: pdfWriteText(PDF, x, y, " Normal"); break;
 case bmColor: pdfWriteText(PDF, x, y, " Color"); break;
 case bmColorBurn: pdfWriteText(PDF, x, y, "ColorBurn"); break;
 case bmColorDodge: pdfWriteText(PDF, x, y, "ColorDodge"); break;
 case bmDarken: pdfWriteText(PDF, x, y, " Darken"); break;
 case bmDifference: pdfWriteText(PDF, x, y, "Difference"); break;
 case bmExclusion: pdfWriteText(PDF, x, y, "Exclusion"); break;
 case bmHardLight: pdfWriteText(PDF, x, y, "HardLight"); break;
 case bmHue: pdfWriteText(PDF, x, y, " Hue"); break;
 case bmLighten: pdfWriteText(PDF, x, y, " Lighten"); break;
 case bmLuminosity: pdfWriteText(PDF, x, y, "Luminosity"); break;
 case bmMultiply: pdfWriteText(PDF, x, y, " Multiply"); break;
 case bmOverlay: pdfWriteText(PDF, x, y, " Overlay"); break;
 case bmSaturation: pdfWriteText(PDF, x, y, "Saturation"); break;
 case bmScreen: pdfWriteText(PDF, x, y, " Screen"); break;
 case bmSoftLight: pdfWriteText(PDF, x, y, "SoftLight"); break;
 }

 x -= 30.0;
 y += 20.0;

 SI32 gs = pdfCreateExtGState(PDF, &ExtGS);
 pdfSetExtGState(PDF, gs);

 pdfPlaceTemplate(PDF, Templ, x, y, 0.0, 0.0);

 x += 120.0f;
 if (x > 500.0)
 {
 x = 70.0;
 y += 120.0;
 }
}

void TestBlendModes(void)
{

void* pdf = pdfNewPDF();
if (!pdf) return -1; // Out of memory
pdfSetOnErrorProc(pdf, NULL, PDFError);

pdfCreateNewPDF(pdf, "test.pdf");
pdfSetPageCoords(pdf, pcTopDown);
pdfSetColorSpace(pdf, csDeviceRGB);

TPDFExtGState gs, def;
pdfInitExtGState(&gs);
pdfInitExtGState(&def);

Transparency Page 103 of 854

def.BlendMode = bmNormal;

SI32 defGS = pdfCreateExtGState(pdf, &def);

double x = 70.0;
double y = 110.0;

SI32 tmpl = pdfBeginTemplate(pdf, 105.0, 90.0);

pdfSetFillColor(pdf, pdf_RGB(255, 0, 0));
pdfDrawCircle(pdf, 30.0, 30.0, 30.0, fmFill);
pdfSetFillColor(pdf, pdf_RGB(0, 255, 0));
pdfDrawCircle(pdf, 75.0, 30.0, 30.0, fmFill);
pdfSetFillColor(pdf, pdf_RGB(0, 0, 255));
pdfDrawCircle(pdf, 52.5, 60.0, 30.0, fmFill);

 pdfEndTemplate(pdf);

 pdfAppend(pdf);

 pdfSetFont(PDF, "Helvetica", fsBold, 20.0, false, cp1252);
 pdfWriteFTextEx(PDF, 50.0, 50.0, pdfGetPageWidth(PDF)-100.0, -1.0,

 taCenter, "Blend Modes");

 pdfSetFont(PDF, "Helvetica", fsRegular, 10.0, false, cp1252);

AddCircles(pdf, tmpl, gs, defGS, bmNormal, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmColorBurn, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmColorDodge, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmDarken, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmDifference, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmExclusion, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmHardLight, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmHue, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmLighten, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmLuminosity, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmMultiply, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmOverlay, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmSaturation, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmScreen, x, y);
AddCircles(pdf, tmpl, gs, defGS, bmSoftLight, x, y);
pdfEndPage(pdf);

pdfCloseFile(pdf);
pdfDeletePDF(pdf);

}

Transparency Page 104 of 854

Blend Modes

Normal Color ColorBurn ColorDodge

Darken Difference Exclusion HardLight

Hue Lighten Luminosity Multiply

Overlay Saturation Screen SoftLight

Tables Page 105 of 854

Tables
DynaPDF provides a very powerful table class that can be used to split an arbitrary area into rows
and columns. Every table cell can contain back- and foreground objects, as well as text, images,
templates, and other tables.

General properties

A table can be used on an arbitrary number of pages and in an arbitrary number of PDF files.

A table is an independent object that is not destroyed with the PDF file in memory. A table can be
used arbitrary often and the contents in it can be updated with new values whenever necessary.

Once a table was fully defined it can be drawn on one or on multiple pages. The output position can
be specified when the table is drawn. A table can also span multiple pages.

For tables which span maybe multiple pages it is possible to define header rows. Header rows will
be repeated when a page break occurs.

The table, rows, columns, and cells support many identical properties. The properties of a cell are
inherited from the table, column, and row, in this order. The formatting rules are comparable with
HTML but they are not identically.

A major difference is that the height of the table cannot be specified since this would complicate the
handling a lot. The height of a table depends only on the heights of the rows in it.

Foreground objects expand a cell if necessary while background objects are drawn into the available
cell space.

An empty table has no appearance. At least one row must be added to achieve a visible appearance.

Error Handling

A table stores error messages and warnings in the error log of the associated PDF instance. This is
the case when rows and columns will be created or when contents will be added to cells. When the
table is drawn, then the normal error handling of the PDF instance is used. That means, error
messages and warnings are passed to the error callback function if set.

If all error messages should be redirected to the error log then set the error mode to emUseErrLog.
See SetErrorMode() for further information.

Non-fatal errors do not break processing. If contents cannot be drawn, e.g. when an image is not
available, then the cell stays empty and the next cell will drawn.

Borders, Cell Spacing, Cell Padding

It is important to understand how borders are drawn, and how cell spacing and cell padding is
applied. A table supports three different kinds of borders: the table border, cell borders, and a special
kind of border: the cell grid.

Tables Page 106 of 854

Table and cell borders appear fully inside the table or cell boundary. The cell grid is no real border; it
consists of horizontal and vertical lines which are drawn in the middle of two rows or columns. The
grid lines reduce the width of columns but increase the height of rows.

The width and colors of the grid lines can be set for the entire table and for individual rows and
columns but not for cells. A grid line covers always the entire width or height of the table.

Cell spacing controls the space between cells (outer margin) and cell padding controls the space
between the cell contents and the cell boundary including borders (inner margin).

Cell spacing and cell padding can be defined for the entire table, as well as for individual columns,
rows, and cells. The properties are inherited from the table, columns, rows, and cells, in this order. If
a value is defined for the table, for a column and for a row, for example, then the value of the row
takes precedence.

Cell spacing and cell padding decrease the widths of columns but increase the height of rows. If the
available width for the contents becomes too small then the column will be expanded to the
minimum width: that is the sum of the border widths + cell spacing + cell padding + minimum width
of the cell contents. This adjustment is done for all columns if necessary. If the sum of the column
widths becomes larger as the table width then the table width is adjusted too. DrawTable() outputs a
warning if the width of one or more columns was changed.
Table border = 3 Units, Cell Border = 2 Units
Cell Spacing = 6 Units, Cell Padding = 3 Units

1 2 3

4 5 6

7 8 9

Background Objects

A background color can be assigned to the table, columns, rows, and cells. The table has its own
background color while the background color of a cell is inherited from the column and row, in this
order.

The table and cells support also background images and templates. Background objects are not
inherited. The table and cells have its own background.

If a background color and an additional background object is defined then the table or cell is filled
with the background color before other objects are drawn.

The background area is the area inside the cell or table border. In contrast, the content area of
foreground objects is the area inside the border minus cell padding. Background objects do never
change the width or height of a cell.

Tables Page 107 of 854

Foreground Objects

Foreground objects have a strong width and height; that means if the cell is not large enough then it
will be expanded. Text and sub tables are always foreground objects.

Text changes the width of a column, if the column width is smaller as the font size, if the flag
tfNoLineBreak is set and if the cell uses a portrait orientation, or if the cell uses a landscape
orientation and if the flag tfNoLineBreak is absent. In all other case the height of the row will be
adjusted if necessary.

Cell Alignment and Orientation

The contents in a cell can be horizontally and vertically aligned as well as rotated in 90 degrees steps.
If a cell is rotated by 90 or 270 degrees then text flows from left to right or from right to left
respectively. If the flag tfNoLineBreak is not set then the height of the cell or row must be set to a
value greater zero. If no height was set, then the font size is used as default height. This value is
usually too small and causes unpredictable results.

ColSpan, RowSpan

ColSpan or RowSpan are not directly supported but every cell can contain a sub table if necessary.
This makes it possible to create almost every combination of spanned rows or columns.

If you need these properties, then create a master table with only one column and insert new tables
with the required number of rows and columns into the cells of the master table.

Page breaks

The last parameter of DrawTable() specifies the maximum height of the table. If the maximum height
is set to a value greater zero, then the function must be executed in a while statement as follows:
...
pdfAppend(pdf);
tblDrawTable(tbl, 50.0f, 50.0f, 742.0f);
while (tblHaveMore(tbl))
{

pdfEndPage(pdf);
pdfAppend(pdf);

 // The position and maximum height can be changed if necessary
tblDrawTable(tbl, 50.0f, 50.0f, 742.0f);

}
pdfEndPage(pdf);
...

It is not required to close the page directly after DrawTable() returns. You can draw additional
contents if necessary before closing the page and you can also draw additional contents before and
after drawing the remaining rows.

Tables Page 108 of 854

The current implementation does not allow page breaks inside of cells. The contents in a cell is
always fully drawn, also if the height of a single row exceeds the maximum output height. The
function makes sure that at least one row is always drawn to avoid an endless loop.

Table and cell properties

When a table is first created, its properties are initialized to the following values:
BackgroundColor = None (Transparent)
BackgroundColorSpace = None
Background = None
BorderColor = 0 (Black)
BorderColorSpace = esDeviceRGB
BorderWidth = 0 (Left, Right, Top, Bottom)
CellOrientation = 0
CellSpacing = 0 (Left, Right, Top, Bottom)
CellPadding = 0 (Left, Right, Top, Bottom)
GridWidth = 0 (horizontal and vertical)
GridHorzColor = 0 (Black)
GridVertColor = 0 (Black)
Font = Helvetica
FontStyle = fsRegular
FontSize = 10.0
FontCodepage = cp1252
FontEmbedding = false
ImageColor = 0 (Black) -> 1 bit images
ImageColorSpace = esDeviceRGB
HAlign = coLeft
VAlign = coTop
TextColor = 0 (Black)
TextColorSpace = esDeviceRGB

Table color spaces

The function SetColor() sets a color and a corresponding device color space for a specific object type.
It is also possible to use extended color spaces like ICCBased, Separation or DeviceN color spaces.
Extended color spaces must be created in the PDF instance that is associated with the table. After the
color space was created it can be used with SetColorEx().

The table stores just handles of the color space so that they can be activated when the table is drawn.

Extended color spaces will be deleted when the PDF file in memory is closed or when FreePDF() will
be called. Therefore, it is not possible to draw a table into different PDF files if it uses extended color
spaces and if the required color spaces will not be recreated. Since color space handles may change
when recreated in another PDF file, all colors which use extended color spaces should be set again to
avoid issues with invalid color space handles.

Tables Page 109 of 854

The default color space for all object types is DeviceRGB. Images should normally be inserted in the
native image color space. This can be achieved by setting the flag tfUseImageCS. The flag is inherited
from the table, columns, and rows as usual. See SetFlags() for further information.

The color space for images can be set with SetColor() and SetColorEx(). The color value is only used
for 1 bit images. If an image color is defined and if the image is a 1 bit image then it will be output as
an image mask. In this case, non-zero pixel values are drawn in the defined image color and zero
pixel values produce no output.

If no image color is defined then 1 bit images are drawn as opaque black & white image.

Table Creation

A table can be created with the function CreateTable() in C or C++. All other interfaces contain the
table class CPDFTable or TPDFTable in Delphi which encapsulates the table functions into a native
class object. The class name is dynatable in PHP.

The constructor takes the number of rows which should be allocated, as well as the number of
columns and the default row height.

Since VB 6 does not support parameterized constructors, the function CreateTable() must be
called after creating the class instance.

The number of pre-allocated rows should be large enough to avoid unnecessary memory re-
allocations. Note that this is just the size of the array that holds the rows which will be added later.
An unused row requires 4 or 8 bytes memory (32 or 64 bit).

The constructor does not allocate rows. The first chunk will be allocated when the first row is added.

C/C++ deveopers must delete a table object when no longer needed with DeleteTable(). The
destructor of the class CPDFTable calls this function automatically in other programming languages
when the class instance will be deleted.

In programming languages which use reference counting like PHP or VB 6, it is very important to
delete tables and the associated PDF instance in the right order, especially if a table contains
references of other tables. This is the case when a sub table was inserted into a cell.

Delete first all tables which contain references of other tables and delete finally the sub tables. This
makes sure that the reference count reaches zero when trying to release the class instance.

Tables must also be deleted before the associated PDF instance will be deleted since a table contains
a reference of this PDF instance! These rules must be carefully considered to avoid memory leaks.

Although it is not required to delete tables in the right order in C or C++ or Delphi, it is best practice
to do so.

Table Functions Page 110 of 854

Table Functions

AddColumn

Syntax:
SI32 tblAddColumn(
 const ITBL* Table, // Table pointer
 LBOOL Left, // Add the column on the left or right side?
 float Width) // Column width

The function adds a column on the left or right side of the table. In most cases it is required to change
the table width and the widths of the remaining columns after a new column was added. This can be
done with SetTableWidth() and SetColWidth().

If possible, create the table directly with the required number of columns.

Return values:

If the function succeeds, the return value is new number of columns. If the function fails, the return
value is a negative error code.

AddRow

Syntax:
SI32 tblAddRow(
 const ITBL* Table, // Table pointer
 float Height) // Minimum height or -1 for default height

The functions adds a new row to the table. The parameter Height can be set to a negative value to
indicate that the default row height should be used. The default row height was specified in
CreateTable().

The specified height represents the minumum height of the row. If the height of a foreground object
is larger then the height will be adjusted.

The height is sometimes required. This is the case when a cell is rotated by 90 or a multiple of 90
degrees and if the height cannot be computed from the cell contents, e.g. if a cell contains text and if
the flag tfNoLineBreak is absent. See SetCellOrientation() for further information.

Return values:

If the function succeeds, the return value is the row index, a value greater or equal zero. If the
function fails, the return value is a negative error code.

Table Functions Page 111 of 854

AddRows

Syntax:
SI32 tblAddRows(
 const ITBL* Table, // Table pointer
 UI32 Count, // Number of rows to be added
 float Height) // Minimum height or -1 for default height

The functions adds new rows to the table. The parameter Height can be set to a negative value to
indicate that the default row height should be used. The default row height was specified in
CreateTable().

The specified height represents the minumum height of each row. If the height of a foreground
object is larger, then the row height will be adjusted.

The height is sometimes required. This is the case if a cell is rotated by 90 or a multiple of 90 degrees
and if the height cannot be computed from the cell contents, e.g. if a cell contains text and if the flag
tfNoLineBreak is absent. See SetCellOrientation() for further information.

Return values:

If the function succeeds, the return value is new number of rows in the table. If the function fails, the
return value is a negative error code.

ClearColumn
void tblClearColumn(
 const ITBL* Table, // Table pointer
 UI32 Col, // Column index
 TDeleteContent Types) // See ClearContent()

The function deletes the content in the specified column in all rows. The parameter Types is described
in ClearContent() below.

ClearContent

Syntax:
void tblClearContent(
 const ITBL* Table, // Table pointer
 TDeleteContent Types) // See below

typedef enum
{
 dcText = 0x00000001, // Text is always a foreground object
 dcImage = 0x00000002, // Images
 dcTemplate = 0x00000004, // Templates
 dcTable = 0x00000008, // Sub tables are always foreground objects
 dcAllCont = 0x0000001F, // Delete all content types
 // Required additional flag
 dcForeGround = 0x10000000, // Only foreground objects?
 dcBackGround = 0x20000000, // Only background objects?

Table Functions Page 112 of 854

 dcBoth = 0x30000000 // Delete both fore- and background objects
}TDeleteContent;

The function deletes the specified object types from the table. The parameter Types is a bit mask. The
content types and the fore- and background flags can be combined with a binary or operator. If the
foreground and background flags are both absent, then nothing will be deleted!

In C/C++ the usage is as follows:
tblClearContent(tbl, TDeleteContent(dcText | dcForeGround));

Other programming languages require no type cast.

Note that it is not required to explicitely clear the contents of a table. Existing contents can be
overriden at any time. However, when it is not known whether all cells get new values, then it is
recommended to clear the table beforehand.

It is also possible to clear the contents of specific rows or columns only. See ClearColumn() and
ClearRow() for further information.

ClearRow
void tblClearRow(
 const ITBL* Table, // Table pointer
 UI32 Row, // Row index
 TDeleteContent Types) // See ClearContent()

The function deletes the content in the specified row. The parameter Types is described in
ClearContent().

CreateTable

Syntax:
ITBL* tblCreateTable(
 const PPDF* IPDF, // PDF instance
 UI32 AllocRows, // Must be greater zero
 UI32 NumCols, // Must be greater zero
 float Width, // Table width
 float DefRowHeight) // Default row height

The function creates a new table object. The parameter AllocRows specifies the number of rows which
should be pre-allocated. The value should be large enough to avoid unnecessary memory re-
allocations. Note that this is just the size of the array that holds the rows which will be added later.
Unused rows require 4 or 8 bytes memory (32 bit / 64 bit).

The default row height is used if the parameter Height of AddRow() or AddRows() is set to a
negative value.

The widths of the columns is set to the table width divided by the number of columns (Width /
NumCols).

The table must be deleted with DeleteTable() when finish to avoid a memory leak.

Table Functions Page 113 of 854

Return values:

If the function succeeds the return value is a valid table pointer. If the function fails the return value
is NULL.

DeleteCol

Syntax:
void tblDeleteCol(
 const ITBL* Table, // Table pointer
 UI32 Col) // Column index

The function deletes a column from the table. The new table width is the table width minus the
width of the deleted column. It is not possible to delete all columns. One column must be left in the
table.

If the column index is invalid or if the table contains only one column then the function does
nothing.

DeleteRow

Syntax:
void tblDeleteRow(
 const ITBL* Table, // Table pointer
 UI32 Row) // Row index

The function deletes a row from the table. If the row index is invalid then the function does nothing.

DeleteRows

Syntax:
void tblDeleteRows(
 const ITBL* Table) // Table pointer

The function deletes all rows from the table.

DeleteTable

Syntax:
void tblDeleteTable(
 ITBL** Table) // Table pointer

The function deletes a table object. Tables and the corresponding PDF instance should be deleted in
the reversed order of the creation. That means, delete first all tables and then the PDF instance if no
longer needed. This makes sure that the table can be immediatly deleted in programming languages
which use reference counting or garbage collection.

This function is not included in programming languages which use a wrapper class like C#, Delphi,
VB. Net. or PHP. Delete the class instance as usual instead. The destructor deletes the table object in
this case.

Table Functions Page 114 of 854

DrawTable

Syntax:
float tblDrawTable(
 const ITBL* Table, // Table pointer
 float x, // x-coordinate
 float y, // y-coordinate
 float MaxHeight) // Maximum height or zero to avoid page breaks

The function draws the table on the specified position. The x/y-coordinates specify the top left corner
of the table. The table flows always from top to bottom.

The function must be executed in a while statement if the parameter MaxHeight is set to a value
greater zero:
...
pdfAppend(pdf);
tblDrawTable(tbl, 50.0f, 50.0f, 742.0f);
while (tblHaveMore(tbl))
{

pdfEndPage(pdf);
pdfAppend(pdf);

 // The position and maximum height can be changed if necessary
tblDrawTable(tbl, 50.0f, 50.0f, 742.0f);

}
pdfEndPage(pdf);
...

The function draws the header rows if any and at least one row to avoid an endless loop if the
maximum height would be smaller as the first row height.

Return values:

If the function succeeds the return value is the height of the table that was drawn so that additional
contents can be drawn below the table if necessary. If the function fails the return value is -1.

GetFirstRow

Syntax:
SI32 tblGetFirstRow(
 const ITBL* Table) // Table pointer

The function returns the index of the first row that was drawn in the previous DrawTable() call.
GetNextRow() returns the next row index that will be drawn in the next DrawTable() call. If the next
row index equals the number of rows then the table was fully drawn.

Return value:

The first row index, a number greater or equal zero. This function cannot fail.

Table Functions Page 115 of 854

GetFlags
float tblGetFlags(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col) // Column index or -1

The function returns the current flags of the table, row, column, or cell:

Row Col Applies to

-1 -1 Table
-1 >= 0 Column
>= 0 -1 Row
>= 0 >= 0 Cell

Return values:

If the function succeeds the return value is greater or equal zero. If the function fails, the return value
is a negative error code.

GetNextHeight

Syntax:
float tblGetNextHeight(
 const ITBL* Table, // Table pointer
 float MaxHeight, // Maximum height or zero to avoid page breaks
 SI32* NextRow) // Can be set to NULL if not needed

The function calculates the height of the table. If the parameter MaxHeight is zero, then the full height
will be returned. If MaxHeight is greater zero, then the height of the table is calculated that fits into
the output height. This is the same height that DrawTable() would produce when drawing the table
with the same parameters. This function can be useful if the height of the table must be known
before it can be drawn. The function caches the result so that multiple calls with a different max
height can be computed fast as possible.

The function must be called within an open page.

Return values:

If the function succeeds the return value is the table height if drawn with the same parameters. If the
function fails the return value is -1.

Table Functions Page 116 of 854

GetNextRow

Syntax:
SI32 tblGetNextRow(
 const ITBL* Table) // Table pointer

The function returns the index of the next row that will be drawn when DrawTable() is called the
next time. GetFirstRow() returns the first row index that was drawn in the previous DrawTable() call.
If the next row index equals the number of rows then the table was fully drawn.

Return value:

The next row index, a number greater or equal zero. This function cannot fail.

GetNumCols

Syntax:
SI32 tblGetNumCols(
 const ITBL* Table) // Table pointer

The function returns the number of columns in the table.

GetNumRows

Syntax:
SI32 tblGetNumRows(
 const ITBL* Table) // Table pointer

The function returns the number of rows in the table.

GetPDFInstance

Syntax:
void* tblGetPDFInstance(
 const ITBL* Table) // Table pointer

The function returns the PDF instance that is associated with the table.

GetTableHeight

Syntax:
float tblGetTableHeight(
 const ITBL* Table) // Table pointer

The function returns the full height of the table. The function must be called within an open page.

Return values:

If the function succeeds the return value is the height of the table. If the function fails the return
value is -1.

Table Functions Page 117 of 854

GetTableWidth

Syntax:
float tblGetTableWidth(
 const ITBL* Table) // Table pointer

The function returns the width of the table. The function must be called within an open page.

Return values:

If the function succeeds the return value is the width of the table. If the function fails the return value
is -1.

HaveMore

Syntax:
LBOOL tblHaveMore(
 const ITBL* Table) // Table pointer

The function checks whether all rows where drawn. The return value is always false if the MaxHeight
parameter of DrawTable() was set to zero.

SetBoxProperty

Syntax:
LBOOL tblSetBoxProperty(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 TTableBoxProperty Type, // see below
 float Left, // Value for the left side
 float Right, // Value for the right side
 float Top, // Value for the top side
 float Bottom) // Value for the bottom side

typedef enum
{
 tbpBorderWidth = 0, // Table, Columns, Rows, Cells default (0, 0, 0, 0)
 tbpCellSpacing = 1, // Table, Columns, Rows, Cells default (0, 0, 0, 0)
 tbpCellPadding = 2 // Table, Columns, Rows, Cells default (0, 0, 0, 0)
}TTableBoxProperty;

The function sets or changes the border width, cell spacing, or cell padding. The properties can be set
to the table, rows, columns, and cells as follows:

Row Col Applies to

-1 -1 Table
-1 >= 0 Column
>= 0 -1 Row
>= 0 >= 0 Cell

Cell padding and cell spacing are inherited from the table, columns, and rows, in this order.

Table Functions Page 118 of 854

The border with is inherited from columns and rows (in this order), but not from the table since the
table has its own border.

Individual values can be set to each side of a cell. Note that the properties will be not be rotated with
a cell. The left side is always left, independent of the cell orientation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCellAction

Syntax:
LBOOL tblSetCellAction(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 UI32 ActionHandle, // Action handle
 THighlightMode Mode) // Highlight mode

The function creates an invisible link annotation for the specified cell or table and associates the
provided action with that annotation. The result is an interactive area that executes the action if the
user clicks on the cell or table.

A cell action is always a background object that is created in the size of the background area when
the table is drawn.

Notice:

Unlike other cell objects like images, text, and so on, a cell link is no persistent object because the
action will be deleted when then PDF file in memory will be closed or when FreePDF() will be
called.

If the table should be drawn into more than one PDF file then re-create the actions and cell action
before drawing the table into the next PDF file.

Remarks:

Actions can be created with functions like CreateGoToAction(), CreateGoToRAction(), and so on.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCellDashPattern

Syntax:
LBOOL tblSetCellDashPattern(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 TCellSide Side, // Cell side on which the style should be applied

Table Functions Page 119 of 854

 TLineCapStyle Style, // Line cap style
 const float* Dash, // Dash pattern
 UI32 NumValues, // Number of values in Dash
 float Phase) // Dash phase

The function sets or changes the line dash pattern of a cell, row, or of the table. See
SetLineDashPattern2() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCellImage

Syntax:
LBOOL tblSetCellImage(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 LBOOL ForeGround, // If true, the cell will be expanded if necessary
 TCellAlign HAlign, // Horizontal alignment
 TCellAlign VAlign, // Vertical alignment
 float Width, // Must be greater or equal zero
 float Height, // Must be greater or equal zero
 const char* Image, // This should be an absolute path
 UI32 Index) // Image index (TIFF images only)

The function inserts an image horizontally and vertically aligned as specified. The image will be
loaded when the table is drawn. Therefore, it is recommended to use absolute paths so that the
image can still be loaded if the working directory was changed.

If the image is inserted as a background object, then it will be clipped if it does not fit into the cell
boundary. A cell can contain a background and a foreground object.

An image can also be added to the table as background object.

Foreground objects have a strong width and height. That means the cell will be expanded if
necessary.

Image formats which support no transparency are inserted opaque. Transparent GIF images are
inserted transparent and alpha channels in images will be considered. Images should normally be
inserted in the native image color space. To achieve this, set the flag tfUseImageCS with SetFlags().

Images can be scaled into the cell as follows:

• Width = 0 and Height = 0 -> The image is scaled to the cell width or height depending on the
cell orientation. The aspect ratio will be preserved. If the flag tfScaleToRect is set, the image is
scaled so that both sides fit into the cell width and height. The row height must be greater
zero to achieve a meaningful result.

Table Functions Page 120 of 854

• Width > 0 and Height = 0 or Width = 0 and Height > 0 -> The image is scaled to the given width
or height. The aspect ratio will be preserved. If the flag tfScaleToRect is set, the image is
scaled so that both sides fit into the given width or height and into cell width or height
depending on which side is missing. If the parameter Height and the row height are zero then
the flag tfScaleToRect has no effect.

• Width > 0 and Height > 0 -> The image is scaled to the given width and height. The aspect ratio
is not preserved. If the flag tfScaleToRect is set, the image is scaled so that both sides fit into
the given width and height and the aspect ratio is preserved.

The parameters Width and Height are not exchanged if the cell uses a landscape orientation.

Remarks:

The function is available in an Ansi and Unicode compatible variant. Unicode paths are converted to
UTF-8 on non-Windows operating systems. Ansi strings are interpreted as UTF-8 if the flag
gfAnsiStringIsUTF8 is set the in the associated PDF instance. See SetGStateFlags() for further
information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCellImageEx

Syntax:
LBOOL tblSetCellImageEx(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 LBOOL ForeGround, // If true, the cell will be expanded if necessary
 TCellAlign HAlign, // Horizontal alignment
 TCellAlign VAlign, // Vertical alignment
 float Width, // Must be greater or equal zero
 float Height, // Must be greater or equal zero
 const void* Buffer, // Image buffer
 UI32 BufSize, // Buffer size
 UI32 Index) // Image index (TIFF images only)

The function inserts an image in the same way as SetCellImage() but accepts a file buffer instead of a
file path. See SetCellImage() for further information. The function creates a copy of the image buffer.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Table Functions Page 121 of 854

SetCellOrientation

Syntax:
LBOOL tblSetCellOrientation(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 SI32 Orientation) // 0, 90 or a multiple of 90 degrees

The function sets the cell orientation. The cell orientation is inherited from the table, column, row,
and finally from the cell. The contents in a cell can be rotated in 90 degrees steps. Positive values
rotate the cell content counter clockwise and negative values clockwise.

The row height should be set to value greater zero if a cell uses a landscape orientation. This is
important if the height cannot be computed from the cell contents. This is the case if a cell contains
text and if the flag tfNoLineBreak was not set.

The orientation can be set to the table, rows, columns, and cells as follows:

Row Col Applies to

-1 -1 Table
-1 >= 0 Column
>= 0 -1 Row
>= 0 >= 0 Cell

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCellTable

Syntax:
LBOOL tblSetCellTable(
 const ITBL* Table, // Table pointer
 UI32 Row, // Row index
 UI32 Col, // Column index
 TCellAlign HAlign, // Horizontal alignment
 TCellAlign VAlign, // Vertical alignment
 const ITBL* SubTable) // Pointer of the sub table

The function inserts a sub table into the specfied cell. A sub table is always a foreground object that
has a strong width and height. That means, if the cell is not large enough it will be expanded.

Note that the function creates no copy of the table. Do not delete the sub table when it is used by
another table. The C#, VB. Net, VB, and PHP interfaces make sure that a sub table cannot be deleted
before the tables which contain references of it will be deleted.

In programming languages which use reference counting like VB or PHP, it is important to delete
tables in the right order. Delete first the tables which contain references to sub tables. Finally, delete
the sub tables.

Table Functions Page 122 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCellTemplate

Syntax:
LBOOL tblSetCellTemplate(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 LBOOL ForeGround, // If true, the cell will be expanded if necessary
 TCellAlign HAlign, // Horizontal alignment
 TCellAlign VAlign, // Vertical alignment
 UI32 TmplHandle, // Template handle
 float Width, // Must be greater or equal zero
 float Height) // Must be greater or equal zero

The function inserts a template into the specified cell. A template can contain contents from external
sources like PDF or EMF pages as well as anything that can be drawn on a page (with exception of
interactive objects like form fields or annotations).

Please note that the table creates no copy of the template. Template handles are bound on the PDF
instance in which they were created and all templates will be deleted when the PDF file in memory is
closed or when FreePDF() will be called.

Therefore, it is not possible to draw a table with templates into different PDF files.

If the template is inserted as a background object, then it will be clipped if it does not fit into the cell
boundary. A cell can contain a background and a foreground object.

A template can also be added to the table as background object.

Foreground objects have a strong width and height. That means the cell will be expanded if
necessary.

Templates can be scaled into the cell as follows:

• Width = 0 and Height = 0 -> The template is scaled to the cell width or height depending on the
cell orientation. The aspect ratio will be preserved. If the flag tfScaleToRect is set, the template
is scaled so that both sides fit into the cell width and height. The row height must be greater
zero to achieve a meaningful result.

• Width > 0 and Height = 0 or Width = 0 and Height > 0 -> The template is scaled to the given
width or height. The aspect ratio will be preserved. If the flag tfScaleToRect is set, the
template is scaled so that both sides fit into the given width or height and into cell width or
height depending on which side is missing. If the parameter Height and the row height are
zero then the flag tfScaleToRect has no effect.

Table Functions Page 123 of 854

• Width > 0 and Height > 0 -> The template is scaled to the given width and height. The aspect
ratio is not preserved. If the flag tfScaleToRect is set, the template is scaled so that both sides
fit into the given width and height and the aspect ratio is preserved.

The parameters Width and Height are not exchanged if the cell uses a landscape orientation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCellText

Syntax:
LBOOL tblSetCellText(
 const ITBL* Table, // Table pointer
 UI32 Row, // Row index
 UI32 Col, // Column index
 TTextAlign HAlign, // Horizontal alignment
 TCellAlign VAlign, // Vertical alignment
 const char* Text, // The text to be drawn
 UI32 Len) // Length in characters

The function inserts the specified text into the cell. Text is always a foreground object. The cell will be
expanded if necessary.

Text can be processed in different ways. By default the text is output with WriteFText(). WriteFText()
supports a lot of format tags. These tags are also supported in a table with exception of a page break
tag.

To avoid line breaks it is possible to set the flag tfNoLineBreak with SetFlags(). The flag is inherited
from the table, column, row, and cell, in this order. If set, the text is output with WriteText() instead.
Since this function doesn't support format tags, the text is processed as plain text.

The font and font size can be set with SetFont() and with SetFontSize(). Note that a table has its own
versions of these functions.

If the cell uses a landscape orientation then the text flows to left or to right depending on the
orientation and if the flag tfNoLineBreak is not set. The row height must be set to value greater zero
in this case. If the text does not fit into the cell then the column width will be expanded. If the flag
tfNoLineBreak is set, then the height of the row will be expanded if necessary.

If the cell uses a portrait orientation and if the flag tfNoLineBreak is not set, then text flows from top
to bottom or bottom to top, depending on the orientation. The row height will be expanded if
necessary. If the flag tfNoLineBreak is set, then the column width will be expanded if necessary.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Ansi strings are
interpreted as UTF-8 if the flag gfAnsiStringIsUTF8 is set the in the associated PDF instance. See
SetGStateFlags() for further information.

Table Functions Page 124 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetColor

Syntax:
LBOOL tblSetColor(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 TTableColor Type, // see below
 TPDFColorSpace CS, // Color space in which the color is defined
 UI32 Color) // Color value

typedef enum
{
 tcBackColor = 0, // Table, Columns, Rows, Cells -> default none
 tcBorderColor = 1, // Table, Columns, Rows, Cells -> default black
 tcGridHorzColor = 2, // Table -> default black
 tcGridVertColor = 3, // Table -> default black
 tcImageColor = 4, // Table, Columns, Rows, Cells -> default black
 tcTextColor = 5 // Table, Columns, Rows, Cells -> default black
}TTableColor;

The function sets or changes the specified color as well as the corresponding device color space.
Colors of an extended color space can be set with SetColorEx().

The text color is inherited from the table, column, and row, in this order. The border color is
inherited from columns and rows but not from the table since the table has its own border.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetColorEx

Syntax:
LBOOL tblSetColorEx(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 TTableColor Type, // see below
 float* Color, // One value per component
 UI32 NumComps, // Number of components
 TExtColorSpace CS, // Color space
 SI32 Handle) // Color space handle of non-device color space

typedef enum
{
 tcBackColor = 0, // Table, Columns, Rows, Cells -> default none
 tcBorderColor = 1, // Table, Columns, Rows, Cells -> default black

Table Functions Page 125 of 854

 tcGridHorzColor = 2, // Table -> default black
 tcGridVertColor = 3, // Table -> default black
 tcTextColor = 4 // Table, Columns, Rows, Cells -> default black
}TTableColor;

The function sets or changes the specified color and color space. The number of color components
must match the number of components of the color space. The text color is inherited from the table,
column, and row, in this order. The border color is inherited from columns and rows but not from
the table since the table has its own border.

Extended color spaces will be deleted when the PDF file in memory is closed or when FreePDF() was
called. The color spaces must be recreated when the table should be drawn in another PDF file. Color
space handles may change when recreated in another PDF file. All such colors should be set again to
avoid issues with invalid color space handles.

Width exception of Lab colors, color values are in the range 0 through 1. Lab colors support different
ranges for the L*, a*, and b* components:
L* -> 0 .. 100
a* -> -128 .. 127
b* -> -128 .. 127

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetColWidth

Syntax:
LBOOL tblSetColWidth(
 const ITBL* Table, // Table pointer
 UI32 Col, // Column index
 float Width, // New width
 LBOOL ExtTable) // Extend the table or adjust the other columns?

The function changes the width of a column. The width of a column can be changed in two different
ways. If the parameter ExtTable is set to true, then the difference of the current and new column
width is added to the table width and the widths of all other columns is left unchanged.

If ExtTable is set to false, the difference is subtracted from the next columns until the gap is zero. If
the width of the column is larger as the table width then the table width is adjusted too. All other
columns get a zero width in this case.

The column widths should be set from lower to higher indexes and no value should be set for the
last column.

No column width should exceed the table width if ExtTable is set to false. Otherwise the widths of all
other columns must be changed again. Change first the table width and then the column widths in
such a case.

Table Functions Page 126 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFlags
LBOOL tblSetFlags(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 TTableFlags Flags) // see below

typedef enum
{
 tfDefault = 0, // Default
 tfStatic = 1, // Avoid the deletion with ClearContent()
 tfHeaderRow = 2, // Header rows are drawn first after a page break
 tfNoLineBreak = 4, // Prohibit line breaks in cells whith text
 tfScaleToRect = 8, // Applies to images and templates
 tfUseImageCS = 16, // Insert images in the native color space
 tfAddFlags = 32, // Add the new flags to the current ones?
 tfFixedTextHeight = 64 // If set, text does not increase the row height if necessary. The row
 // height must be non-zero in this case.
}TTableFlags;

The function sets various flags. Flags are inherited from the table, column, and rows, in this order.

Flag Description

tfStatic This flag avoids the deletion of cell contents when ClearContent(), ClearColumn() or
ClearRow() is called. The flag can be set to rows, columns, and cells.

tfHeaderRow Header rows are the first rows which are drawn after a page break occurred. It is
possible to mark more than one row as header row.

tfNoLineBreak This flag avoids line breaks in cells which contain text. The flag is inherited from the
table, columns, and rows. Text is output with WriteText() if this flag is set. See
SetCellText() for further information.

tfScaleToRect If set, images and templates are scaled into the cell so that both sides fit into the
given width and height. The aspect ratio will be preserved. The flag is inherited
from the table, columns, and rows.

tfUseImageCS If set, images are inserted in the native image color space and embedded ICC
profiles will be considered. The flag is inherited from the table, columns, and rows.

tfAddFlags If set, the new flags are added to the current ones. If absent, the new flags override
the previous value.

tfFixedTextHeight If set, text does not increase the row height if necessary. The row height must be
non-zero in this case. The flag is ignored otherwise.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Table Functions Page 127 of 854

SetFont

Syntax:
LBOOL tblSetFont(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 const char* Name, // Font name
 TFStyle Style, // Font style
 LBOOL Embed, // If true, the font will be embedded
 TCodepage CP) // The code page that should be used

The function sets the font that is used to output text. The font is inherited from the table, column,
and row, in this order. The font will be loaded when the table is drawn. The default font size is 10
units. It can be changed with SetFontSize(). The default font selection mode is smFamilyName. It can
be changed with SetFontSelMode().

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Ansi strings are
interpreted as UTF-8 if the flag gfAnsiStringIsUTF8 is set the in the associated PDF instance. See
SetGStateFlags() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFontSelMode

Syntax:
LBOOL tblSetFontSelMode(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 TFontSelMode Mode) // see below

typedef enum
{
 smFamilyName = 0,
 smPostScriptName = 1,
 smFullName = 2
}TFontSelMode;

The function sets or changes the font selection mode. The font names used in the corresponding
SetFont() calls must coincide with the font selection mode. The font selection mode is inherited from
the table, column, and row, in this order.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Table Functions Page 128 of 854

SetFontSize

Syntax:
LBOOL tblSetFontSize(
 const ITBL* Table, // Table pointer
 SI32 Row, // Row index or -1
 SI32 Col, // Column index or -1
 float Value) // Font size

The function sets or changes the font size. The font size is inherited from the table, column, and row,
in this order.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetGridWidth

Syntax:
LBOOL tblSetGridWidth(
 const ITBL* Table, // Table pointer
 float Horz, // Horizontal grid width or zero
 float Vert) // Vertical grid width or zero

The table grid consists of horizontal and vertical lines which are drawn in the middle of two rows or
columns. The grid lines cover always the entire width or height of the table. The line widths can be
set to different values for the horizontal and vertical lines. If no lines should be drawn then set the
value to zero. The colors of horizontal and vertical grid lines can be set with SetColor() or
SetColorEx().

Only the table supports grid lines. The parameters Row and Col of SetColor() or SetColorEx() must be
set to -1.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetPDFInstance

Syntax:
void tblSetPDFInstance(
 const ITBL* Table, // Table pointer
 const PPDF* IPDF) // Pointer of a valid PDF Instance

The function changes the PDF instance that is associated with the table. The PDF instance must be
changed if the table should be drawn into another PDF instance as the one for which the table was
created.

Table Functions Page 129 of 854

Note that extended color spaces and templates depend on the PDF instance in which these objects
were created. If the table contains such objects then it is normally not possible to change the PDF
instance.

This function is only included in the C interface.

SetRowHeight

Syntax:
LBOOL tblSetRowHeight(
 const ITBL* Table, // Table pointer
 UI32 Row, // Row index
 float Value) // New height

The function changes the row height. The value must be greater or equal zero. Foreground objects
expand the height if necessary. The height must be greater zero if a cell uses a landscape orientation
and if the height cannot be computed from the cell content. This is the case if a cell contains text and
if the flag tfScaleToRect is not set.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetTableWidth

Syntax:
void tblSetTableWidth(
 const ITBL* Table, // Table pointer
 float Value, // New width (must be greater zero)
 TColumnAdjust AdjustType, // see below
 float MinColWidth) // Must be >= 0 (see description)

typedef enum
{
 coaUniqueWidth, // Set the column widths to TableWidth / NumColumns
 coaAdjLeft, // Adjust the widths starting from the left side
 coaAdjRight // Adjust the widths starting from the right side
}TColumnAdjust;

The function changes the width of the table. At least one column must be modified when the width
will be changed. The parameter AdjustType specifies how the column widths should be modified. If
the new width is larger, then the difference can be added to the left or right column, or all columns
can get a unique width (TableWidth / NumColumns). The parameter MinColWidth is ignored in this
case.

If the new width is smaller, then the difference must be subtracted from the columns. The parameter
MinColWidth specifies in this case the minimum width of columns that must be adjusted. It is only
used if AdjustType is not set to coaUniqueWidth. The column widths are adjusted starting from the
left or right side as specified. If the width of the first column is not large enough to subtract the entire

Table Functions Page 130 of 854

difference, then the minimum width is set to the column and the adjustment continues with the next
column until the gap is zero.

If the new table width is smaller as MinColWidth * NumColumns then the widths of the remaining
columns will be set to zero. Such cases should be avoided since the column widths must be adjusted
again when the table is drawn.

Function Reference Page 131 of 854

Function Reference
This section describes all supported functions of DynaPDF in detail. Most examples in this chapter
are written in C, C++, or Delphi. However, as you can see, the usage of DynaPDF is nearly identical
with all programming languages.

Abort (Rendering Engine)

Syntax:
void rasAbort(
 IRAS* RasPtr) // Instance pointer of the rasterizer

This function provides a safe way to stop the function RenderPage() very quickly when it is running
in a separate thread. The function sets an internal abort flag so that the rendering engine can safely
terminate the current rendering process. The flag is automatically reset when the function
RenderPage() is called the next time.

ActivateAltFontList

Syntax:
LBOOL pdfActivateAltFontList(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle, // -1 or a list handle -> CreateAltFontList()
 LBOOL EnableSysFonts)

The function activates or deactivates an alternate font list that was created by CreateAltFontList().
An alternate font list represents a list of fallback fonts which are tested if one or more required
glyphs were not found in the current font.

If no compatible font was found in the list, then system fonts are tested if EnableSysFonts was set to
true. Although EnableSysFonts should be set to true in most cases, it is sometimes useful to disable
system fonts, e.g. to restrict the number of fonts which can be embedded.

In order to disable the current alternate font list set the parameter Handle to -1. The value of
EnableSysFonts is ignored this case. To fully deactivate font substitution disable system fonts with
SetUseSystemFonts() before calling a text function.

Please note that alternate font lists are used only, if complex text layout was enabled. This can be
done by setting the flag gfComplexText with SetGStateFlags().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 132 of 854

AddActionToObj

Syntax:
SI32 pdfAddActionToObj(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // The type of object that should get the action
 TObjEvent Event, // Which event should trigger the action
 UI32 ActHandle, // Action Handle
 UI32 ObjHandle) // Object Handle (see notes below)

typedef enum
{
 otAction,
 otAnnotation,
 otBookmark,
 otCatalog, // PDF 1.4
 otField,
 otPage,
 otPageLink
}TObjType;

typedef enum
{
 oeNoEvent, // Internal use only -> DO NOT USE THIS VALUE!!!
 oeOnOpen, // Catalog, Pages
 oeOnClose, // Pages only
 oeOnMouseUp, // All fields, page link annotations, bookmarks
 oeOnMouseEnter, // Form fields only
 oeOnMouseExit, // Form fields only
 oeOnMouseDown, // Form fields only
 oeOnFocus, // Form fields only
 oeOnBlur, // Form fields only
 oeOnKeyStroke, // Text fields only
 oeOnFormat, // Text fields only
 oeOnCalc, // Text fields, combo boxes, list boxes
 oeOnValidate, // All form fields, except buttons
 oeOnPageVisible, // PDF 1.5 -> Form fields only
 oeOnPageInVisible, // PDF 1.5 -> Form fields only
 oeOnPageOpen, // PDF 1.5 -> Form fields only
 oeOnPageClose, // PDF 1.5 -> Form fields only
 oeOnBeforeClosing, // PDF 1.4 -> Catalog, must be a JavaScript Action
 oeOnBeforeSaving, // PDF 1.4 -> Catalog, must be a JavaScript Action
 oeOnAfterSaving, // PDF 1.4 -> Catalog, must be a JavaScript Action
 oeOnBeforePrinting,// PDF 1.4 -> Catalog, must be a JavaScript Action
 oeOnAfterPrinting // PDF 1.4 -> Catalog, must be a JavaScript Action
}TObjEvent;

This function adds an action to a PDF object. The parameter ActHandle requires a handle that was
returned by a function that creates an action object such as CreateGoToAction(), etc. The object
handle is also a return value of its creation function. If the object type is a page, then use the page
number as handle.

It is possible to add multiple actions to one object, but note that DynaPDF does not check whether
all actions are valid. For example, it is possible to add more than one action to a text field to the
OnFormat event, but Acrobat executes only the first one. Always test your actions with different
Acrobat versions because each version handles actions in a different manner.

The OnMouseUp event is the standard event supported by all objects. This event type supports also
all action types. The other events are handled differently depending on the Acrobat version. Acrobat

Function Reference Page 133 of 854

4 supports JavaScript actions only in non-OnMouseUp events. Newer versions support also
predefined action types. However, test your forms with the Acrobat versions that should be
supported - this is the only way to find incompatibilities.

Return values:

If the function succeeds the return value is 1, if the function fails the return value is 0.

AddAnnotToPage

Syntax:
LBOOL pdfAddAnnotToPage(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum, // Page number
 UI32 Handle) // Annotation handle

The function adds an annotation to a page. With exception of PopUp annotations all annotation
types can be drawn on multiple pages. Watermark or Stamp annotations are typical annotations
which can be placed on multiple pages.

Return values:

If the function succeeds the return value is 1, if the function fails the return value is 0.

AddArticle

Syntax:
SI32 pdfAddArticle(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the Article
 double PosY, // Y-Coordinate of the Article
 double Width, // Width in unscaled units
 double Height) // Height in unscaled units

This function creates a new article and adds it to the currently open article thread that must be
created with CreateArticleThread() beforehand.

Some types of document may contain sequences of content items that are logically connected but
not physically sequential. For example, a news story may begin on the first page of a newsletter and
run over onto one or more non-consecutive interior pages. To represent such sequences of
physically discontinuous but logically related items, a PDF document may define one or more
articles.

The sequential flow of an article is defined by an article thread; the individual content items that
make up the article are called beads on the thread. PDF viewer applications such as Adobe’s
Acrobat provide navigation facilities to allow the user to follow a thread from one bead to the next.

Function Reference Page 134 of 854

Remarks:

Due to a bug in Acrobat 6 articles can cause a zoom out. The pages of a document appear then as
small thumb nails.

Return values:

If the function succeeds the return value is the handle of the article, a value greater or equal zero. If
the function fails the return value is a negative error code.

AddBookmark

Syntax:
SI32 pdfAddBookmark(
 const PPDF* IPDF, // Instance pointer
 const char* Title, // Title of the bookmark
 SI32 Parent, // Parent bookmark or -1, see description
 UI32 DestPage, // Destination page
 LBOOL Open) // Open or close the node when it contains children

This function adds a bookmark to the global outline tree of the document. It sets also the page mode
to pmUseOutlines (see SetPageMode()). If the outline tree should not be shown when opening the
document, then set the page mode back to pmUseNone or any other value before closing the PDF
file.

Parent can be a handle of another bookmark if it should be added as a child of this bookmark. If
Parent is set to -1 the bookmark is added as a root node.

DestPage specifies the page that should be opened when clicking on the bookmark. The parameter
can be set to a page number that does not yet exist. If the page does not exist when closing file then
it is adjusted to page number 1.

The parameter Open specifies whether a bookmark node should appear open or closed when it
contains children. When a bookmark contains no children then this parameter should be set to false.

Related functions:
AddBookmarkEx()
ChangeBookmark()
InsertBookmark()
InsertBookmarkEx()
SetBookmarkDest()
SetBookmarkStyle()

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a bookmark in an arbitrary encoding
convert the string to Unicode with the function ConvToIncode() and use the Unicode version to
create the bookmark.

Function Reference Page 135 of 854

Return values:

If the function succeeds the return value is the handle of the bookmark, a value greater or equal
zero. If the function fails the return value is a negative error code.

Example (C++):
#include "dynapdf.h"
using namespace DynaPDF;

// first we declare an error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage); // just display the error message
 return 0;
}

int main(int argc, char* argv[])
{
 void* pdf = pdfNewPDF();
 if (!pdf) return 2;
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfCreateNewPDF(pdf, "c:\cppout.pdf");
 pdfAppend(pdf);
 // we store the font handle, so that we can use pdfChangeFont() later
 SI32 f = pdfSetFont(pdf, "Arial", fsItalic, 40, true, cp1252);
 pdfWriteFText(pdf, taCenter, "How to create an outline tree...");
 pdfEndPage(pdf);
 // we create a few dummy pages to test the bookmarks
 char s[30];
 for (i = 0; i < 7; i++)
 {
 pdfAppend(pdf);
 pdfChangeFont(pdf, f); // set the font with same parameters
 sprintf(s, "Page %d", i+2);
 pdfWriteFText(pdf, taLeft, s);
 pdfEndPage(pdf);
 }
 // The first item is always a root node, Parent must be -1.
 SI32 bmk = pdfAddBookmark(pdf, "First root node", -1, 1, true);
 pdfAddBookmark(pdf, "1. sub node", bmk, 2, false);
 pdfAddBookmark(pdf, "2. sub node", bmk, 3, false);
 pdfAddBookmark(pdf, "3. sub node", bmk, 4, false);
 bmk = pdfAddBookmark(pdf, "Closed sub node", bmk, 5, false);
 pdfAddBookmark(pdf, "1. sub node", bmk, 6, false);
 pdfAddBookmark(pdf, "2. sub node", bmk, 7, false);
 bmk = pdfAddBookmark(pdf, "Closed root node", -1, 1, false);
 pdfAddBookmark(pdf, "1. sub node", bmk, 4, false);
 pdfAddBookmark(pdf, "2. sub node", bmk, 8, false);

Function Reference Page 136 of 854

 pdfCloseFile(pdf);
 return 0;
}

Output:

Function Reference Page 137 of 854

AddBookmarkEx

Syntax:
SI32 pdfAddBookmarkEx(
 const PPDF* IPDF, // Instance pointer
 const char* Title, // Title of the bookmark
 SI32 Parent, // Parent bookmark if any or -1 for a root node
 UI32 NamedDest, // Named Destination handle
 LBOOL Open) // Open or close the node when it has children?

This function adds a bookmark to the global outline tree of the document. It sets also the page mode
to pmUseOutlines (see SetPageMode()). If the outline tree should not be shown when opening the
document, set the page mode back to pmUseNone or any other value before closing the document.

Parent can be a handle of another bookmark if it should be added as a child of this bookmark. If
Parent is set to -1 the bookmark is added as a root node. When a bookmark should be inserted at a
specific position then use the function InsertBookmarkEx() instead.

The parameter NamedDest must be a valid handle of a Named Destination, see CreateNamedDest().

If the named destination lies in another document then create a normal bookmark with
AddBookmark() or InsertBookmark(), create an extended Go To Remote Action with
CreateGoToRActionEx(), and add the action finally to the bookmark with AddActionToObj().

The parameter Open specifies whether a bookmark node should appear open or closed when it
contains children. When a bookmark contains no children then this parameter should be set to false.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a bookmark in an arbitrary encoding
convert the string to Unicode with the function ConvToIncode() and use the Unicode version to
create the bookmark.

Return values:

If the function succeeds the return value is the handle of the bookmark, a value greater or equal
zero. If the function fails the return value is a negative error code.

Function Reference Page 138 of 854

AddBookmarkEx2

Syntax:
SI32 pdfAddBookmarkEx2(
 const PPDF* IPDF, // Instance pointer
 const char* Title, // Title of the bookmark
 SI32 Parent, // Parent bookmark if any or -1 for a root node
 const void* NamedDest, // Name of a named destination
 LBOOL Unicode, // NamedDest is an Unicode String?
 LBOOL Open) // Open or close the node when it has children?

This function adds a bookmark to the global outline tree of the document. It sets also the page mode
to pmUseOutlines (see SetPageMode()). If the outline tree should not be shown when opening the
document, set the page mode back to pmUseNone or any other value before closing the document.

Parent can be a handle of another bookmark if it should be added as a child of this bookmark. If
Parent is set to -1 the bookmark is added as a root node.

The difference in comparison to AddBookmarkEx is that the named destination can be defined as a
string. This makes it possible to create the bookmark, also if you don't have the required information
to create the named destination at this point. If the named destination does not exist when the file is
closed then the bookmark does nothing. See also CreateNamedDest().

The parameter Unicode specifies whether the parameter NamedDest is an Ansi or Unicode string
(UTF-16). Note that the usage of Unicode is not recommended since named destinations are treated
as binary strings.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a bookmark in an arbitrary encoding
convert the string to Unicode with the function ConvToIncode() and use the Unicode version to
create the bookmark.

Return values:

If the function succeeds the return value is the handle of the bookmark, a value greater or equal
zero. If the function fails the return value is a negative error code.

Function Reference Page 139 of 854

AddButtonImage

Syntax:
SI32 pdfAddButtonImage(
 const PPDF* IPDF, // Instance pointer
 UI32 BtnHandle, // Handle of the button which should get the image
 TButtonState State, // Button state, see below
 const char* Caption, // Caption to be printed over the image or NULL
 const char* ImgFile) // Image file

typedef enum
{
 bsUp, // Normal up state of the button
 bsDown, // Down state, button is pressed
 bsRollOver // Rollover state, when moving the cursor over the button
}TButtonState;

The function adds an image to a push button to one or more of the three different states of a button.
The parameter BtnHandle must be handle of a button field that was returned by a CreateButton()
function call. The parameter State defines the button state in which the image should appear. Each
state is optional; it is possible to add different images to all three states of the button. The rollover
state should get a different image than the other states. If two states should get the same image, the
image is physically inserted only once to the PDF file.

DynaPDF checks whether duplicate images are already available before inserting an image again.
Depending on the parameter UseTransparency the image appears with a transparent background or
opaque (default transparent). However, note that the background of the button must be transparent
too to get a transparent button. Otherwise the button is still opaque due the opaque background of
the button.

The parameter Caption is optional, it can be NULL. Each state can contain its own caption which is
drawn horizontally and vertically centered by default. The alignment can be changed with the
function SetFieldTextAlign(). Because each button state is directly drawn when calling the function,
the alignment must be set before this function is called.

If a button has already an image for a specific button state, the existing image will be replaced with
the new one.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 140 of 854

AddButtonImageEx

Syntax:
SI32 pdfAddButtonImageEx(
 const PPDF* IPDF, // Instance pointer
 UI32 BtnHandle, // Handle of the button which should get the image
 TButtonState State, // Button state
 const char* Caption, // Caption to be printed over the image or NULL
 void* hBitmap) // HBITMAP handle of a memory bitmap

The function adds a memory bitmap to a push button in the same ways as AddButtonImage() but
accepts a HBITMAP handle as input image. The usage of the function is described under
AddButtonImage().

Remarks:

The bitmap must not be selected into a device context when the application calls this function. This
function is not thread-safe; it must be synchronized in multi-threaded applications.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddButtonImageEx2

Syntax:
LBOOL pdfAddButtonImageEx2(
 const PPDF* IPDF, // Instance pointer
 UI32 BtnHandle, // Handle of the button which should get the image
 TButtonState State, // Button state
 const char* Caption, // Caption to be printed over the image or NULL
 const void* Buffer, // Image buffer
 UI32 BufSize) // Buffer size in bytes

The function adds an image to a push button in the same way as AddButtonImage(), but accepts an
image buffer as input. Buffer must contain a valid image buffer. The function supports all image
formats that InsertImageEx() supports.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 141 of 854

AddContinueText

Syntax:
SI32 pdfAddContinueText(
 const PPDF* IPDF, // Instance pointer
 const char* AText) // Text to be printed

The function prints a single text line and moves the text cursor to the next line. Text lines created by
this function are handled as a separate block. Before calling the function the first time, the usage
must be prepared with BeginContinueText(). After all text lines are printed call EndContinueText()
to finish the text block.

The distance between two text lines can be adjusted with SetLeading().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddDeviceNProcessColorants

Syntax:
LBOOL pdfAddDeviceNProcessColorants(

const PPDF* IPDF, // Instance pointer
UI32 DeviceNCS, // Handle of a DeviceN or NChannel color

space
const char** Colorants, // Array of colorant names
UI32 NumColorants, // Number of colorants in the array
TExtColorSpace ProcessCS, // Process color space
SI32 Handle) // Color space handle or -1

The function adds a dictionary to a DeviceN or NChannel color space that describes the process
color space whose components are included in the DeviceN or NChannel color space.

The array Colorants holds the process colorant names which are included in the process color space.
The names must appear in the normal color space order, e.g. Red, Green, and Blue, for a RGB color
space and the number of colorant names must match the number of color components in the process
color space. However, the names in the Colorants array need not match the actual color space names.
For example, a Red component need not be named Red.

Definitions of process colorants must not appear in the definition of spot colorants (see
AddDeviceNSeparations()).

The reserved names Cyan, Magenta, Yellow, and Black are always considered to be process colors,
which do not necessarily correspond to the colorants of a specific device; they are not required to
have entries in the process dictionary.

If NumColorants is zero the functions deletes existing definitions of process colorants in the DeviceN
or NChannel color space. Otherwise, existing definitions will be overridden.

Function Reference Page 142 of 854

Remarks:

Process colorant names must be defined in the code page 1252 (WinAnsi).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddDeviceNSeparations

Syntax:
LBOOL pdfAddDeviceNSeparations(

const PPDF* IPDF, // Instance pointer
UI32 DeviceNCS, // Handle of a DeviceN or NChannel color space
const char** Colorants, // Array of colorant names
UI32* SeparationCS, // Array of Separation color space handles
UI32 NumColorants) // Number of colorants and handles

The function adds a dictionary to a DeviceN or NChannel color space that describes the spot
colorants which are used in the color space.

This dictionary provides information about the individual colorants that may be useful to some
applications. In particular, the alternate color space and tint transformation function of a Separation
color space describe the appearance of that colorant alone, whereas those of a DeviceN color space
describe only the appearance of its colorants in combination.

The array Colorants holds the spot colorant names and the array SeparationCS holds the
corresponding Separation color space handles. The colorant names in the array must match the
names in the corresponding Separation color spaces. In addition, the colorants must be included in
the DeviceN or NChannel color space.

If NumColorants is zero the functions deletes existing definitions of spot colorants in the DeviceN or
NChannel color space. Otherwise, existing definitions will be overridden.

Encoding of Colorant Names

Colorant names are interpreted in the code page 1252 by default. Because colorant names are stored
in UTF-8 Unicode format in PDF, it is also possible to pass UTF-8 encoded Unicode strings to the
function. However, the function must be able to distinguish between both string formats. To achieve
this, the parameter NumColorants accepts the special flag 0x10000000 that specifies that the Colorants
array contains UTF-8 encoded strings. The flag must be combined with the number of colorants
with a binary or operator:
numColorants |= 0x10000000; // C/C++, C#
numColorants = numColorants Or &H10000000 // Visual Basic
numColorants := numColorants or $10000000 // Delphi

Remarks:

The definition of spot colors is required to enable the output preview in Adobe's Acrobat.

Function Reference Page 143 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddDPartNode

Syntax:
SI32 pdfAddDPartNode(
 const PPDF* IPDF, // Instance pointer
 SI32 Parent, // Parent node handle or -1
 SI32 FirstPage, // First page in range or -1
 SI32 LastPage, // Last page in range or -1
 const char* DPM) // Optional Document Part Metadata (JSON like string)

The function creates a DPart Node. DPart nodes can be used to add metadata to a single page or
range of pages. In addition, DPart nodes can be nested to form a tree like structure.

Unlike XMP metadata streams which base on XML, Document Part Metadata (parameter DPM) is
stored in PDF syntax. This type of metadata supports dictionaries, arrays, strings, name objects,
numbers, and boolean values, or almost the entire range of PDF data types.

DPart nodes require a global root node that must be created with CreateDPartRoot() before this
function can be called the first time.

Two different types of DPart nodes can be created with this function:

• If FirstPage and LastPage refer to valid page numbers (the first page is denoted by 1), the
function creates a DPart node with optional DPart metadata (parameter DPM) that will be
associated to these pages.

The Parent node can be -1 for the root node, or a node handle that was returned by this
function. However, nodes which reference pages, cannot be used as parent node for other
DPart nodes.

• If FirstPage or LastPage are smaller 1, a DPart node will be created that can be used as parent
node for other DPart nodes. This is useful for grouping nodes or to create a tree like
structure, but in most cases such nodes are mainly used to define a base set of identical
metadata for a range of DPart nodes. Each child node can still define additional metadata.

Document Part Metadata (DPM)

DPM is application-specific information that is generally arbitrary. However, document parts are
part of the PDF/VT standard and therefore mainly used to define print specific data, e.g. job
definition.

Although the metadata can contain arbitrary key / value pairs of data, there is a common naming
sheme defined in ISO 21812-1:2019, for example, that describes how print production metadata can
be named and organized. Keywords in this standard start with the prefix CIP4_.

Function Reference Page 144 of 854

How to create DPM?

Since DPM can contain all basic data types that PDF supports, we need an exchange format that is
easy to create and that supports very similar data types. The exchange format that matches these
requirements is called JSON.

The JSON parser in DynaPDF supports a few extensions to make the definition of DPM as easy as
possible.

Differences in comparison to regular JSON grammar:

• A JSON string begins normally with a left brace ({) and ends with a right brace (}). This outer
left / right brace pair can be omitted.

• Key / value pairs must normally be delimited by a colon (:). The delimiting colon can be
omitted.

• Array values must normally be delimited by a comma (,). The delimiting comma can be
omitted if the bounds of the value can be detected by whitespace or starting character of the
next object.

Example (C/C++):
const char dpm[] = "\"TestArray\"[1/2\"3\"4 5]";

Result:
 /DPM<</TestArray[1/2(3)4 5]...>>

The first value of the array is the number 1, the second is a name object with the value "2",
the third value is the string "3", the fourth is the number 4, and the fifths is the number 5.

• Extension: A Solidus (/) begins a PDF Name object. The solidus is not part of the name but is
a prefix indicating what follows is a sequence of characters representing a name object. A
name object supports character codes between 33..126 inclusive. Any character outside this
range must be written as two digit hexadecimal code, preceded by a number sign (#), e.g.
/This#20is#20a#20name#20with#20spaces. Note that a number sign in a name object must be
written as hexadecimal code too, since the number sign is treated as an escape character. The
de-escaped string is interpreted as UTF-8 Unicode string.

A character code < 33, { (left brace), } (right brace), [(left bracket),] (right bracket), , (comma),
: (colon), or " (double quotes) terminate a name object. If one of these characters should be
part of a name object then write it as two digit hexadecimal code preceded by a number sign
(#).

• A left brace ({) creates a PDF dictionary and a right brace (}) finishes or closes it.

• A left bracked ([) creates an array and a right bracked (]) finishes or closes it.

Function Reference Page 145 of 854

Data types supported as value of a key are: array, dictionary, name, string, boolean true or false
(case sensitive), null, and number. A JSON string must be enclosed with double quotes. Example:
"This is a string".

In PDF, keys are always defined as name objects. The function converts a key (or name in JSON
nomenclatur) automatically to a name object. Values are never converted.

Example (C++):

The file test.json that is loaded in this example contains the contents below. This is basically a JSON
version of the PDF/VT example provided in the PDF/VT-2 reference (ISO 16612-2), plus a few
additional test key / value pairs.

Have a deeper look at "CIP4_TestArray1" and " CIP4_TestArray2". These key / value pairs contain
several syntax errors which a regular JSON parser would not accept.
{
 "ACME_CustStatus": "Prospective"
 "CIP4_Root" :
 {
 "CIP4_Summary" :
 {
 "CIP4_PageCount" : 6
 "CIP4_Checked" true
 }
 "CIP4_Production" :
 {
 "CIP4_CopyCount" : 1
 "CIP4_Part":
 {
 "CIP4_ProductType" : "Brochure"
 }
 }
 "CIP4_Recipient" :
 {
 "CIP4_Contact" :
 {
 "CIP4_Address" :
 {
 "CIP4_City": "Phoenix"
 "CIP4_CivicNumber": "96"
 "CIP4_Country" :"USA"
 "CIP4_PostalCode" :"81215"
 "CIP4_Region" :"AZ"
 "CIP4_StreetName" :"South Ave"
 "CIP4_TestArray1" [1 2 3 4 true, false]
 "CIP4_TestArray2"
 {
 "Array"[5 6 7 8 "Test1"/Test2]
 }
 }
 "CIP4_Person" :
 {
 "CIP4_FirstName" : "Mary"
 "CIP4_LastName" : "Smith"
 }
 }
 "CIP4_UniqueID" : "ID_1"
 }
 }
}

Function Reference Page 146 of 854

The above file produces the output in PDF below. Note that the dictionary was formatted for better
readability. No additional spaces or line separators are written to a real PDF file.
/DPM
<<
 /ACME_CustStatus(Prospective)
 /CIP4_Root
 <<
 /CIP4_Summary
 <<
 /CIP4_PageCount 6
 /CIP4_Checked true
 >>
 /CIP4_Production
 <<
 /CIP4_CopyCount 1
 /CIP4_Part
 <<
 /CIP4_ProductType(Brochure)
 >>
 >>
 /CIP4_Recipient
 <<
 /CIP4_Contact
 <<
 /CIP4_Address
 <<
 /CIP4_City(Phoenix)
 /CIP4_CivicNumber(96)
 /CIP4_Country(USA)
 /CIP4_PostalCode(81215)
 /CIP4_Region(AZ)
 /CIP4_StreetName(South Ave)
 /CIP4_TestArray1[1 2 3 4 true false]
 /CIP4_TestArray2
 <<
 /Array[5 6 7 8(Test1)/Test2]
 >>
 >>
 /CIP4_Person
 <<
 /CIP4_FirstName(Mary)
 /CIP4_LastName(Smith)
 >>
 >>
 /CIP4_UniqueID(ID_1)
 >>
 >>
>>

char* GetFileBuf(const char* FileName, SI32 &BufSize)
{
 BufSize = 0;
 FILE* f = fopen(FileName, "rb");
 if (!f) return NULL;
 fseek(f, 0, SEEK_END);
 BufSize = ftell(f);
 fseek(f, 0, SEEK_SET);
 char* retval = (char*)malloc(BufSize +1);
 if (!retval)
 {
 fclose(f);
 return NULL;
 }
 fread(retval, 1, BufSize, f);
 retval[BufSize] = 0;
 fclose(f);

Function Reference Page 147 of 854

 return retval;
}

SI32 TestDPart(const PPDF* PDF, const wchar_t* InFileName, wchar_t* OutFileName, bool Compress)
{
 SI32 retval = 0, bufSize, last, node;
 pdfCreateNewPDF(PDF, NULL);
 pdfSetDocInfo(PDF, diProducer, NULL); // No need to override the producer
 pdfSetImportFlags(PDF, ifImportAll | ifImportAsPage);
 pdfSetImportFlags2(PDF, if2UseProxy);
 if (InFileName)
 {
 if ((retval = pdfOpenImportFileW(PDF, InFileName, ptOpen, NULL)) < 0)
 {
 if (IsWrongPwd(retval))
 {
 // A password dialog should normally be displayed here
 printf("File is encrypted!\n");
 }
 goto err;

 }
 if ((retval = pdfImportPDFFile(PDF, 1, 1.0, 1.0)) < 0) goto err;
 }

 // Create the required root node
 const char* nameList[] = {"Root", "Pages"};
 pdfCreateDPartRoot(PDF, nameList, 2, 3);

 // GetFileBuf() is a helper function that returns the contents of an arbitrary file. See
 // definition above.
 char* dpmbase = GetFileBuf("f:/test.json", bufSize);
 if (!dpmbase)
 {
 printf("Cannot open JSON file!\n");
 goto err;
 }
 // This node holds some DPM for two child DPart nodes.
 node = pdfAddDPartNode(PDF, -1, -1, -1, dpmbase);
 free(dpmbase);

 // We create two ranges for test purposes.
 last = pdfGetPageCount(PDF) / 2;
 const char json2[] = "\"CIP4_Production\":{\"CIP4_CopyCount\" : 1\"CIP4_User\":\"Stefan\"}";
 const char json3[] = "\"CIP4_Production\":{\"CIP4_CopyCount\" : 1\"CIP4_User\":\"Jens\"}";

 pdfAddDPartNode(PDF, node, 1, last, json2);
 pdfAddDPartNode(PDF, node, last +1, pdfGetPageCount(PDF), json3);

 // If you want to have a look into the resulting PDF file then deactivate object compression.
 if (!Compress)
 pdfSetGStateFlags(PDF, gfNoObjCompression | gfDoNotComprMetadata, false);
 else
 pdfSetGStateFlags(PDF, gfDoNotComprMetadata, false);
 if (pdfHaveOpenDoc(PDF))
 {
 if ((retval = pdfOpenOutputFileW(PDF, OutFileName)) == TRUE)
 retval = pdfCloseFile(PDF);
 }
 return retval;
 err:
 pdfFreePDF(PDF);
 return retval;
}

Function Reference Page 148 of 854

Return values:

If the function succeeds the return value is the handle of the DPart node, a value greater or equal
zero. If the function fails the return value is a negative error code.

AddFieldToFormAction

Syntax:
SI32 pdfAddFieldToFormAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Action, // Handle of a submit or reset form action
 UI32 AField, // Handle of a field that should be added to array
 LBOOL Include) // Include or exclude this field from submitting?

Instead of simply submitting all field values of an interactive form to a web server, it is also possible
to submit the values of specific fields only. A submit form and reset form action can hold an
optional array of fields which can be included or excluded from the action. For example, if a form
contains 20 fields which all should be submitted to the web server apart from two of those fields,
then add the two fields to the submit form action and set the parameter Include to false.

Note, that parameter Include is handled reversed if the submit flag sfExclude is set (see also
CreateSubmitAction(), CreateResetAction()). The fields are then excluded if Include is true and vice
versa.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddFieldToHideAction

Syntax:
SI32 pdfAddFieldToHideAction(
 const PPDF* IPDF, // Instance pointer
 UI32 HideAct, // Handle of the hide action
 UI32 AField) // Field handle

This function adds a field to a hide action. An arbitrary count of fields can be added to a hide action.

Remarks:

Acrobat 4 does not support radio buttons or group fields inside a hide action. The fields of a group
field or the check boxes of a radio button field must be added to a hide action separately. Since
Acrobat 5, group fields and radio buttons are supported too.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 149 of 854

AddFileComment

Syntax:
SI32 pdfAddFileComment(
 const PPDF* IPDF, // Instance pointer
 const char* AText) // The comment that should be added

Under certain circumstances it can be useful to add one or more comments to a PDF file which are
not visible on screen or elsewhere in PDF viewer applications. The function AddFileComment() can
be used to add such comments to the end of the PDF file.

Comments are stored behind the %%EOF marker of the PDF file. The required space to save all
comments should not exceed 1024 bytes. However, all tests with larger comments didn't produce an
error in Adobe's Acrobat, but Ghostview fails if the space exceeds ~2000 bytes.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. However, Unicode
strings are converted back to Ansi; unsupported characters appear as question mark (?).

File comments are prohibited in certain PDF standards like PDF/A.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddFontSearchPath

Syntax:
SI32 pdfAddFontSearchPath(
 const PPDF* IPDF, // Instance pointer
 const char* APath, // Path to font file directory
 SI32 Recursive) // Include subdirectories (search recursively)

This function adds a search path to the list of available font search paths. An arbitrary number of
search paths can be added at runtime. Subdirectories are added recursively if the parameter
Recursive is true.

DynaPDF requires no separate metric files for Type1 fonts.

This function is implemented in an Ansi and Unicode compatible version. On non-Windows
operating systems, Unicode paths are converted to UTF-8 and passed to the Ansi version of the
function.

Extensions:

Since DynaPDF version 3.0.21.56 it is also possible to pass a font file to the function. This makes it
possible to load a specific font file with the same rules as other fonts in a search directory. The file
extension is not used to identify the font format. Resource forks, suitcases and dfont resources are

Function Reference Page 150 of 854

supported on Mac OS X. Note that the font file is not loaded into memory; it is just added to the list
of font files.

Remarks:

The list of search directories can be cleared at runtime with the function ClearHostFonts().

If system fonts are enabled (default) DynaPDF adds the default font directories of the operating
system automatically to the list of font search paths (Windows and Mac OSX only, see
SetUseSystemFonts() for further information). On Windows this is the %WINDIR%/Fonts directory
as well as fonts listed in the Registry and linked fonts.

On Mac OSX the following directories are added to the list of font search paths (in this order):

• ~/Library/Fonts
• /Library/Fonts
• /System/Library/Fonts

Return values:

If the function succeeds the function returns the number of found font files (this is maybe not the
number of available fonts, because the list is cleared each time all fonts in the list are processed
during font selection). If the function fails a negative error code is returned.

Function Reference Page 151 of 854

AddHeaderFooter

Syntax:
LBOOL pdfAddHeaderFooter(
 const PPDF* IPDF, // Instance pointer
 struct TPDFHeaderFooter* Init, // Initial header / footer settings
 struct TPDFHdrFtr* HFArray, // Array of header / footer values
 UI32 Count) // Number of array values

struct TPDFHdrFtr
{
 UI32 Color; // Text color.
 TExtColorSpace CS; // Color space -> default = esInitSpace.
 SI32 CSHandle; // Optional color space handle if CS is set to a non-device space.
 TCodepage Codepage; // The code page that should be used to load the font.
 LBOOL Embed; // If true, the font will be embedded.
 SI32 Reserved1; // Placeholder to avoid alignment issues
 const char* FontA; // Optional font name.
 const UI16* FontW; // Optional font name.
 float FontSize; // Font size -> considered only if a font name is set.
 SI32 Reserved2; // Placeholder to avoid alignment issues
 const char* FontType; // Optional font type ("TrueType", "OpenType", or "Type1").
 LBOOL IsHeader; // If true, the record is treated as header.
 TTextAlign Position; // Valid values are taLeft, taCenter, and taRight.
 float ShiftX; // Positive values move the text to the right, negative to the left.
 float ShiftY; // Positive values move the text up or down depending on the used
 // coordinate system (top down or bottom up).
 const char* TextA; // Either the Ansi or Unicode string must be set.
 const UI16* TextW; // Either the Ansi or Unicode string must be set.
 UI32 TextLen; // Text length in characters.
 SI32 Reserved3; // Placeholder to avoid alignment issues
};

typedef enum TPDFHdrFtrFlags
{
 hffDefault = 3, // Output header / footer text on even and odd pages.
 hffEvenPages = 1, // Output header / footer text on even pages.
 hffOddPages = 2, // Output header / footer text on odd pages.
 hffFixedPrint = 4, // Can be set by LoadHeaderFooterSettings(). Not considered yet.
 hffLoadUTF8 = 8, // Load all strings in UTF-8 format.
 hffShrink = 16, // Can be set by LoadHeaderFooterSettings(). Not considered yet.
 hffLoadBatesN = 32, // If set, LoadHeaderFooterSetting() loads bates numbers only.
 hffLoadHF = 64, // If set, LoadHeaderFooterSetting() loads header / footer settings only.
 hffSearchRun = 128 // See LoadHeaderFooterSetting() for further information.
}TPDFHdrFtrFlags;

struct TPDFHeaderFooter
{
 UI32 StructSize; // Must be set to sizeof(TPDFHeaderFooter).
 SI32 FirstPage; // In/Out -> The first output page.
 TPDFHdrFtrFlags Flags; // In/Out -> Additional processing flags.
 UI32 InitColor; // In/Out -> Initial text color.
 TExtColorSpace InitCS; // In/Out -> Initial color space -> default = esDeviceGray.
 SI32 InitCSHandle; // In -> Required if InitCS is set to a non-device space.
 const char* InitDate; // Out -> Initial date format.
 TCodepage InitCodepage; // In/Out -> The code page that should be used to load the font.
 LBOOL InitEmbed; // In -> If true, the font will be embedded.
 const char* InitFontA; // In/Out -> Optional font name.
 const UI16* InitFontW; // In/Out -> Optional font name.
 float InitFontSize; // In/Out -> Optional, considered only if a font name is set.
 SI32 Reserved; // Placeholder to avoid alignment issues
 const char* InitFontType; // Out -> "TrueType", "OpenType", or "Type1".
 const char* InitPageFormatA; // Out -> Initial page format string.
 const UI16* InitPageFormatW; // Out -> Initial page format string.
 SI32 LastPage; // In/Out -> The last output page.
 struct TFltRect Margin; // In/Out -> Margin to output the header/footer text.

Function Reference Page 152 of 854

};

The function adds headers / footers to the document. Headers and footers support each three
independent strings for the alignments left, center, and right. The text of every header or footer
supports also placeholders to add bates numbers, date formats, and page numbers.

Notice:

This function mimics the bates numbering and header / footer tools which are available in
certain PDF viewers like Adobe Acrobat and others. The function creates also Acrobat
compatible XML properties so that headers / footers created with this function can be edited and
deleted with Adobe Acrobat.

However, not every feature that is supported by this function has a counterpart in Acrobat or
other PDF viewers. To achieve maximum compatibility a few restrictions must be taken into
account wich are described on the following pages.

The creation of headers / footers starts with the initialization of the structure TPDFHeaderFooter. Set
the member StructSize to sizeof(TPDFHeaderFooter) and call InitHeaderFooter() afterwards.

InitHeaderFooter() initializes the structure as follows:

• InitColor: The color space is set to esDeviceRGB and the color is set to black.

• Flags: Flags is set to hffDefault.

• InitFont: The font is set to the standard font "Helvetica", the font size is set to 8.0, the code
page is set to cp1252, and the font type is set to "Type1". Note that the font type is set for
information only, it is not used for font selection.

• HFArray: The member CS set to esInitSpace. This means ignore the color and color space.

• All remaining members are intitialized to zero.

After the structure was initialized it is required to set at least one header or footer string. The
parameter HFArray can contain up to 6 records to define headers / footers.

The member IsHeader specifies whether the text should be considered as header or footer, and the
member Position specifies where the text should be output. The three alignments left, center, right,
combined with IsHeader results into 6 possible combinations.

The parameter Count specifies the number of records which were set. It is allowed to have empty
records in the array.

Function Reference Page 153 of 854

Margin specifies the distance between the text and the outer contour of the page. Text is vertically
placed on the baseline. That implies that at margin [0, 0, 0, 0] header text is placed outside the visible
area:

Note that Adobe Acrobat places text vertically to another position. It is not known how Acrobat
calculates the y-coordinate.

Headers and footers can be defined in arbitrary order. The function sorts the records before they are
processed. Double records are not allowed and records with no text will be ignored. Note that the
alignment taCenter represents the middle of a page and not the middle of Margin.

Font selection

The font, font size, and so on that should be used to output headers or footers can be set globally
with the parameter Init and individually for each record.

Before the first header or footer string is processed, the function loads the font that was specifed
with the parameter Init. If Init defines no font, then the first header / footer record must specify a
font. This font is then used until it is changed by another record.

If a TPDFHdrFtr record sets FontA or FontW, then it must also set FontSize, and Codepage. Embed
specifies whether the font should be embedded. The function returns with an error if font selection
fails.

If Init specifies a font, then this font is selected before a header or footer record is processed. If a
header or footer record specifies another font then this font is used for this record only. It is not used
for other records, as it is the case if Init contains no font definition.

Note that if compatiblity to Adobe Acrobat is required then Init must set a font.

The font name can be a Family, Postscript, or Full name. A family name can be combined with one
of the style strings "Bold", "Italic", or "BoldItalic". Only these style strings are supported. A style string
must be separated with a comma:

Left Center Right

Left Center Right

Margin

CropBox or
MediaBox

Left Center Right

Left Center Right

Margin [0, 0, 0, 0]

Function Reference Page 154 of 854

"Arial,Bold" // Ok
"Arial, Bold" // Wrong, no space must be present after the comma
"Courier New,BoldItalic" // Ok

Text color

The text color can be set globally with the parameter Init and individually for each record. If no
color is specified then the default initialization of the graphics state is used. This is black defined as
DeviceGray. Although the function supports arbitrary color spaces to output the text, the color is
stored as rgb black in the XML data if a non-device color space is used. It is also not known whether
the color spaces DeviceGray or DeviceCMYK are supported in Adobe Acrobat. To achieve best
compatiblility use DeviceRGB only.

Bates numbering

A bates number is an integer number with a fixed length that is incremented on each page. The
bates numbering syntax is as follows:
<<Bates#0..10#1..2147483648>> (case-sensitive)

The number sign (#) is part of the syntax and is required. No spaces before or after the number sign
or before and after the keyword "Bates" are allowed. A valid Bates format contains no spaces and no
prefix or suffix inside the format identifier <<>>. The first number specifies the number of digits, and
the second where numbering starts.

Examples:
• <<Bates#6#1>> // Six digits, numbering starts at 1 -> 000001.

• <<Bates#10#5>> // Ten digits, numbering starts at 5 -> 0000000005.

• << Bates#6#1>> // Wrong, no space is allowed.

• <<bates#6#1>> // Wrong, the correct keyword name is 'Bates'.

Date formats

The date format supports three characters: m = month, d = day, and y = year. Each character can be
repeated to define the number of digits, e.g. mm, or yyyy are examples. Allowed delimiters are '.', '-',
and '/'. The day and month format support one and two digits, and the year format supports two
and four digits. A valid date format contains no spaces and no prefix or suffix inside the format
identifier <<>>.

Examples:
• <<yy/mm/d>> // Ok

• <<mm-d/yy>> // Unusual but ok

• Date: <<dd.mm.yyyy>> // Ok

• <y/mm/d>> // Wrong, missing '<' and a valid year format has 2 or 4 digits

• <<Date: m/d>> // Wrong, no prefix or suffix is allowed

• <<yyyy:mm:dd>> // Wrong, invalid delimiter

Function Reference Page 155 of 854

Page numbering

The page number format has two reserved characters:
• 0..2147483648 // The number is added to the current page index (the first page is 1).

• 'n' // 'n' is replaced by the number of pages. The 'n' must be surrounded by a
 // delimiter, otherwise it is treated as text.

• Delimiters: ' ', ')', '(', '[', ']', '<', '>', '/', '%', '{', '}'.

Arbitrary text can occur before, between, and after a reserved character. Example results on the first
page if the document has 57 pages:

• <<28>> // Ok, 28 is added to the page index. -> "28"

• << Page 4 of n>> // Ok. -> " Page 4 of 57"

• <<1/n>> // Ok. -> "1/57"

• <<0/n>> // Ok, but unusual. -> "0/57"

• <<-5 of n>> // Ok, note that the minus is treated as text! -> "-5 of 57"

• <<Page1 ofn pages>> // Ok, but the 'n' is treated as text. -> "Page1 ofn pages"

• <<Page 5 of n>> // Ok, 5 is added to the page index. -> "Page 5 of 57"

• <<Seite 1 von n>> // Ok. -> "Seite 1 von 57"

• <<Page>> // Wrong, nothing to do. Treated as text. -> "<<Page>>"

Although it is possible to output the page number without surrounding whitespace, the function
saves the format with surrounding whitespace in the XML data to achieve better compatibility to
Adobe Acrobat (except if a format like "1/n" is used).

However, the page numbering tool in Adobe Acrobat is very restricted. Therefore, it is not always
guaranteed that Acrobat is able to load a page numbering format created by this function. Although
if Acrobat will fail to edit a page numbering record, it is usually still possible to delete the header /
footer definition and to add a new one.

Header / footer text

Every header / footer string can contain plain text and one or more format strings as described
above. The maximum output length of a header / footer string is 511 characters.

Header / footer types

The function creates two different header / footer types depending on the contents in it. If a header
or footer string contains a bates number, then the type BatesN is created, otherwise the type Header.

The two different types can be loaded and deleted separately. Header / footer settings can be loaded
with LoadHeaderFooterSettings() and deleted with Optimize(). Optimize() supports the flags
ofRemoveBatesNumbers and ofRemoveHeaderFooter in order to remove headers / footers from a PDF
file.

Return value:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 156 of 854

Example (C#):
static int PDFError(IntPtr Data, int ErrCode, IntPtr ErrMessage, int ErrType)
{
 MessageBox.Show(string.Format("{0}",
 System.Runtime.InteropServices.Marshal.PtrToStringAnsi(ErrMessage)));
 return 0; // We try to continue if an error occurrs. Any other return value breaks processing.
}

private void button1_Click(object sender, EventArgs e)
{

CPDF pdf = new CPDF();
pdf.SetOnErrorProc(IntPtr.Zero, new TErrorProc(PDFError));

pdf.CreateNewPDF("e:/cppout.pdf");

 // Do not convert pages to templates.

pdf.SetImportFlags(TImportFlags.ifImportAll | TImportFlags.ifImportAsPage);
// This flag reduces the memory usage drastically
pdf.SetImportFlags2(TImportFlags2.if2UseProxy);

pdf.OpenImportFile("c:/PDFs/testfile.pdf", TPwdType.ptOpen, null);
pdf.ImportPDFFile(1, 1.0, 1.0);

 // Three header / footer strings should be output in this example

TPDFHdrFtr[] hdr = new TPDFHdrFtr[3];
TPDFHeaderFooter init = new TPDFHeaderFooter();

 // Initialize the structures with default values
 pdf.InitHeaderFooter(ref init, ref hdr);

 init.InitColor = 0;
 init.InitCodepage = TCodepage.cpUnicode;
 init.InitEmbed = true;
 init.InitFont = "Arial";
 init.InitFontSize = 8.0f;

 init.Margin.Left = 50.0f;
 init.Margin.Right = 50.0f;
 init.Margin.Top = 30.0f;
 init.Margin.Bottom = 20.0f;

 hdr[0].IsHeader = true;
 hdr[0].Text = "This is a bates number: <<Bates#8#1>>";
 hdr[0].Position = TTextAlign.taCenter;

 hdr[1].Color = 255;
 hdr[1].CS = TExtColorSpace.esDeviceRGB;
 hdr[1].Codepage = TCodepage.cpUnicode;
 hdr[1].Font = "Arial,Italic";
 hdr[1].FontSize = 8.0f;
 hdr[1].Embed = true;
 hdr[1].IsHeader = true;
 hdr[1].Text = "Page numbering: <<Page 1 of n>>";
 hdr[1].Position = TTextAlign.taRight;

 hdr[2].IsHeader = false;
 hdr[2].Text = "Multiple formats: <<yyyy/mm/dd>> <<Bates#8#1>> <<Page 1 of n>>";
 hdr[2].Position = TTextAlign.taLeft;

 pdf.AddHeaderFooter(ref init, ref hdr);

pdf.CloseFile();
}

Function Reference Page 157 of 854

AddImage

Syntax:
LBOOL pdfAddImage(
const PPDF* IPDF, // Instance pointer

TCompressionFilter Filter, // See below
TImageConversionFlags Flags, // See below
struct TPDFImage* Image) // Image structure

typedef enum
{

cfFlate = 0, // PDF or TIFF output
cfJPEG = 1, // PDF, JPEG, or TIFF output
cfCCITT3 = 2, // PDF or TIFF output -> B&W CCITT Fax G3 compression
cfCCITT4 = 3, // PDF or TIFF output -> B&W CCITT Fax G4 compression
cfLZW = 4, // TIFF or GIF output -> Much faster than flate
cfLZWBW = 5, // TIFF
cfFlateBW = 6, // TIFF, PNG, or BMP output -> Dithered black & white.
 // The resulting image is compressed with Flate or left
 // uncompressed if the output image format is a bitmap.
 // If you want to use CCITT Fax 4 compression (TIFF
 // only) then set the flag icUseCCITT4.
cfJP2K = 7 // PDF or JPEG2000 output
cfNone = 255, // TIFF output only

}TCompressionFilter;

typedef enum
{
 icNone = 0, // Default
 icUseCCITT4 = 1 // Use CCITT Fax 4 for dithered images.
}TImageConversionFlags;

The function adds an image that was returned by the content parser to the current open image file.
The output image must be opened with CreateImage() beforehand.

If the output format is TIFF, multiple images can be added to the file while each image can be
compressed with a different compression filter. All other image formats support only one image. So,
the image must be closed with CloseImage() after the image was added to the file in this case.
Depending on the output format the compression filter cannot be freely chosen. For example, PNG
is the native image format for Flate compression. This format supports Flate compression only. If an
incompatible filter is set the function uses the default filter for the output format, e.g. Flate for PNG,
JPEG for JPG, and so on.

The compression level can be adjusted with the function SetCompressionLevel(). The JPEG quality
can be set with SetJPEGQuality().

The function is able to create up to 2 GB large TIFF files. As far as the images are compressed with
the original filters it is usually always possible to add all images of a PDF file to one TIFF file.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 158 of 854

AddInkList

Syntax:
LBOOL pdfAddInkList(
 const PPDF* IPDF, // Instance pointer
 UI32 InkAnnot, // Handle of an ink annotation.
 struct TFltPoint* Points, // Array of points
 UI32 NumPoints) // Number of points in the array

The function adds an array of points or path to an Ink Annotation. The function must be called
within an open page.

An ink annotation can contain an arbitrary number of paths. The points will be connected by curves
to achieve a smooth transition between points. The coordinates are treated in current user space.
Any transformation that was applied on the coordinate system will be taken into account.

If the number of points is zero then all paths will be deleted from the annotation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddJavaScript

Syntax:
SI32 pdfAddJavaScript(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the script (required)
 const char* Script) // JavaScript (required)

The function adds a global JavaScript to the PDF file. The parameter Name must be a unique name to
identify the script in the user interface:

Function Reference Page 159 of 854

Note that the name is NOT used to identify a function inside the JavaScript. The parameter Script
must be a JavaScript function or a set of JavaScript functions. DynaPDF does not check whether the
script is valid. A JavaScript is always stored unchecked and unchanged to the PDF file. The
JavaScript functions inside a script can be used by JavaScript actions to enable parameterized
function calls (see also CreateJSAction()).

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Because JavaScript 1.2 is
not Unicode compatible, Unicode encoded scripts are translated to a platform specific encoding
prior to interpretation by the JavaScript engine. Note that there is no advantage when using
Unicode encoded scripts in a PDF file. To avoid unnecessary problems JavaScripts should be stored
in Ansi format.

Return values:

If the function succeeds the return value is the handle of the JavaScript, a value greater or equal
zero. If the function fails the return value is a negative error code.

AddLayerToDisplTree

Syntax:
LGRP* pdfAddLayerToDisplTree(
 const PPDF* IPDF, // Instance pointer
 LGRP* Parent, // Parent node or NULL
 SI32 Layer, // Layer (OCG) handle or -1
 const char* Title) // Group title or NULL

The function adds a layer or group to the layer display tree. The layer display tree is used in viewer
applications to show the available layers in a PDF file and to interactively hide or unhide layers.

If we talk about a layer then we mean a handle of an OCG (Optional Content Group, see section
Layers (Optional Content) for further information). OCMDs (Optional Content Membership
Dictionaries) cannot be added to the tree, since OCMDs represent a visibility expression and no
layer that can be displayed or hidden.

Note that the function CreateOCG() adds a layer automatically to the display tree if the parameter
DisplayInUI was set to true. So, the parameter must be set to false if you want to build the tree
manually.

The display tree consists of nested arrays. A sub array represents a new group which can optionally
contain a title, one or more layers, or both. The order in which layers are added or how they are
grouped can be freely choosen. However, it is usually best to create a layer tree with the same order
and nesting levels as in the document. Layers which were not added to the tree will not be
displayed in a viewer. This can be useful if a user should not be able to change the state of a layer
interactively.

It is also possible to lock layers if necessary (see LockLayer() for further information).

Function Reference Page 160 of 854

As mentioned above, the parameters Layer and Title are both optional. This results in four possible
combinations which produce different results.

If no layer is provided then the function creates a new group (a new sub array). However, the parent
node cannot be empty (with one exception). At least one element must be added to an empty group
before a new group can be added to it.

Take a look on the examples on the next page to understand how it works.

Return values:

If the function succeeds then the return value is a pointer of the newly created group. If no new
group was created then the return value is the pointer of the parent group that was passed to the
function. If the function fails then the return value is NULL.

Examples 1:
...
LGRP* root, *grp;
// Set the parameter DisplayInUI to false...
SI32 oc1 = pdfCreateOCG(PDF, "All", false, true, oiView);
SI32 oc2 = pdfCreateOCG(PDF, "Text", false, true, oiView);
SI32 oc3 = pdfCreateOCG(PDF, "Images", false, true, oiView);

root = pdfAddLayerToDisplTree(PDF, NULL, -1, NULL);
pdfAddLayerToDisplTree(PDF, root, oc1, "Just a title");
pdfAddLayerToDisplTree(PDF, root, oc2, NULL);
pdfAddLayerToDisplTree(PDF, root, oc3, NULL);
...

Result:

Example 2:
root = pdfAddLayerToDisplTree(PDF, NULL, -1, NULL);
grp = pdfAddLayerToDisplTree(PDF, root, -1, "This is a group");
pdfAddLayerToDisplTree(PDF, grp, oc1, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc2, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc3, NULL);

Function Reference Page 161 of 854

Result:

Example 3:

The following two versions are a bit confusing, I know...
root = pdfAddLayerToDisplTree(PDF, NULL, oc1, NULL);
grp = pdfAddLayerToDisplTree(PDF, root, -1, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc2, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc3, NULL);

Result:

Example 4:
root = pdfAddLayerToDisplTree(PDF, NULL,oc1,"A layer group with a title");
grp = pdfAddLayerToDisplTree(PDF, root, -1, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc2, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc3, NULL);

Result:

There is a special case that produces the same result in Acrobat but certain viewers have problems
to display the layer tree depending on the used syntax. Compare the following two versions:
root = pdfAddLayerToDisplTree(PDF, NULL, -1, "This is a group");
grp = pdfAddLayerToDisplTree(PDF, root, -1, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc1, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc2, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc3, NULL);

root = pdfAddLayerToDisplTree(PDF, NULL, -1, NULL);

Function Reference Page 162 of 854

grp = pdfAddLayerToDisplTree(PDF, root, -1, "This is a group");
pdfAddLayerToDisplTree(PDF, grp, oc1, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc2, NULL);
pdfAddLayerToDisplTree(PDF, grp, oc3, NULL);

Normally, the second version shouldn't work since the parent node is empty but in practice both
versions produce the same result. However, many third-party viewers have problems to display the
layer tree if the title was set in the parent node (the first variant).

AddMaskImage

Syntax:
LBOOL pdfAddMaskImage(
 const PPDF* IPDF, // Instance pointer
 UI32 BaseImage, // Image to which the mask should be added
 const void* Buffer, // Image buffer
 UI32 BufSize, // Buffer size
 SI32 Stride, // Scanline length in bytes
 UI32 BitsPerPixel, // 1 and 8 bits per pixel are supported
 UI32 Width, // Image width
 UI32 Height) // Image height

The function adds an image mask to a base image. If BitsPerPixel is 1, the image is used as an image
mask or stencil mask. The image mask specifies which areas on the page should be painted and
which should be masked out (left unchanged).

If BitsPerPixel is 8, the image is used as a soft mask. A soft mask represents an alpha channel that
ranges from 0 (transparent) through 255 (opaque).

The base and mask image need not to have the same width and height since both images are scaled
into the same destination rectangle or parallelogram so that the boundaries coincide. This makes it
possible to use a higher resolution mask with a lower resolution base image or vice versa.

If the image contains already a mask image then this mask will be replaced with the new one.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 163 of 854

AddObjectToLayer

Syntax:
LBOOL pdfAddObjectToLayer(

const PPDF* IPDF, // Instance pointer
UI32 OCG, // Must be a OCG or OCMD handle
TOCObject ObjType, // See below
UI32 Handle) // Object handle

typedef enum
{

ooAnnotation,
ooField,
ooImage,
ooTemplate

}TOCObject;

The function adds an object to an Optional Content Group (OCG) or Optional Content Membership
dictionary (OCMD). See also CreateOCG() and CreateOCMD().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

AddOCGToAppEvent

Syntax:
LBOOL pdfAddOCGToAppEvent(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG handle
 TOCAppEvent Events, // Bitmask, see below
 TOCGUsageCategory Categories) // Bitmask, see below

typedef enum
{
 aeExport = 1,
 aePrint = 2,
 aeView = 4
}TOCAppEvent;

The categories refer to the members of a Content Usage dictionary. See SetOCGContUsage() for
further information.
typedef enum
{
 oucNone = 0,
 oucExport = 1,
 oucLanguage = 2,
 oucPrint = 4,
 oucUser = 8,
 oucView = 16,
 oucZoom = 32
}TOCGUsageCategory;

The function adds an Optional Content Group (OCG) to an application event. PDF defines three
events, in which the state of layers or OCGs can be dynamically changed depending on settings in

Function Reference Page 164 of 854

Content Usage Dictionaries, which are associated to OCGs. A Content Usage dictionary must be
created or added to an OCG with SetOCGContUsage() before this function can be called.

The Content Usage dictionary can define multiple settings which control the visibility state, e.g. the
wished Export and Print state. The parameter Categories is a bitmask, so that more than one category
can be used in a specific event. The parameter Event is a bitmask too, so that the OCG can be added
to multiple events in just one function call.

The function makes sure that only valid categories can be added to a specific event. If the Content
Usage dictionary contains no settings for a specific category, then this category will be masked out
from the parameter Categories. If no more category remains then the OCG will not be added to the
event.

For example, if the Content Usage dictionary contains settings for exporting and printing, then it is
possible to add the OCG to the Export and Print events in just one pass:
pdfAddOCGToAppEvent(pdf,
 ocg,
 TOCAppEvent(aeExport | aePrint),
 TOCGUsageCategory(oucExport | oucPrint));

In the above example only the category oucExport will be added to the Export event, and oucPrint
to the Print event. The category oucPrint is not meaningful for exporting and oucExport is not
meaningful for printing. The invalid categories are automatically removed so that the above
function call is allowed and valid.

Remarks:

Note that application events are not supported in all viewer applications. If a watermark should
appear when printing, for example, then it is usually best to set the state of such a layer to visible,
and to make it invisible in the View event. A viewer that supports application events will hide the
layer at viewing time but still print it. A viewer that does not support application events will always
display the layer.

If the initial state of the layer would be invisible, then it would also stay invisible at printing time if
the viewer does not support application events but layers.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 165 of 854

AddOutputIntent

Syntax:
SI32 pdfAddOutputIntent(
 const PPDF* IPDF, // Instance pointer
 const char* ICCFile) // File path of the ICC profile

An Output Intent represents the destination color space for which a PDF file was created. Different
profiles for DeviceGray, DeviceRGB and DeviceCMYK can be attached but this is not recommendet.
Certain PDF standards like PDF/A or PDF/X prohibit the usage of multiple profiles since only one
destination color space can exist. So, although PDF supports multiple profiles, please attach only
one profile.

Depending on the application for which a PDF file was created the attached ICC profile is mostly a
RGB or CMYK profile. RGB refers mainly to PDF files created for the web and CMYK profiles for
printing.

BTW - You find a very detailed description about color management in PDF on our website...

ICC profiles are available for different input color spaces and for different output devices classes.
PDF viewer applications support the device classes mntr, prtr, scnr, and spac.

The input color space can be DeviceGray, DeviceRGB, DeviceCMYK, or Lab. Other input color
spaces are not supported. An ICC color profile is always required to create PDF/X compatible PDF
files. PDF/A-1 compatible files must contain a rendering intent too if the document uses device
dependent color spaces (DeviceGray, DeviceRGB, or DeviceCMYK).

ICC profiles are available in different versions. Which profile versions are allowed to use depends
on the output PDF version:

PDF Version ICC Specification Version ICC Profile Version Number

PDF 1.3 3.3 or earlier 2.10

PDF 1.4 ICC.1:1998-09 and its addendum
ICC.1A:1999-04

2.20

PDF 1.5 ICC.1:2001-12 4.00

PDF 1.6 ICC.1:2003-09 4.10

PDF 1.7 ICC.1:2004-10 4.20

Please note that neither PDF/A-1 nor PDF/X-1 and PDF/X-3 support ICC profile major versions
higher than 2. The function checks the profile version only if the output version was set to a PDF/A
or PDF/X compatible version.

The function scans the document always for a suitable profile which is maybe already available in
an ICC-based color space. If a suitable profile can be found the function uses the already existing
one so that a profile must not be embedded twice.

Function Reference Page 166 of 854

The profile should be embedded at the end of processing, that means directly before calling
CloseFile() or CloseFileEx().

Return values:

If the function succeeds the return value is the handle of the Rendering Intent object, a value greater
or equal zero. If the function fails the return value is a negative error code.

AddOutputIntentEx

Syntax:
SI32 pdfAddRenderingIntentEx(

const PPDF* IPDF, // Instance pointer
const void* Buffer, // File buffer of an ICC profile
UI32 BufSize) // Buffer size in bytes

The function adds an ICC profile to the PDF file like AddOutputIntent() but accepts a file buffer as
input. See also AddOutputIntent().

Return values:

If the function succeeds the return value is the handle of the Rendering Intent object, a value greater
or equal zero. If the function fails the return value is a negative error code.

AddPageLabel

Syntax:
SI32 pdfAddPageLabel(

const PPDF* IPDF, // Instance pointer
UI32 StartRange, // Page number where labelling starts
TPageLabelFormat Format, // Label format
const char* Prefix, // Optional prefix
SI32 FirstPageNum) // Page number to be displayed in the label

typedef enum
{
 plfDecimalArabic, // 1,2,3,4...
 plfUppercaseRoman, // I,II,III,IV...
 plfLowercaseRoman, // i,ii,iii,iv...
 plfUppercaseLetters, // A,B,C,D...
 plfLowercaseLetters, // a,b,c,d...
 plfNone
}TPageLabelFormat;

The function creates a page label object. The parameter StartRange must be the page number where
labelling should start. The first page is denoted by 1. The parameters Prefix and FirstPageNum are
both optional. FirstPageNum represents the numeric portion of the first page label in the range. This
value is incremented on subsequent pages in the range. The value must be greater zero, otherwise it
will be ignored. Numbering of the range starts at one in this case.

Function Reference Page 167 of 854

FirstPage should normally be set to the same value as StartPage to achieve a continous page
numbering. Although it is possible to number each range separately, this can be very confusing for
users since the logical and physical page order is then different.

A document can contain multiple page label objects. Each of them represents a labelling range
which is a series of consecutive pages using the same numbering system.

Pages within a range are numbered sequentially in ascending order. A page’s label consists of a
numeric portion based on its position within its labelling range, optionally preceded by a label
prefix denoting the range itself. For example, the pages in an appendix might be labelled with
decimal numeric portions prefixed with the string A; the resulting page labels would be A-1, A-2,
and so on.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is the page label handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

AddRasImage (Rendering Engine)

Syntax:
LBOOL pdfAddRasImage(
 const PPDF* IPDF, // PDF Instance pointer
 IRAS* RasPtr, // Instance pointer of the rasterizer
 TCompressionFilter Filter) // Compression filter for TIFF output

typedef enum TCompressionFilter
{

cfFlate = 0x00000000, // TIFF output
 cfJPEG = 0x00000001, // JPEG, or TIFF output
 cfCCITT3 = 0x00000002, // B&W CCITT Fax G3 compression
 cfCCITT4 = 0x00000003, // B&W CCITT Fax G4 compression -> higher compression ratio
 cfLZW = 0x00000004, // Very fast but less compression ratios than flate
 cfLZWBW = 0x00000005, // TIFF -> Floyd Steinberg dithering
 cfFlateBW = 0x00000006, // TIFF, PNG, or BMP output -> Floyd Steinberg dithering
 cfJP2K = 0x00000007, // JPEG2000 output
 // These flags can be combined with the filters cfFlate, cfCCITT3, cfCCITT4, and LZW.
 cfDitherFloydSteinberg = 0x00001000, // See 1 bit image output below
 cfConvGrayToOtsu = 0x00002000, // See 1 bit image output below
 cfOrderedDithering = 0x00004000, // See 1 bit image output below
 cfIgnoreICCProfile = 0x00008000 // Meaningful only if color management is enabled. If set,
 // the device ICC profile is not embedded in the image.
}TCompressionFilter;

The function adds an image of the rasterizer to the current open image file. The output image must
be opened with CreateImage() beforehand.

The function performs a color conversion if the output image format requires another component
order. For example, if the pixel format of the rasterizer is RGB and if the output image format is
BMP then the component order must be changed to BGR because Windows Bitmaps require the

Function Reference Page 168 of 854

component order BGR. This conversion must be considered if the image buffer should be passed to
another function.

Windows Bitmaps require also double word aligned scanlines while all other image formats support
byte aligned the scanlines. AddRasImage() adds required fill bytes automatically to achieve the line
alignment. However, to increase conversion speed the image buffer should consider the scaline
alignment of the output image format if possible.

TIFF is the one and only multi-page image format. All other image formats support exactly one
image. The image must be closed with CloseImage() when finish.

1 bit image output

If the pixel format of the rasterizer was set pxfGray, it is possible convert the image buffer to 1 bit
black & white with ordered dithering, Floyd Steinberg dithering, or with the Otsu filter. The Otsu
filter is a special filter that avoids anti-aliasing artifacts. It produces true black & white output and
does not try to simulate gray shades by dithering areas of an image. This filter is optimal if the
resulting image should be passed to an OCR engine.

There are two ways to apply the Floay Steinberg dithering algorithm: either combine the flag
cfDitherFloydSteinberg with the compression filter you want to use:

TCompressionFilter(cfFlate | cfDitherFloydSteinberg)

or use one of the filters cfCCITT3/4, cfLZWBW or cfFlateBW. These constants were already defined
in DynaPDF 3.0. However, in future we use separate flags for such things because it is more flexible.

The Otsu filter or ordered dithering can be enabled in the very same way:
 TCompressionFilter(cfFlate | cfConvGrayToOtsu)
or
 TCompressionFilter(cfFlate | cfOrderedDithering)

Compression filters

The compression filter is considered only for TIFF output because all other image formats support
only one specific filter. The compression filter must be compatible to the pixel format. For example,
CCITT Fax compression is compatible to 1 bit images, it is not supported for gray or color images.

The function is able to create up to 4 GB large TIFF image files. Depending on the used compression
filter and compression ratio this is mostly enough to create TIFF images with up to 8000 RGB pages
in a resolution of 300 DPI. However, the maximum number of pages depends on the resolution,
compression ratio and pixel format.

The JPEG Quality and compression level can be adjusted with SetJPEGQuality() and
SetCompressionLevel() before calling the function.

Function Reference Page 169 of 854

Embedding ICC Profiles

The function embeds by default the device profile in the image file if color management is enabled
and if the image format supports embedded ICC profiles. At time of publication JPEG 2000, PNG,
and the TIFF encoder support embedded ICC profiles.

However, the JPEG 2000 encoder has only limited support for embedded ICC profiles. A profile is
embedded only if loss-less encoding is used. Loss-less encoding is used if the JPEG quality is set to 0
or 100 or -1000.

It is also possible to disable embedding of ICC profiles with the flag cfIgnoreICCProfile.

Return values:

When the function succeeds the return value is 1. When the function fails the return value is 0.

AddRenderingIntent (obsolete)

Syntax:
SI32 pdfAddRenderingIntent(
 const PPDF* IPDF, // Instance pointer
 const char* ICCFile) // File path of the ICC profile

This function was incorrectly named. The correct name is AddOutputIntent(). Please use the
correctly named version instead.

AddRenderingIntentEx (obsolete)

Syntax:
SI32 pdfAddRenderingIntentEx(

const PPDF* IPDF, // Instance pointer
const void* Buffer, // File buffer of an ICC profile
UI32 BufSize) // Buffer size in bytes

This function was incorrectly named. The correct name is AddOutputIntentEx(). Please use the
correctly named version instead.

AddValToChoiceField

Syntax:
SI32 pdfAddValToChoiceField(
 const PPDF* IPDF, // Instance pointer
 UI32 Field, // Handle of a combo box or list box
 const char* ExpValue, // Export value (can be NULL)
 const char* Value, // Visible choice value (required)
 LBOOL Selected) // Select this values?

This function adds a value to a choice field. The parameter Field must be a handle of a combo box or
list box. The parameter ExpValue defines the export value that will be submitted to a web server if

Function Reference Page 170 of 854

the value is selected in Adobe's Acrobat. The export value can be an empty string (NULL) and it is
possible to use one export value for multiple values.

The parameter Value is the visible text that can be selected inside the combo box or list box. Value
must be a unique string inside the combo box or list box values. Value is required; it must not be an
empty string.

If the parameter Selected is true the value appears as selected value in Adobe's Acrobat. List boxes
support multiple selected values depending on whether the flag ffMultiSelect was set or not (see
SetFieldFlags() and CreateListBox() for further information). If the flag ffMultiSelect is not set, a
selected value disables all others (default).

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Because Unicode is not
supported by interactive form fields, it is recommended that Unicode values contain characters of
the actual used code page only. At time of publication CJK strings are not supported.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 171 of 854

Append

Syntax:
SI32 pdfAppend(
 const PPDF* IPDF) // Instance pointer

This function appends an empty page to the document. The default page format for new created
pages is DIN A4. However, when changing the page format, the next page is created in the same
format as the previous one. The CropBox is also set to the values of the previous page. The other
bounding boxes such as ArtBox, BleedBox and so on must be set manually for each page.

The page format can be changed with the function SetPageFormat() if a predefined format should be
used, or manually with SetBBox(). SetBBox() must also be used to set a user defined bounding box
(ArtBox, BleedBox, CropBox, TrimBox).

The meaning of the bounding boxes are described under the property Get/SetBBox().

The graphics state of a new page is initialzed with the following default values:

Parameter Data type Initial Value
CharSpacing float 0.0f
Clipping Path Vector array Crop box or Media box
DashPattern double* NULL (Solid line)
DashPhase UI32 0
FillColor BYTE[32] Black
FillColorSpace TExtColorSpace, IColorSpace* esDeviceRGB, NULL
FillPattern IPattern* NULL
Font IFont* NULL
Leading float 0.0f
LineCapStyle TLineCapStyle csButtCap
LineJoinStyle TLineJoinStyle jsMiterJoin
LineWidth float 1.0f
Matrix TCTM {1, 0, 0, 1, 0, 0}
MiterLimit float 10.0f
StrokeColor BYTE[32] Black
StrokeColorSpace TExtColorSpace, IColorSpace* esDeviceRGB, NULL
StrokePattern IPattern* NULL
TextDrawMode TDrawMode dmNormal
TextScale float 100.0f
WordSpacing float 0.0f

Return values:

If the function succeeds the return value is 1. If the function fails the return value is zero.

Function Reference Page 172 of 854

ApplyAppEvent

Syntax:
LBOOL pdfApplyAppEvent(
 const PPDF* IPDF, // Instance pointer
 TOCAppEvent Event, // Event that should be applied
 LBOOL SaveResult) // If true, the new state will be stored in the file

typedef enum
{
 aeExport = 1,
 aePrint = 2,
 aeView = 4
}TOCAppEvent;

The visibility state of optional content groups (OCGs) can be dynamically changed in application
events like Export, View, or Print. DynaPDF loads the view state when rendering PDF pages by
default.

The function can be used to apply the visibility state of another event if necessary. The result can
optionally be stored in the PDF file but note that this has only an effect in PDF viewers which
support layers but no application events since the events will not be deleted from the PDF file. It is
also possible to delete the events with DeleteAppEvents().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ApplyPattern

Syntax:
SI32 pdfApplyPattern(
 const PPDF * IPDF, // Instance pointer
 SI32 PattHandle, // Handle of the pattern
 TColorMode ColorMode, // Color mode (fill or stroke color or both)
 UI32 Color) // uncolored patterns only

typefed enum
{
 cmFill, // use the pattern as fill color
 cmStroke, // use the pattern as stroke color
 cmFillStroke // use the pattern as fill and stroke color
}TColorMode;

The function sets a tiling pattern as current fill, stroke or fill and stroke color. Two types of patterns
are supported; colored tiling patterns which contain their own color information and uncolored
tiling patterns which can be used with a user defined color.

The parameter PattHandle must be a valid pattern handle that was returned by BeginPattern() or
CreateStdPattern(). The parameter Color is ignored for colored tiling patterns. Uncolored tiling

Function Reference Page 173 of 854

patterns are applied like a mask in the user defined color. The color must be defined in the current
color space.

To disable a pattern just change the current fill or stroke color with SetFillColor(), SetStrokeColor()
or SetColors().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (Delphi):
implementation
{$R *.dfm}
uses dynapdf; // include the unit dynapdf.pas
// First we define our callback function that is called if an
// error occurred. Note: The calling convention is stdcall!
function ErrProc(const Data: Pointer; ErrCode: Integer; const ErrMessage:
PAnsiChar; ErrType: Integer): Integer; stdcall;
var s: String;
begin
 s := Format('%s'#13'Abort processing?', [ErrMessage]);
 if MessageDlg(s, mtError, [mbYes, mbNo], 0) = mrYes then
 Result := -1 // break processing
 else
 Result := 0; // try to continue
end;

procedure TForm1.Button1Click(Sender: TObject);
var pdf: TPDF; pat: Integer; cw, h: Single;
begin
 pdf := nil;
 try
 pdf := TPDF.Create;
 // Set the error callback first. No need to check return values.
 pdf.SetOnErrorProc(nil, @ErrProc);
 pdf.SetDocInfoA(diAuthor, 'Jens Boschulte');
 pdf.SetDocInfoA(diCreator, 'Delphi sample project');
 pdf.SetDocInfoA(diSubject, 'How to use patterns');
 pdf.SetDocInfoA(diTitle, 'Vector graphics');
 pdf.SetViewerPreferences(vpDisplayDocTitle, avNone);
 pdf.CreateNewPDFA('c:\dout.pdf');

 pdf.Append;
 // create a colored tiling pattern
 pat := pdf.BeginPattern(ptColored, ttFastConstSpacing, 20, 20);
 pdf.SetFontA('ZapfDingbats', fsNone, 12, false, cp1252);
 h := pdf.GetAscent;
 cw := pdf. GetTextWidthA(#171);
 pdf.SetFillColor(clRed);
 pdf.WriteTextA(0, 0, #171);

Function Reference Page 174 of 854

 pdf.SetFillColor(clGreen);
 pdf.WriteText(cw +2, 0, #170);
 pdf.SetFillColor(clBlue);
 pdf.WriteTextA(0, 20 - h, #169);
 pdf.SetFillColor(clBlack);
 pdf.WriteTextA(cw +2, 20 - h, #168);
 pdf.EndPattern;

 pdf.ApplyPattern(pat, cmFill, 0);
 pdf.SetPageCoords(pcTopDown);
 pdf.DrawCircle(100, 160, 50, fmFillStroke);
 pdf.DrawCircle(160, 60, 50, fmFillStroke);
 pdf.DrawCircle(220, 160, 50, fmFillStroke);
 pdf.Triangle(100, 160, 160, 60, 220, 160, fmFillStroke);
 pdf.SetPageCoords(pcBottomUp);

 // create an uncolored tiling pattern
 pat := pdf.BeginPattern(ptUnColored, ttFastConstSpacing, 20, 20);
 pdf.SetFontA('ZapfDingbats', fsNone, 12, false, cp1252);
 h := pdf.GetAscent;
 cw := pdf. GetTextWidthA(#171);
 pdf.WriteTextA(0, 0, #171);
 pdf.WriteTextA(cw +2, 0, #170);
 pdf.WriteTextA(0, 20 - h, #169);
 pdf.WriteTextA(cw +2, 20 - h, #168);
 pdf.EndPattern;

 pdf.SetPageCoords(pcTopDown);
 // use the pattern as fill color with different colors
 pdf.ApplyPattern(pat, cmFill, clGreen);
 pdf.DrawCircle(350, 160, 50, fmFillStroke);
 pdf.ApplyPattern(pat, cmFill, clBlue);
 pdf.DrawCircle(410, 60, 50, fmFillStroke);
 pdf.ApplyPattern(pat, cmFill, clRed);
 pdf.DrawCircle(470, 160, 50, fmFillStroke);
 pdf.ApplyPattern(pat, cmFill, clMaroon);
 pdf.Triangle(350, 160, 410, 60, 470, 160, fmFillStroke);
 pdf.EndPage;

 pdf.CloseFile;
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOK], 0);
 end;
 if pdf <> nil then pdf.Free;
end;

Function Reference Page 175 of 854

Output:

 Colored Tiling Pattern Uncolored Tiling Pattern

Function Reference Page 176 of 854

ApplyShading

Syntax:
SI32 pdfApplyShading(
 const PPDF* IPDF, // Instance pointer
 SI32 ShadHandle) // Handle of the shading

This function applies a shading to the current clipping path, or if no clipping is active, to the entire
page. See also CreateAxialShading(), CreateRadialShading().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (C):
// First we declare our error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}

int main(int argc, char* argv[])
{
 SI32 sh;
 void* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?

 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfSetDocInfo(pdf, diAuthor, "Jens Boschulte");
 pdfSetDocInfo(pdf, diCreator, "C sample project");
 pdfSetDocInfo(pdf, diSubject, "How to use shadings");
 pdfSetDocInfo(pdf, diTitle, "Shadings");
 // we use top-down coordinates
 pdfSetPageCoords(pdf, pcTopDown);

 pdfCreateNewPDF(pdf, "c:/cppout.pdf");

 pdfAppend(pdf);

 pdfSaveGraphicState(pdf);
 pdfBeginClipPath(pdf);
 pdfRectangle(pdf, 50, 50, 200, 30, fmNoFill);
 pdfClipPath(pdf, cmWinding, fmFill);
 sh = pdfCreateAxialShading(pdf, 50, 0, 250, 0, 1.5, PDF_WHITE,
 PDF_BLUE, false, false);
 pdfApplyShading(pdf, sh);
 pdfRestoreGraphicState(pdf);

Function Reference Page 177 of 854

 pdfSaveGraphicState(pdf);
 pdfBeginClipPath(pdf);
 pdfRectangle(pdf, 50, 90, 200, 30, fmNoFill);
 pdfClipPath(pdf, cmWinding, fmFill);

 sh = pdfCreateAxialShading(pdf, 0, 120, 0, 90, 1.5, PDF_WHITE,
 PDF_BLUE, false, false);
 pdfApplyShading(pdf, sh);
 pdfRestoreGraphicState(pdf);

 // The radial shading can be drawn outside of a clipping path
 sh = pdfCreateRadialShading(pdf, 165, 70, 5, 150, 85, 35, 0.7,
 PDF_BLUE, PDF_WHITE, true, false);
 pdfApplyShading(pdf, sh);

 pdfEndPage(pdf);
 pdfCloseFile(pdf);
 pdfDeletePDF(pdf);
}

Output:

Function Reference Page 178 of 854

AssociateEmbFile

Syntax :
LBOOL pdfAssociateEmbFile(
 const PPDF* IPDF, // Instance pointer
 TAFDestObject DestObject, // Destination object type (see below)
 SI32 DestHandle, // Destination object handle or -1
 TAFRelationship Relationship, // see below
 UI32 EmbFile) // Handle of an embedded file

typedef enum
{
 arAssociated,
 arData,
 arSource,
 arSupplement,
 arAlternative, // This key must be used for ZUGFeRD compatible invoices
 arFormData
}TAFRelationship;

typedef enum
{
 adAnnotation,
 adCatalog, // The documents catalog is the root object
 adField,
 adImage,
 adPage,
 adTemplate
}TAFDestObject;

The function associates an embedded file with a PDF object. The parameter DestHandle must be a
valid handle of a PDF object. If destination object type is a page, then the page number must be used
as handle. The first page is denoted by one. If the destination object is the documents catalog then
the parameter DestHandle is ignored. Set the parameter to zero or -1 in this case.

The parameter EmbFile must be a valid handle of an embedded file. See AttachFile() or
AttachFileEx() for further information.

Remarks:

Associated files are supported since PDF 2.0 and in PDF/A 3 files. In PDF/A 3 files all embedded
files must be associated with a PDF object.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 179 of 854

AttachFile

Syntax:
SI32 pdfAttachFile(

const PPDF* IPDF, // Instance pointer
const char* FilePath, // File that should be attached
const char* Description, // Optional description
LBOOL Compress) // If true, the file will be compressed

The function attaches a file to the document. The description is optional, the parameter can be set to
NULL. The embedded file is compressed if the parameter Compress is set to true. Otherwise it is left
uncompressed. It is not always useful to compress embedded files especially if the file is already
compressed, e.g. Zip files or already compressed image formats require no further compression. In
the worst case the compressed file becomes larger as the uncompressed version. However, text files
and most document formats should be compressed to reduce the file size.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Unicode paths are
converted to UTF-8 on non-Windows operating systems.

Please note that embedded files must be associated with a PDF object in PDF/A 3 files. See
AssociateEmbFile() for further information.

Return values:

If the function succeeds the return value is the handle of the embedded file, a value greater or equal
zero. If the function fails the return value is a negative error code.

AttachFileEx

 Syntax:
SI32 pdfAttachFileEx(

const PPDF* IPDF, // Instance pointer
const void* Buffer, // File buffer
UI32 BufSize, // Buffer size
const char* FileName, // File name to display in a viewer
const char* Description, // Optional description
LBOOL Compress) // If true, the file will be compressed

The function attaches a file to the document in the same way as AttachFile() but accepts a file buffer
instead of a file path. The description is optional, the parameter can be set to NULL. The embedded
file is compressed if the parameter Compress is set to true. Otherwise it is left uncompressed. It is not
always useful to compress embedded files especially if the file is already compressed, e.g. Zip files
or already compressed image formats require no further compression. In the worst case the
compressed files becomes larger as the uncompressed version. However, text files and most
document formats should be compressed to reduce the file size.

Function Reference Page 180 of 854

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Please note that embedded files must be associated with a PDF object in PDF/A 3 files. See
AssociateEmbFile() for further information.

Return values:

If the function succeeds the return value is the handle of the embedded file, a value greater or equal
zero. If the function fails the return value is a negative error code.

AttachImageBuffer (Rendering Engine)

Syntax:
LBOOL rasAttachImageBuffer(
 IRAS* RasPtr, // Instance pointer of the rasterizer
 BYTE** Rows, // Pointer to a row buffer or alternatively
 BYTE* Buffer, // Pointer to an image buffer that was allocated
 // as one large buffer.
 UI32 Width, // Width in Pixel
 UI32 Height, // Height in Pixel
 SI32 ScanlineLen) // Scanline length in bytes

The function attaches a new image buffer to the rasterizer. The function supports two different types
or pointers to the image buffer depending on how the buffer was allocated.

When the image buffer was allocated as one large block then set the parameter Rows to NULL and
pass the buffer to the parameter Buffer. If the scanlines were allocated separately or in blocks then
use the parameter Rows instead. One of these parameters must be set but never both. The function
checks first whether the parameter Rows is present.

The rasterizer uses internally an array of scanlines to achieve optimal processing speed. Therefore,
the function must maybe reallocate the internal pointer array when the new image height is larger
than the previous one. When there is no sufficient memory to allocate the row pointer array then the
function will fail and returns false. The one and only reason why this function can fail is out of
memory.

The return value must not be ignored since the rasterizer will cause an access violation if you try to
raster into a non-existant image buffer.

The rasterizer requires no special alignment of the scanlines, the scanlines can be byte aligned.

However, the scaline length can be longer than necessary, e.g. to achieve aligment requirements of
certain image formats like Bitmaps. A negative value of the scanline length mirrors the image
vertically.

Remarks:

This function is not included in the Visual Basic 6 interface.

Function Reference Page 181 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0. The one and
only reason why this function can fail is out of memory.

AutoTemplate

Syntax:
SI32 pdfAutoTemplate(
 const PPDF* IPDF, // Instance pointer
 UI32 Templ, // Template handle
 double PosX, // X-Coordinate
 double PosY, // Y-Coordinate
 double Width, // Scaled with
 double Height) // Scaled height

Templates can be used on multiple pages, e.g. as background, custom logos and so on. To insert a
template automatically on newly created pages, use the function AutoTemplate().

The parameter Templ must be a valid template handle. The width and height can be calculated as
follows:

• If Width or Height is -1 the function uses the original width or height from the template.

• If Width or Height is 0, the missing value is calculated in relation to the given value of Height
or Width to preserve the template's aspect ratio. The resulting output is a template with exact
proportions relative to its original size.

• If Width and Height is 0, the original size is used (same effect as -1).

• A negative value of Width or Height mirrors the template on the x- and or y-axis.

Remarks:

The templates are inserted on new pages by using the function PlaceTemplate().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 182 of 854

BeginClipPath (Obsolete)

Syntax:
SI32 pdfBeginClipPath(
 const PPDF* IPDF) // Instance pointer

It is not longer required to call this function before a clipping path can be created. The function is
included in DynaPDF for compatibility reasons only. Do not longer use it, it executes nothing. See
also ClipPath(), Path Construction and Painting.

BeginContinueText

Syntax:
SI32 pdfBeginContinueText(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the first text line
 double PosY) // Y-Coordinate of the first text line

This function prepares the output of multiple text lines with AddContinueText(). The distance
between two text lines can be adjusted with SetLeading(). If no leading was defined it will be set to
the font size. Note that the function changes the leading of the graphics state if it was not defined
beforehand. Subsequent calls use then the leading that was set in a prior call. If the font or font size
will be changed it is strongly recommended to set the leading to a correct value. The default leading
is the font size. The leading, font, character spacing, word spacing, text scaling, or the text color can
be changed before calling AddContinueText() the next time.

The point PosX, PosY defines the baseline of the first text line if the coordinate system is bottom-up,
otherwise the top-left corner of the text's bounding box. The origin can be changed with the function
SetFontOrigin().

If the font uses horizontal writing mode the text cursor moves from top to bottom. In vertical
writing mode the text cursor moves from left to right.

Remarks:

A font must be set before this function can be used (see also SetFont(), or SetCIDFont()).

In DynaPDF versions prior 2.0 it was required to finish the text block with EndContinueText().
Because the function uses now internally WriteText() to output the text, it is no longer required to
finish the text block with this function. EndContinueText() does nothing in DynaPDF 2.0 or higher.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (Delphi):
uses dynapdf;
// First we declare an error callback function

Function Reference Page 183 of 854

function ErrProc(const Data: Pointer; ErrCode: Integer; const ErrMessage:
PAnsiChar; ErrType: Integer): Integer; stdcall;
var s: String;
begin
 s := Format('%s'#13'Abort processing?', [ErrMessage]);
 if MessageDlg(s, mtError, [mbYes, mbNo], 0) = mrYes then
 Result := -1 // break processing
 else Result := 0; // try to continue
end;
procedure TForm1.Button1Click(Sender: TObject);
var pdf: TPDF;
begin
 try
 pdf := TPDF.Create;
 pdf.SetOnErrorProc(nil, @ErrProc);
 pdf.SetDocInfoA(diAuthor, 'Jens Boschulte');
 pdf.SetDocInfoA(diCreator, 'Delphi sample project');
 pdf.SetDocInfoA(diSubject, 'How to use ContinueText');
 pdf.SetDocInfoA(diTitle, 'ContinueText');
 pdf.SetViewerPreferences(vpDisplayDocTitle, avNone);
 pdf.CreateNewPDFA('c:\dout.pdf');
 pdf.Append;
 pdf.SetFontA('Arial', fsNone, 12, true);
 pdf.ChangeFontStyle(fsUnderlined);
 pdf.BeginContinueText(50, 780);
 pdf.AddContinueTextA('Underlined text...');
 pdf.ChangeFontStyle(tsNone);
 pdf.AddContinueTextA('Normal text!');
 pdf.ChangeFontStyle(fsStriked);
 pdf.AddContinueTextA('Strikeout text!');
 pdf.EndContinueText;

 pdf.EndPage;
 pdf.CloseFile;
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOK], 0);
 end;
 pdf.Free;
end;

Output:

Underlined text…

Normal text!

Strikeout text!

Function Reference Page 184 of 854

BeginLayer

Syntax:
LBOOL pdfBeginLayer(

const PPDF* IPDF, // Instance pointer
UI32 OCG) // OCG or OCMD handle

The function opens a layer in the current open page or template. The layer must be closed with
EndLayer() when finish. The parameter OCG must be valid handle of an Optional Content Group
(OCG) or Optional Content Membership Dictionary (OCMD) (see CreateOCG() and CreateOCMD()
for further information). The OCG or OCMD controls the visibility of the contents that is included in
the layer.

BeginLayer() / EndLayer() calls connect normal page contents, such as text, images, and vector
graphics with a layer but no interactive objects like annotations or form fields. Annotations and
Form Fields can be added to a layer with AddObjectToLayer().

It is not required to draw the entire contents of a layer in one pass. The page contents can be drawn
as usual and delimited into BeginLayer() / EndLayer() calls as necessary. Only contents that is
delimited into BeginLayer() / EndLayer() calls becomes part of a layer.

Layers can be nested by calling BeginLayer() more than one time with different OCGs or OCMDs.
The visibility of an inner layer depends then also on the visibility of the out ones (see example
below). If an outer layer is invisible then all inner layers are invisible too, regardless of the visibility
settings of the inner layers.

Remarks:

A layer is not part of the graphics state. Neither BeginLayer() nor EndLayer() change any parameter
of the graphics state. BeginLayer() must not be called within an open path.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (C++):
...
pdfCreateNewPDF(pdf, "test_layer.pdf");

// We use three layers in this example
SI32 oc1 = pdfCreateOCG(pdf, "Anything", true, true, oiView);
SI32 oc2 = pdfCreateOCG(pdf, "Text and Annotations", true, true, oiView);
SI32 oc3 = pdfCreateOCG(pdf, "Images", true, true, oiView);

pdfSetPageCoords(pdf, pcTopDown);

pdfAppend(pdf);
// The main layer controls the visibility of all three layers in this
// example.

Function Reference Page 185 of 854

pdfBeginLayer(pdf, oc1);

pdfBeginLayer(pdf, oc2);
 pdfSetFont(pdf, "Arial", fsRegular, 12.0, true, cp1252);

char someText[] = "Some text with a link!!!";
pdfWriteText(pdf, 50.0, 50.0, someText);
double tw = pdfGetTextWidth(pdf, someText);
// To reflect the same nesting as the text layer we must
// use an OCMD for the annotation because the visibility of the
// layer oc2 depends on oc1 at this position.
pdfSetBorderStyle(pdf, bsUnderline);
pdfSetStrokeColor(pdf, PDF_BLUE);
SI32 annot = pdfWebLink(pdf, 50, 51, tw, 12, "www.dynaforms.com");
UI32 ocgs[2] = {oc1, oc2};
SI32 ocmd = pdfCreateOCMD(pdf, ovAllOn, ocgs, 2);
pdfAddObjectToLayer(pdf, ocmd, ooAnnotation, annot);

pdfEndLayer(pdf);

pdfBeginLayer(pdf, oc3);
InsertImageEx(pdf, 50.0, 70.0, 300.0, 200.0, "c:/Imgs/test.tif", 1);

pdfEndLayer(pdf);

pdfEndLayer(pdf);

pdfWriteText(pdf, 50.0, 300.0, "This text is not part of a layer!");

pdfEndPage(pdf);

pdfCloseFile(pdf);
...

BeginPageTemplate

Syntax:
LBOOL pdfBeginPageTemplate(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Template name
 LBOOL UseAutoTemplates) // See description

The function creates a page template. A page template is an invisible page that can be added to the
document via Javascript.

Page templates are mainly used in Interactive Forms to dynamically add additional pages to the
document. A page template is like a normal page. You can add form fields and annotations to it but
no article beads (see AddArticle()) since a page template is not part of the document's page array.

The parameter Name is required, it must not be NULL or an empty string. The name can be used to
reference the template via Javascript.

Function Reference Page 186 of 854

The parameter UseAutoTemplates specifies whether the list of auto templates should be drawn just as
if you would call Append() (see AutoTemplate() for further information).

The page template must be closed like a normal page with EndPage() when finish.

Remarks:

Page templates cannot be added to the document with Adobe's Reader. This functionality requires a
full version of Adobe's Acrobat.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

BeginPattern

Syntax:
SI32 pdfBeginPattern(

const PPDF* IPDF, // Instance pointer
 TPatternType PatternType, // Pattern type
 TTilingType TilingType, // Tiling type
 double Width, // Cell width
 double Height) // Cell height

typedef enum
{

ptColored,
ptUnColored

}TPatternType;

typedef enum
{

ttConstSpacing,
ttNoDistortion,
ttFastConstSpacing

}TTilingType;

This function creates a new tiling pattern. The graphics state is initialized to its default state when
opening a pattern. See Append() for further information. The parameters Width and Height define
the bounding box of the pattern cell.

Colored Tiling Patterns

Colored tiling patterns can be created like a normal PDF page or template. The only difference is
that the pattern must be enclosed in BeginPattern() and EndPattern() calls. The objects inside the
pattern are drawn in the usual way. After all objects are drawn the pattern must be finished with
EndPattern().

Uncolored Tiling Patterns

Uncolored patterns are also painted in the usual way. That means all object types can be inserted
such as text, vector graphics or images. However, an uncolored tiling pattern must NOT include
any color information. Because of this inserting a color image into an uncolored tiling pattern is not

Function Reference Page 187 of 854

allowed, only 1 bit images can be used. This type of pattern can be painted in a user defined color
that can be applied with ApplyPattern().

The color information of a colored tiling pattern is fixed, it can not be changed.

A pattern can be used like a color. It is not recommended to save the graphics state before using a
pattern. A pattern is active as long as the used color is changed by SetFillColor() or SetStrokeColor().
See ApplyPattern() for an example application.

The current graphics state is saved entirely before the pattern will be entered. This graphics state is
restored when the pattern is closed with EndPattern(). That means, the current font, line width, fill
color and so on are all restored to its values before entering the pattern.

Remarks:

Patterns are invisible as long as they are not applied by the function ApplyPattern(). The initial
graphic state defines a zero line width in Acrobat 5. If a pattern should contain any line art or
stroked paths, the line width must be explicitly set before an object is drawn. If the line width is not
set, the results can vary between different Acrobat versions. In general a pattern should not contain
very complex objects to improve graphics speed.

Return values:

If the function succeeds, the return value is a pattern handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Pattern types:

 Colored Tiling Pattern Uncolored Tiling Pattern

Function Reference Page 188 of 854

BeginTemplate

Syntax:
SI32 pdfBeginTemplate(
 const PPDF* IPDF, // Instance pointer
 double Width, // Width of the template
 double Height) // Height of the template

The function creates a template and opens it so that arbitrary contents can be drawn into it. After the
objects of the template are drawn, it must be finished with EndTemplate(). To insert the template on
a page use PlaceTemplate().

A template is a PDF object (Form XObject in PDF syntax) that can contain vector graphics, images,
and text, but no interactive objects like annotations or form fields.

The difference between a normal page and a template is that a template can be used arbitrary often
and scaled to different sizes without increasing the file size since a template is stored only once in
the PDF file. Templates are used for repeating contents, such as static page backgrounds and so on,
simply anything that must be drawn multiple times.

The initial background of a template is transparent.

When creating a template the function saves the graphics state and initializes all members of the
new state to their default values.

EndTemplate() closes the template and restores the graphics state so that no changes made during
creation of the template affect the parent object, if the template was created in an open page or other
template.

A template can automatically be inserted to new pages. This can be achieved by adding the template
to the list of auto-templates (see AutoTemplate() for further information). This can be useful if a
template represents a fixed page background that must appear on all pages.

Remarks:

A template remains invisible until it was placed on a page with PlaceTemplate(). Unused templates
are deleted when CloseFile() is called, they are not added to the PDF file.

Templates can be created outside of an open page and it is also possible to create a template outside
of on open PDF file. But note: it is not possible to create a persistent template that can be used with
multiple PDF files. All objects will be deleted when CloseFile() or FreePDF() is called.

Return values:

If the function succeeds the return value is the template handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 189 of 854

Example (C):
#include "dynapdf.h"
// First we declare our error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}

int main(int argc, char* argv[])
{

SI32 tmpl;
void* pdf = pdfNewPDF();
pdfSetOnErrorProc(pdf, NULL, PDFError);
pdfCreateNewPDF(pdf, "c:/cppout.pdf");
pdfSetPageCoords(pdf, pcTopDown);

pdfAppend(pdf);

tmpl=pdfBeginTemplate(pdf,pdfGetPageWidth(pdf),pdfGetPageHeight(pdf));

pdfSetFont(pdf, "Arial", fsItalic, 40, true, cp1252);
pdfWriteFText(pdf, taCenter, "This is a template!");

pdfEndTemplate(pdf);

pdfPlaceTemplate(pdf, tmpl, 0, 0, 0, 0);
pdfPlaceTemplate(pdf, tmpl, 0, 50, 500, 0);
pdfPlaceTemplate(pdf, tmpl, 0, 100, 450, 0);

pdfEndPage(pdf);
pdfCloseFile(pdf);
pdfDeletePDF(pdf);

}

Output:

 This is a template!
 This is a template!
 This is a template!

Function Reference Page 190 of 854

BeginTransparencyGroup

Syntax:
SI32 pdfBeginTransparencyGroup(
 const PPDF* IPDF, // Instance pointer
 double x1, // Lower left corner of the bounding box
 double y1, // Lower left corner of the bounding box
 double x2, // Upper right corner of the bounding box
 double y2, // Upper right corner of the bounding box
 LBOOL Isolated, // See description
 LBOOL Knockout, // See description
 TExtColorSpace CS, // The group's color space
 SI32 CSHandle) // Required if a non-device space should be used

The function creates a transparency group and opens it so that arbitrary contents can be drawn into
it. A transparency group is a special type of template (see BeginTemplate() for further information)
that enables various effects in the transparent imaging model.

After the contents of the group was drawn the group must be finished with EndTemplate(). Yes, this
is correct. A transparency group is just an extended template.

A transparency group can be used stand alone or as a soft mask. A soft mask consists of a
transparency group that acts as an alpha channel and a corresponding soft mask dictionary that
describes the characteristics of the mask. A soft mask is not directly usable, it must be activated with
an extended graphics state. See CreateSoftMask() for further information.

The creation of a stand alone transparency group is essencially the same as a normal template and
both objects share the same properties. A transparency group can be placed on a page with
PlaceTemplate() or PlaceTemplateEx(), just like ordinary templates.

The difference between a template and a transparency group is that a transparency group is
composited with the backdrop as a hole. This property is very important when a soft mask should
be applied on an arbitrary artwork because a soft mask is designed to mask exactly one object at
time.

The effect for overlapping objects drawn with regular techniques would be as if the soft mask is
applied twice and this is mostly not what is intended.

However, transparency groups can also be used without an active soft mask. Whether this can be
useful depends strongly on the effect that should be achieved. Most effects that can be achieved in
this way can also be achieved with regular drawing techniques and the latter is always preferred.

The Group's Bounding Box

Due to the way how a transparency group is rended it is important to create the group in the correct
size. Creating transparency groups larger than necessary can slow down rendering a lot, especially
if many such groups are used on a page.

Function Reference Page 191 of 854

The way how the bounding box should be calculated is differently for soft masks and transparency
groups which are used stand alone.

Stand alone transparency groups

A stand alone group can be placed on a page like a template. The lower left corner of the bounding
box is typically set to zero, since this corner represents the coordinate origin of the group. The upper
right corner is set to the wished width and height.

It is also possible to create the group larger than necessary and to modify the bounding box with
SetBBox() when the real size is known. The media box represents the bounding box of the group. If
the left and bottom members are set to non-zero values then use PlaceTemplateEx() to place the
group on a page because this function considers the coordinate origin.

Soft masks

The calculation of the bounding box of a soft mask is slightly different because a soft mask is just a
parameter of the graphics state and hence there is no direct way to specify where the mask should
be rendered when it is activated.

The coordinate system in a soft mask is that of the parent object in which the mask is used. This is
no problem so far but this conflicts with the coordinate logic in DynaPDF since no other object is
drawn in this way.

Coordinates and bounding box of a soft mask:

The bounding box of a soft mask can be seen like a clipping rectangle. The left and bottom members
of the bounding box do not change the coordinate origin.

Before creating a soft mask it is usualy best to set SetUseVisibleCoords() to true. This property
moves the coordinate origin into the visible area of the group. Now you can draw objects into the

Media box of the page

Bounding box of the soft mask
x1 = 50
x2 = 350
y1 = 550
y2 = 650

55
0

50

300

10
0

Function Reference Page 192 of 854

group as if you would work with a normal template whose lower left corner is set to zero. This
works with bottom-up and top-down coordinates.

Another way to avoid coordinate problems is to create the group in the size of the object in which
the soft mask should be used. You can now draw into the group as if you would draw into the page
or template. When finish, adjust the bounding box with SetBBox() to the required size.

Isolated and Non-Isolated Groups

The parameter Isolated specifies whether the initial backdrop of the group should be fully opaque or
initialized to the current backdrop when the group is entered. Depending on how objects are drawn
various effects can be achieved.

Knockout Groups

A knockout group is rendered as a hole, that means the top most group knockouts the groups
below. The effect is as if the nested groups would be opaque, the top most wins. A knockout group
is not meaningful if it does not draw other transparency groups since there is nothing that can be
knocked out if no other groups are drawn. A knockout group can be useful if the entire group is
composited with a soft mask.

Color Spaces

The color space in which a transparency group is rendered can be any device, ICC based, or
calibrated color space, but no Lab, Indexed, DeviceN or Separation color space. If a non-device color
space should be used then pass the handle of that color space to the parameter CSHandle. For device
color spaces this parameter will be ignored.

The blending color space is important if the group should be composited with the background with
a blend function. Since the result of blend functions depend strongly on the used color space, the
blending color space makes sure that the same result can be achieved on different devices.

If no blend functions are used the blending color space should be set to DeviceGray or to a gray
based ICC based color space.

How to use a Transparency Group?

As mentioned earlier a transparency group is just an extended template. A stand alone transparency
group is placed on a page with PlaceTemplate() or PlaceTemplateEx() as usual. The only difference
is that we use mostly a blend mode or a soft mask to composite the group with the backdrop.

All transparency related settings can be changed with an extended graphics state. The function
CreateExtGState() creates such an extended graphics state, and SetExtGState() activates it, typically
right before the group is placed on the page with PlaceTemplate():
...
grp = pdfBeginTransparencyGroup(pdf, ...);
...

Function Reference Page 193 of 854

pdfEndTemplate(pdf, ...);

pdfSetExtGState(pdf, gsHandle); // Activate the wished settings
pdfPlaceTemplate(pdf, grp, ...); // Insert the group
pdfSetExtGState(pdf, defGState); // Restore the changes made before
...

When entering a transparency group a viewer initialized the fill and stroke alpha to 1.0 and sets the
blend mode to bmNormal so that the transparency is not applied twice (one time on the entire
group and one time on the objects in it). If the group represents a soft mask, the current soft mask is
also explicitly deactivated before the group will be drawn.

If a soft mask should be applied on the group then the group should disable the current soft mask as
the first command or before drawing the first object. Otherwise the mask is applied twice, one time
on the entire group and another time on the objects in it.

Remarks:

It is bad practice to place a transparency group into an active clipping path or to activate a soft mask
in a clipping path. Clip the contents inside the group but don't clip the group itself! A viewer must
mostly adjust the clipping path so that it remains valid. This operation can be very computation
intensive and should be avoided.

Return values:

If the function succeeds the return value is the template handle, a value greater or equal zero (a
transparency group is an extended template). If the function fails the return value is a negative error
code.

Function Reference Page 194 of 854

Bezier_1_2_3

Syntax:
SI32 pdfBezier_1_2_3(
 const PPDF* IPDF, // Instance pointer
 double x1, // X-Coordinate of the first control point P1
 double y1, // Y-Coordinate of the first control point P1
 double x2, // X-Coordinate of the second control point P2
 double y2, // Y-Coordinate of the second control point P2
 double x3, // X-Coordinate of the end point P3
 double y3) // Y-Coordinate of the end point P3

Curved path segments are specified as cubic Bézier curves. Such curves are defined by four points:
the two endpoints (the current point P0 and the final point P3) and two control points P1 and P2.
Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0
to 1.0 in the following equation:

R(t) = (1 - t)³ P0 + 3t(1 - t)² P1+ 3t² (1 - t) P2 + t³ P3

When t = 0.0, the value of the function R(t) coincides with the current point P0; when t = 1.0, R(t)
coincides with the final point P3. Intermediate values of t generate intermediate points along the
curve. The curve does not, in general, pass through the two control points P1 and P2. Cubic Bézier
curves have two desirable properties:

• The curve can be very quickly split into smaller pieces for rapid rendering.

• The curve is contained within the convex hull of the four points defining the curve, most
easily visualized as the polygon obtained by stretching a rubber band around the outside of
the four points. This property allows rapid testing of whether the curve lies completely
outside the visible region, and hence does not have to be rendered.

The most general type of curve in PDF is the cubic Bézier curve with two control points. The starting
point P0 is the current point that was set before by a painting operator (MoveTo(), LineTo() and so
on). PDF also supports two other Bézier curves with only one control point (see Bezier_1_3() and
Bezier_2_3()). Theses two curve types are rarely used but still supported by all Acrobat versions incl.
DynaPDF.

As mentioned earlier the function requires a start point that must be set with MoveTo() or another
painting operator beforehand. Once the start point was set, multiple curve segments can be drawn
to build circles, ellipses or other curved paths. The DynaPDF functions DrawArc(), DrawCircle(),
Ellipse() and so on use all Bezier_1_2_3() to construct the path.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 195 of 854

Bezier_1_3

Syntax:
SI32 pdfBezier_1_3(
 const PPDF* IPDF, // Instance pointer
 double x1, // X-Coordinate of the first control point P1
 double y1, // Y-Coordinate of the first control point P1
 double x3, // X-Coordinate of the end point P3
 double y3) // Y-Coordinate of the end point P3

This function paints a Bézier curve with one control point. The second control point P2 coincides
with the final point P3 of the curve. The start point P0 must be set with MoveTo() or any other
painting operator before.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Bezier_2_3

Syntax:
SI32 pdfBezier_2_3(
 const PPDF* IPDF, // Instance pointer
 double x2, // X-Coordinate of the second control point P2
 double y2, // Y-Coordinate of the second control point P2
 double x3, // X-Coordinate of the end point P3
 double y3) // Y-Coordinate of the end point P3

The third supported Bézier curve type paints also a curve with one control point. In this version the
first control coincides with initial point P0 of the curve. The start point P0 must be set with
MoveTo() or any other painting operator before.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Bézier curves:

Function Reference Page 196 of 854

BuildFamilyNameAndStyle

Syntax:
LBOOL fntBuildFamilyNameAndStyle(

const void* IFont, // Pointer to font object
char Name[128], // 128 bytes long font name buffer
TFStyle ADDR Style) // Font style

The function tries to extract the famaily name and font style from a font object. If the family name is
not available or could not be algorithmically identified, the postscript name is copied to the
parameter Name instead. The return value indicates whether the copied font name is probably a
family name or a postscript name. The font selection mode should be set according to the return
value when trying to load the font from the system (see SetFontSelMode()).

Return values:

If the family name could be extracted the return value is 1. If the font does not contain a family name
or if there is no safe indication whether the font name represents a family name the return value is
false.

Example (C++):
SI32 SetPDFFont(const void* IFont)
{
 SI32 retval;

TFStyle style;
TFontSelMode selMode;
char fontName[128];

 // Get the font name
if (fntBuildFamilyNameAndStyle(IFont, fontName, fontStyle))

 selMode = smFamilyName;
else

 selMode = smPostScriptName;
 // Set font selection mode for the first search run

pdfSetFontSelMode(pdf, selMode);
if ((retval = pdfSetFont(pdf, fontName, style, 12, true, cp1252)) < 0)
{

 // If the font cannot be found then search again with reversed font
 // selection mode.
 if (selMode == smFamilyName)

selMode = smPostScriptName;
else

selMode = smFamilyName;
 pdfSetFontSelMode(pdf, selMode);
 return pdfSetFont(pdf, fontName, style, 12.0, true, cp1252);
 }else
 return retval;
}

Function Reference Page 197 of 854

CalcPagePixelSize (Rendering Engine)

Sytax:
void rasCalcPagePixelSize(
 IPGE* PagePtr, // Page pointer
 TPDFPageScale DefScale, // Scaling type
 float Scale, // Scaling factor (if DefScale = psFitZoom)
 UI32 FrameWidth, // Width of the output rectangle
 UI32 FrameHeight, // Height of the output rectangle
 TRasterFlags Flags, // Additional flags
 UI32* Width, // Out -> Image width in pixels (required)
 UI32* Height) // Out -> Image height in pixels (required)

The function calculates the image size of a page exactly in the way as RenderPage() does, if called
with the same parameters. This makes it possible to create the image in the required size so that it
can be rendered without a border.

CalcWidthHeight

Syntax:
double pdfCalcWidthHeight(
 const PPDF* IPDF, // Instance pointer
 double OrgWidth, // Original width of the image or template
 double OrgHeight, // Original height of the image or template
 double ScaledWidth, // Scaled Width
 double ScaledHeight) // Scaled Height

This function calculates the scaled width or height of a given size in the same way as InsertImage()
or PlaceTemplate(). It can be used to calculate the new width or height of an image or template
before it will be inserted to the page.

• If ScaledWidth == 0 and fabs(ScaledHeight) > 0 the function returns the scaled width with exact
proportions in relation to the given values of OrgWidth and OrgHeight.

• If fabs(ScaledWidth) > 0 and ScaledHeight == 0 the function returns the scaled height with
exact proportions in relation to the given values of OrgWidth and OrgHeight.

The function uses the absolute values so that the parameters can be negative. The parameters
OrgWidth and OrgHeight must be greater zero.

Return values:

If the function succeeds the return value is unequal -1. If the function fails the return value is -1.

Function Reference Page 198 of 854

CaretAnnot

Syntax:
SI32 pdfCaretAnnot(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate
 double PosY, // Y-Coordinate
 double Width, // Width of the annotation
 double Height, // Height of the annotation
 UI32 Color, // Color of the caret symbol
 TPDFColorSpace CS, // Color space in which the color is defined
 const char* Author, // Optional author
 const char* Subject, // Optional subject
 const char* Content) // Optional content

The function creates a caret annotation. This type of annotation is typically used to mark a position
on a page where a user should add or edit text.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
bounding rectangle. If the coordinate system is top-down it defines the upper left corner.

This annotation type has an associated PopUp annotation that displays the string Content in a
floating window. The initial window state of the associated PopUp annotation is closed by default
but the state can be changed with SetAnnotOpenState() if necessary.

The caret annotation is the only annotation type that can be rotated in 90 degrees steps like form
fields. This is not documented in the PDF specs but it works in all Acrobat and Reader versions.

To rotate the annotation call SetFieldOrientation(). Since this function requires normally a field
handle, the annotation handle must be marked as annotation handle with the constant
PDF_ANNOT_INDEX. The annotation handle must be added to the constant with a binary or
operator.

Example (C++):
...
SI32 a = pdfCaretAnnot(pdf, 50.0, 50.0, 20.0, 20.0, PDF_BLUE,
 csDeviceRGB, "Jim Tester", "Test", "Test");
// Rotate the annotation 90 degrees
pdfSetFieldOrientation(pdf, a | PDF_ANNOT_INDEX, 90);
...

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 199 of 854

ChangeAnnotName

Syntax:
SI32 pdfChangeAnnotName(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation handle
 const char* Name) // Annotation name or NULL

This function changes or deletes the optional unique name of an annotation. The parameter Handle
must be a valid annotation handle. If the parameter Name contains an empty string or if it is set to
NULL, the name will be deleted. The annotation name must be a unique string so that the
annotation can be identified in JavaScript actions. The string could be a GUIID, a hash, or any other
string that uniquely identifies the annotation.

Remarks:

This function is available in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeAnnotPos

Syntax:
SI32 pdfChangeAnnotPos(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation handle
 double PosX, // X-Coordinate of the annotation
 double PosY, // Y-Coordinate of the annotation
 double Width, // Width in unscaled units
 double Height) // Height in unscaled units

This function changes the position and size of an annotation. The bounding box of annotations is
defined in bottom up coordinates. The reference point is Left, Bottom of the bounding box that can be
retrieved by GetAnnotBBox(), GetAnnotEx(), or GetPageAnnotEx(), for example.

The annotation extends to top, right when scaling to a larger size. The function rebuilds the
appearance stream after changing the position or size if possible.

Note that the function considers the current coordinate system (bottom up or top down). In order to
change the position or size of an existing annotation, the coordinate system should be set to
pcBottomUp beforehand (see SetPageCoords() for further information).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 200 of 854

ChangeBookmark

Syntax:
SI32 pdfChangeBookmark(
 const PPDF* IPDF, // Instance pointer
 SI32 ABmk, // Handle of a bookmark
 const char* Title, // New title
 SI32 Parent, // New parent bookmark
 UI32 DestPage, // New destination page
 SI32 Open) // Open the bookmark?

This function changes an existing bookmark. There is no difference between imported bookmarks
and bookmarks which were created with DynaPDF. The parameter ABmk requires a valid bookmark
handle. A bookmark handle is a simple array index ranging from zero to GetBookmarkCount() -1.

The parameter Title can be NULL if it should be deleted. The parameter Open will be ignored if the
bookmark contains no children.

The function does not check whether the destination page exists at the time the bookmark is
changed. If the destination page does not exist when the file is closed then it will be set to page 1.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a title in an arbitrary encoding, convert
the string to Unicode with the function ConvToIncode() and use the Unicode version to change the
bookmark.

To get the handle of a specific bookmark use the functions FindBookmark() and
FindNextBookmark() to find the bookmark.

It is also possible to enumerate all bookmarks by using GetBookmarkCount() and GetBookmark()
until the used bookmark was found (see GetBookmark() for further information).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 201 of 854

ChangeNamedDest

Syntax:
LBOOL pdfChangeNamedDest(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // Object type to which the handle belongs
 UI32 Handle, // Object handle
 const char* NewDestName) // New destination name

typedef enum TObjType
{
 otAction, // Ok
 otAnnotation, // Ok
 otBookmark, // Ok
 otCatalog, // Unsupported
 otField, // Unsupported
 otPage, // Unsupported
 otPageLink // Ok
}TObjType;

The function changes the name of a named destination. Named destinations can be accessed by link
annotations, bookmarks, and actions. For link annotations the object type otPageLink or
otAnnotation can be used.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeFont

Syntax:
SI32 pdfChangeFont(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle) // Handle of the new font

This function changes or sets the font to the one of the parameter Handle. Handle must be a valid font
handle that was returned by SetFont(), SetFontEx(), SetCIDFont(), or LoadFont().

The font size is taken from the current font if any. If no font is active when the function is called, the
font size will be set to the value that was used to load font the last time.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 202 of 854

ChangeFontEx

Syntax:
LBOOL pdfChangeFontEx(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle, // Font handle
 double FontSize, // Font size
 TFStyle Style) // Style flags

This function changes or sets the font to the one of the parameter Handle. Handle must be a valid font
handle that was returned by SetFont(), SetFontEx(), SetCIDFont(), or LoadFont().

The style flags should be the same as in the initial SetFont() call with exception of the flags
fsUnderline or fsStriked which can be used to underline or strikeout text.

The parameter FontSize must be greater zero.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeFontSize

Syntax:
SI32 pdfChangeFontSize(
 const PPDF* IPDF) // Instance pointer
 double Size) // New font size

This function changes the font size of the current font. The font size must be greater zero.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 203 of 854

ChangeFontStyle

Syntax:
LBOOL pdfChangeFontStyle(
 const PPDF* IPDF, // Instance pointer
 TFStyle Style) // New font style

typedef SI32 TFStyle;
#define fsNone 0
#define fsUnderlined 4
#define fsStriked 8

This function changes the style of the current font. Only the style flags fsUnderlined and fsStriked
can be set with this function. The font styles fsBold and fsItalic requires another font file that must
be selected with SetFont().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeFontStyleEx

Syntax:
LBOOL pdfChangeFontStyleEx(
 const PPDF* IPDF, // Instance pointer
 TFStyle Style) // New font style

The function changes the font style of a font like ChangeFontStyle() but it accepts also font styles
like fsBold or fsItalic. These flags can be used to explicitely enable the emulation of a missing font
style.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeJavaScript

Syntax:
SI32 pdfChangeJavaScript(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle, // Handle of global JavaScript
 const char* NewScript) // New JavaScript

The function replaces a global JavaScript with a new one. The parameter AHandle must be a valid
handle of a global JavaScript. The parameter NewScript must be a valid JavaScript. The script is not
checked by DynaPDF whether it is valid or not. Note that older Acrobat versions do not support all
JavaScript functions. Due to several bugs in certain Acrobat versions invalid scripts can cause access
violations in Adobe's Acrobat. Test your scripts carefully with all Acrobat versions which must be
supported.

Function Reference Page 204 of 854

Remarks:

This function is implemented in an Ansi and Unicode compatible version. However, because
JavaScript 1.2 is not Unicode compatible, Unicode encoded scripts are translated to a platform
specific encoding prior to interpretation by the JavaScript engine. This conversion is done in the
viewer application and can cause errors. The usage of scripts in Unicode format should be avoided
if possible.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeJavaScriptAction

Syntax:
SI32 pdfChangeJavaScriptAction(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle, // Handle of a JavaScript action
 const char* NewScript) // New JavaScript

The function replaces the script of a JavaScript action with a new one. The parameter AHandle must
be a valid handle of a JavaScript action. The parameter NewScript must be a valid JavaScript. The
script is not checked by DynaPDF whether it is valid or not. Note that older Acrobat versions do not
support all JavaScript functions. Due to several bugs in certain Acrobat versions invalid scripts can
cause access violations in Adobe's Acrobat. Test your scripts carefully with all Acrobat versions
which must be supported.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Because JavaScript 1.2 is
not Unicode compatible, Unicode encoded scripts are translated to a platform specific encoding
prior to interpretation by the JavaScript engine. This conversion is done in the viewer application
and can cause errors. The usage of scripts in Unicode format should be avoided if possible.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeJavaScriptName

Syntax:
SI32 pdfChangeJavaScript(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle, // Handle of global JavaScript
 const char* Name) // New name of the script

This function changes the name of a global JavaScript. The parameter Name defines the name of this
script. This name is NOT used to identify a function inside the JavaScript; it is only used in Adobe's

Function Reference Page 205 of 854

Acrobat to select a specific script. The script name must be unique. Different scripts cannot not use
the same name.

Return value:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeLinkAnnot

Syntax:
SI32 pdfChangeLinkAnnot(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation handle
 const char* URL) // URL or file path

This function changes the link of a file link or web link annotation. The parameter AHandle must be
a valid handle of a file link, page link, or web link Annotation. The parameter URL can be either a
file path or an URL to an internet resource; it must not be an empty string or NULL. Note that you
cannot change the type of the annotation with this function. For example, a web link annotation
requires still a URL to an internet resource, while a file link annotation requires a path to a file on a
local hard drive.

Remarks:

Imported file link or web link annotations are mostly defined as page link annotation because it is
impossible to distinguish between these types during import. Use the function FindLinkAnnot() if
you need to change an imported file link or web link annotation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ChangeOCGName

Syntax:
LBOOL pdfChangeOCGName(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG handle
 const char* Value) // New name (required)

The function changes the name of an Optional Content Group (OCG). See also Layers (Optional
Content).

Remarks:

This function is implemented as in Ansi and Unicode compatible variant.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 206 of 854

ChangeSeparationColor

Syntax:
LBOOL pdfChangeSeparationColor(
 const PPDF* IPDF, // Instance pointer
 UI32 CSHandle, // Handle of the separation color space
 UI32 NewColor, // New color in the alternate color space
 TExtColorSpace Alternate, // Alternate color space
 SI32 AltHandle) // Color space handle or -1 for device spaces

The function changes the color of a separation color space. The new color value must be defined in
the alternate color space. The alternate color space can be any device or ICC based color space
including Lab. If a non-device color space is used, the parameter AltHandle must be set to the color
space handle of the alternate color space.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CheckCollection

Syntax:
LBOOL pdfCheckCollection(

const PPDF* IPDF) // Instance pointer

The function checks whether user defined data fields in embedded files are consistently defined
with collection fields. User defined collection fields can be used to provide additional information
relating to embedded files. It is also possible to use such fields to sort the list of embedded files in an
arbitrary manner. However, the data types used in the embedded file specification must correspond
to the definition in the collection.

This function is especially useful to check the integrity of the file if multiple PDF collections were
merged into one file.

See also CreateCollection(), CreateCollectionField().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CheckConformance

Syntax:
SI32 pdfCheckConformance(

const PPDF* IPDF, // Instance pointer
TConformanceType Type, // PDF Version to check
TCheckOptions Options, // various options
const void* UserData, // User defined pointer
TOnFontNotFoundProc* OnFontNotFound, // Font replacement callback
 TOnReplaceICCProfile* OnReplaceICCProfile) // ICC profile callback

Function Reference Page 207 of 854

typedef enum
{
 ctPDFA_1b_2005, // Compatibility to PDF/A 1b 2005
 ctNormalize, // Normalization is useful for print workflows
 ctPDFA_2b, // Convert the file to PDF/A 2b if possible
 ctPDFA_3b, // Convert the file to PDF/A 3b if possible
 /* The following constants convert the file to PDF/A 3b and set the whished ZUGFeRD, ZUGFeRD 2.0
 * or Factur-X conformance level in the XMP metadata. CheckConformance() does not validate the
 * XML invoice but it checks whether it is present. The embedded XML invoice must be named as
 * follows (case sensitive and without quotes):
 *
 * ZUGFeRD 1.0: "ZUGFeRD-invoice.xml"
 * ZUGFeRD 2.0: "zugferd-invoice.xml"
 * Factur-X: "factur-x.xml"
 * XRechnung: "xrechnung.xml"
 *
 * Setting the correct ZUGFeRD or Factur-X conformance level is important since this value
 * defines which fields must be present in the XML invoice.
 */
 // ZUGFeRD 1.0
 ctZUGFeRD_Basic, // Basic profile
 ctZUGFeRD_Comfort, // Comfort profile
 ctZUGFeRD_Extended, // Extended profile
 // ZUGFeRD 2.0:
 ctZUGFeRD2_Minimum, // Minimum profile
 ctZUGFeRD2_Basic, // Basic profile
 ctZUGFeRD2_Basic_WL, // Basic WL profile
 ctZUGFeRD2_Comfort, // EN 16931 profile
 ctZUGFeRD2_Extended, // Extended profile
 // Factur-X / ZUGFeRD 2.1:
 ctFacturX_Minimum, // Minimum profile
 ctFacturX_Basic, // Basic profile
 ctFacturX_Basic_WL, // Basic WL profile
 ctFacturX_Comfort, // EN 16931 profile
 ctFacturX_Extended, // Extended profile
 ctFacturX_XRechnung, // German XRechnung profile
 ctPDFA_2u, // Convert the file to PDF/A 2u if possible
 ctPDFA_3u, // Convert the file to PDF/A 3u if possible
 ctPDFA_4, // Convert the file to PDF/A 4 if possible. Embedded files are supported but
 // no file attach annotations.
 ctPDFA_4e, // Convert the file to PDF/A 4e if possible. This version allows 3D contents
 // in rich media annotations.
 ctPDFA_4f // Convert the file to PDF/A 4f if possible. This version allows file attach
 // annotations.
}TConformanceType;

typedef UI32 TCheckOptions;
#define coDefault 0x0010FFFF // Default flags
#define coEmbedSubsets 0x00000001 // Already done, does nothing (obsolete)
#define coDeleteTransferFuncs 0x00000002 // Imported files only
#define coDeleteMultiMediaContents 0x00000004 // Imported files only
#define coDeleteActionsAndScripts 0x00000008 // Imported files only
#define coDeleteInvRenderingIntent 0x00000010 // Imported files only
#define coFlattenFormFields 0x00000020 // Flatten form fields
#define coReplaceV4ICCProfiles 0x00000040 // Imported files only
#define coDeleteEmbeddedFiles 0x00000080 // Imported files only
#define coDeleteOPIComments 0x00000100 // Imported files only
#define coDeleteSignatures 0x00000200 // Imported files only

#define coDeletePostscript 0x00000400 // Delete Postscript XObjects
#define coDeleteAlternateImages 0x00000800 // Delete alternate images
#define coReComprJPEG2000Images 0x00001000 // JPEG 2000 images are prohibited in PDF/A 1. The
 // conversion to PDF/A 1 will fail if the flag is
 // absent and if a file contains JPEG 2000 images.
#define coResolveOverprint 0x00002000 // PDF/A 2 and 3. Set the overprint mode to 0 if
 // overprint mode = 1 and if overprinting for fill or
 // stroke is true and if a ICCBased CMYK color space is
 // used. Note that DeviceCMYK is treated as ICCBased

Function Reference Page 208 of 854

 // color space due to implicit color conversion rules.
#define coMakeLayerVisible 0x00004000 // PDF/A 2 and 3 prohibit invisible layers.
#define coDeleteAppEvents 0x00008000 // PDF/A 2 and 3. Application events are prohibited in
 // PDF/A. The view state will be applied.
#define coReplCCITTFaxWithFlate 0x00010000 // Imported files only
#define coApplyExportState 0x00020000 // Meaningful only if coDeleteAppEvents is set. Apply
 // the export state.
#define coApplyPrintState 0x00040000 // Meaningful only if coDeleteAppEvents is set. Apply
 // the print state.

#define coDeleteReplies 0x00080000 // Delete annotation replies. If absent, replies will be
 // converted to regular text annotations.
#define coDeleteHalftones 0x00100000 // Delete halftone screens.
#define coFlattenLayers 0x00200000 // PDF/A 1b only. Flatten layers if any.
#define coDeletePresentation 0x00400000 // Presentations are prohibited in PDF/A 2 and 3.

#define coCheckImages 0x00800000 // Images will be decompressed to identify damages.
#define coDeleteDamagedImages 0x01000000 // Meaningful only if coCheckImages is set.
#define coRepairDamagedImages 0x02000000 // Meaningful only if coCheckImages is set. If set, try
 // to recompress a damaged image. The new image is maybe
 // incomplete but error free. This flag can be combined
 // with coDeleteDamagedImages to delete the image if
 // recompression fails.
#define coNoFontEmbedding 0x10000000 // Normalization only
#define coFlushPages 0x20000000 // Write converted pages directly into the output file
 // to reduce the memory usage.
#define coAllowDeviceSpaces 0x40000000 // If set, device color spaces will not be replaced with
 // ICC based color spaces. This flag is meaningful for
 // normalization only.
#define coResetAnnotAppearance 0x80000000 // If set, appearance streams of annotations are rebuild
 // before executing CheckConformance().
// Common default flags for normalization.
#define coDefault_Normalize (coAllowDeviceSpaces | coNoFontEmbedding)
// Common default flags for different PDF/A versions:
#define coDefault_PDFA_1 (coDefault | coFlattenLayers)
#define coDefault_PDFA_2 (coDefault | coDeletePresentation)
#define coDefault_PDFA_3 (coDefault_PDFA_2 & ~coDeleteEmbeddedFiles)
#define coDefault_PDFA_4 (coDefault_PDFA_2 & ~coDeleteEmbeddedFiles)

typedef SI32 PDF_CALL TOnFontNotFoundProc(
const void* Data, // Pointer UserData of CheckConformance
const void* PDFFont, // PDF font handle
const char* FontName, // PostScript name of the font
SI32 Style, // Font style
SI32 StdFontIndex, // Standard font index
LBOOL IsSymbolFont); // Set to 1 if the font is a symbol font

typedef SI32 PDF_CALL TOnReplaceICCProfile(

const void* Data, // Pointer UserData of CheckConformance
TICCProfileType Type, // Required ICC profile type to be embedded
SI32 ColorSpace); // Color space handle

typedef enum
{
 ictGray = 0,
 ictRGB = 1,
 ictCMYK = 2,
 ictLab = 3
}TICCProfileType;

The function converts a PDF file to a specific PDF standard according to the parameter Type.

The regular DynaPDF versions contain a restricted version of CheckConformance() which cannot be
used if one or more pages from external PDF files were imported.

The conversion of arbitrary imported PDF files requires a separate license of the PDF/A Extension.

Function Reference Page 209 of 854

The PDF/A Extension represents in fact the unrestricted version of this and related functions
(ReplaceFont() and so on) which are required to convert arbitrary PDF files to PDF/A.

If the parameter Type is set to ctNormalize the function checks the PDF file for errors, rebuilds all
embedded fonts, optionally embeds non-embedded fonts, and repairs potential file errors if
possible. The resulting PDF file is easy to read and should not produce any printing error.
Normalization is useful in print workflows to detect potential errors before the file will be printed.
This feature can be used to check imported PDF files or pages. It is not meaningful when creating
new PDF files with DynaPDF.

Note that the flag if2Normalize must be set with SetImportFlags2() when importing external PDF
files. This flag enables additional error checks during import.

Note also that CheckConformance() is no preflight function! It is possible to check whether a PDF
file can be converted to PDF/A but it is not possible to check whether a file is already a valid PDF/A
file!

This is a big difference since a preflight function must apply many additional checks, e.g. if PDF
objects are formatted as described in the PDF/A standard, as well as all other requirements are meet.
Such checks are not required in a converter since the file structure and most objects will be rebuild
when the file is stored. It is not planned to extend the function with preflight capabilities in the near
future.

The function supports a large set of processing options but most of them are only meaningful if
imported PDF files or imported pages should be converted to PDF/A.

Notice

CheckConformance() cannot check glyph outlines of simple TrueType fonts because the required
overhead would be too large. However, the function makes sure that outlines will be checked when
CloseFile() is called. Therefore, be aware that CloseFile() can fail also if CheckConformance()
succeeds.

Important callback functions

OnFontNotFound

The callback function OnFontNotFound is not required to check newly created PDF files but it should
be set when converting imported PDF files. As shown in the example code, a default font like Arial
can be loaded whenever a PDF font cannot be found on the system. The function checks whether the
font metrics of the replacement font are compatible with the original PDF font.

OnReplaceICCProfile

The OnReplaceICCProfile callback function is optional too, but mostly required! The callback function
is called whenever a device color space is used and if no corresponding output intent or default ICC

Function Reference Page 210 of 854

based color space is available. It is also called if an embedded ICC profile must be replaced due to
damages or if an unsupported profile version is used.

The conversion capabilities are very limited if this callback function is not set! If you get an error like
" File uses multiple device color spaces!" then please set this callback function so that ICC profiles
can be loaded if necessary.

General requirements when creating PDF/A files:

• When importing PDF files or pages, the flag ifPrepareForPDFA must be set with
SetImportFlags().

• Fonts must be embedded.

• Images must not contain an alpha channel (PDF/A 1b only).

• The flag gfUseImageColorSpace should be set when inserting images. This flag makes sure that
embedded ICC profiles will be considered. See SetGStateFlags() for further information.

• PDF/A 1a files are tagged PDF files. That means the entire PDF file must be tagged and the
file must be created in the logical reading order. CheckConformance() does not validate the
structure tree and it does not check whether untagged elements are used on a page. See
CreateStructureTree(), OpenTag(), and so on for further information.

• PDF/A files require an Ouptut Intent. The output intent represents the destination color
space for which the file was created. The output intent must be added after
CheckConformance() was executed. The required ICC profile must be attached depending
on the return value of the function (see Return Values below).

With CheckConformance() you can check whether prohibited features were used. Once the right
settings are found, it is normally no longer required to call this function when creating new PDF
files. The parameter CheckOptions should be set to coDefault or to zero so that prohibited features
raise an exception.

If you have a license of the PDF/A Extension for DynaPDF, then you can also convert arbitrary
imported PDF files to PDF/A 1b, 2b, 3b, 4, 4e, and 4f.

In this case, a few additional notes should be considered:

• External CMaps should be loaded delayed with SetCMapDir() if possible. The CMaps are
sometimes required, especially for Asian PDF files.

• It is strongly recommendet to set an error callback function before CheckConformance() is
executed. The function passes warnings and error messages to the callback function if set.
These messages should be stored in an error log so that the user can check whether changes
were made. Errors are always fatal; the return value is ignored in this case. When a warning
is passed to the error callback function (this is the case when something must be changed),
then the return value can be either 0 to accept the change or -1 to break processing. In the
latter case no PDF file will be produced.

Function Reference Page 211 of 854

It is also possible to redirect all error messages and warnings into the error log of DynaPDF.
See SetErrorMode() for further information.

• The OnFontNotFont callback function is called when a non-embedded font is not available
and if no alternative font could be found on the system (DynaPDF uses already a mapping
table to find good alternative fonts for many common fonts). Note that many PDF files
contain invalid font names. Since PDF files created by a specific application use mostly a
unique naming scheme, it is often possible to create your own mapping table for specific font
names so that such files can still be converted.

If your application knows a suitable alternate font then you can replace the PDF font with
the new one with ReplaceFont() or ReplaceFontEx(). The return value of the callback function
must be the retun value of ReplaceFont() or ReplaceFontEx() in this case. If no suitable
alternate font is known, then you can try to use a default font like Arial or return -1 to break
processing. A standard replacement font should be loaded with ReplaceFont().

CheckConformace() checks whether the alternate font contains compatible glyph metrics and
whether all required glyphs are avaialble. Although it is very often possible to replace
unknown fonts with Arial, it should be checked whether the appearance of the new font is
acceptable.

Since different fonts use different glyph widths, text rendered with a replacement font looks
often not as good as if the same text was rendered with a standard font that a viewer used to
display the text, also if the same font was used in both cases.

The reason why this happens is very simple: When a PDF viewer uses a standard font to
display text of a non-available font, then glyphs will be scaled to the widths of the original
non-embedded font (the glyph widths are stored in the PDF file). That is the reason why it is
often not noticeable that a text was rendered with an alternate font.

However, this scaling is no longer available when the font becomes embedded. To achieve
the same result it would be required to create a synthetic font that contains scaled outlines
for every glyph but such a feature is not available in DynaPDF.

• The OnReplaceICCProfile callback function is called when an additional default ICC based
color space must be created (this is the case when a page uses mixed color spaces), or when a
PDF file contains either damaged or ICC profiles of an unsupported version.

It is relatively seldom required to replace embedded ICC profiles but it is often required to
create additional default color spaces. So, it is very important that this callback function is
present. In the callback function you must call ReplaceICCProfile() with the requested color
profile type or return -1 if no such profile is available. The return value of the callback
function must be set to the one of ReplaceICCProfile().

The most common ICC profiles, which are also used in Adobes Acrobat or Reader, can be
downloaded from the Adobe website. These profiles are freely available and can be

Function Reference Page 212 of 854

delivered with your application. Please consider the license agreement of the profile
package.

The pointer UserData of CheckConformance() is always passed unchanged to the callback functions.
This parameter is not available and not required in C#, VB .Net, or PHP.

Type3 font conversion

CheckConformance() is able to convert the 14 PDF standard fonts to Type3 counterparts if no
suitable system font is available (see SetFont/The 14 Standard Fonts for further information).
However, due to issues in Adobe's Acrobat or Reader, and due to the way how Type3 fonts are
defined in PDF, several restrictions must be considered:

• Whereas all other font formats define only the shape of a glyph, Type3 fonts define the
shape and the way how glyphs must be painted, e.g. filled, stroked, or both. If a Type3 font
should be used with different text draw modes, then separate fonts must be created for each
mode, e.g. a font for filled glyphs, one for stroked and one for filled and stroked glyphs.

• It is also not possible to draw stroked Type3 glyphs with arbitrary line widths, dash
patterns, or different style parameters as it is possible with every other font format since the
specs say that all these parameters must be explicitely defined in glyph content streams!

• With exception of Acrobat 8 and 9, Acrobat and Reader use the current fill color instead of
the stroke color to render stroked Type3 glyphs that were defined with the d1 operator. The
only way to avoid this issue is to define the text color in every glyph. This requires again a
seperate font for every color with which the font should be used!

Summay

We can assume that it doesn't make sense to create dozens of fonts due to the idiotic definition of
the Type3 font format. This function creates exactly one Type3 counterpart for a standard font with
the graphics state parameters when the font is first used. If the font will be used with another draw
mode later then the function returns immediatly with an error and no PDF file will be produced.

If a stroked version of a font was created then it does not check whether the line cap style, line join
style, line dash pattern or line width will be changed if the font is used with the same text draw
mode later.

Normalization

When normalizing PDF files set also the flag if2Normalize with SetImportFlags2(). This flag enables
a few additional checks when importing a PDF file. Note that it is not meaningful to normalize a
PDF file before calling CloseFile() if the file was fully created by DynaPDF beforehand. This would
just waste processing time.

Normalization is a process to make sure that a PDF file is error free and does not cause printing
errors. The function applies almost the very same checks as for PDF/A 2 conversion. Missing glyphs
are reported but do not break processing.

Function Reference Page 213 of 854

Note that it is in fact not possible to determine whether a glyph is really missing. The function can
only check whether a glyph on index 0 is referenced somewhere or if a font does not contain a
requested glyph and falls back to notdef. Also the latter case can be wanted behaviour.

Index 0 is reserved for the notdef glyph in all font formats but many PDF creators decided to store
the first glyph on index 0. This was mostly an optimization in older PDF libraries but this kind of
optimization violates font standards. So, whether a glyph is really missing cannot be determined
algorithmically but we can assume that something went wrong during the file creation.

However, for a printer it is not relevant whether the glyph to be printed is located on index 0 or
somewhere else. So, whether missing glyph warnings should be ignored or not is up to the caller.

Font embedding

Printing errors on Postscript devices have mostly to do with non-embedded fonts. The function can
embed non-embedded fonts but it is also possible to convert glyphs of non-embedded fonts to
outlines with Optimize(). The latter solution is usually better because font substitution can lead to
visible distortions if the glyph metrics are not fully compatible.

The reason why the conversion of non-embedded fonts to outlines produces often better results is
the fact that glyphs of embedded fonts are not scaled to the destination widths as it would be the
case if the font is not embedded (PDF fonts contain the widths of all glyphs, also if the font is not
embedded).

Converted outlines preserve this scaling and that is the reason why the result looks often good also
if a substituted font contains incompatible metrics.

If you want to combine Optimize() with CheckConformance() without storing the result in a
temporary file then set the flag ofInMemory but do not set the flag ofNewLinkNames since this can
cause errors in the CheckConformance() call. Note that processing in memory should be done for
relatively small files only since the memory usage grows quickly if many pages need to be
converted.

PDF/A 1b:

When creating new PDF/A 1a or PDF/A 1b files, the following features are prohibited:

• The fill or stroke alpha constant in an extended graphics state must be 1.0 if present (see
CreateExtGState()).

• Transparency groups, blend modes, as well as alpha channels in images.

• Layers (CreateOCG(), CreateOCMD() and all related functions).

• Annotations which are not defined in PDF 1.4. Highlight annotations cannot be used since
these annotations require the blend mode Multiply.

• Form fields (form fields will be flattened if present). Note that check boxes use the font
ZapfDingbats which is mostly not present on a Windows system.

Function Reference Page 214 of 854

• Embedded ICC profiles with a major version higher than 2. Version 4 profiles cannot be used
in PDF/A 1 files.

• PDF/A files cannot be encrypted. The usage of CloseFileEx() or CloseAndSignFileEx() is not
allowed.

• All features which are not defined in PDF 1.4.

PDF/A 2b, 2u, 3b, 3u

PDF/A 2b, 2u, 3b, 3u based on PDF 1.7 and hence support more features like transparency or
optional contents (layers). The only difference between PDF/A 2b and 3b is that the latter version
supports also embedded files. The following features are prohibited:

• Annotations which are not defined in PDF 1.7.

• Form fields (form fields will be flattened if present).

• Overprinting is permitted but the overprinting mode cannot be set to 1 if an ICCBased
CMYK color space is used. Due to implicit color conversion rules this applies also to
DeviceCMYK.

• Application events are prohibited in PDF/A 2 and 3 (see AddOCGToAppEvent() for further
information).

• Annotation replies are still prohibited (see SetAnnotMigrationState() for further
information).

• PDF/A files cannot be encrypted. The usage of CloseFileEx() or CloseAndSignFileEx() is not
allowed.

• PDF/A 3b: Embedded files must be associated with a PDF object. See AssociateEmbFile() for
further information.

PDF/A 4, 4e, 4f

PDF/A 4 files based on PDF 2.0. PDF/A 4e and 4f support embedded files but file attach annotations
are supported by PDF/A 4f only.

Main differences in comparison to PDF/A 3:

• The flag coFlushPages is not supported since the special color space handling requires a
cleanup run when closing the file. Links to color space resources must might be changed in
this run. This is only possible if parts of the document have not already been written to the
output file.

• Overprinting is fully supported.

• Geospatial and rectilinear measurement properties are supported.

• Type1 and Type5 hafltone screens are supported.

Function Reference Page 215 of 854

• PDF/A 4e enables beneeth embedded files the usage of 3D contents in RichMedia
annotations. Note that RichMedia annotations are based on Flash.

• File attach annotations are supported by PDF/A 4f only.

It is strongly recommended to set the import flag if2UseProxy with SetImportFlags2() to reduce the
memory usage when importing PDF files.

Since DynaPDF must rebuild all content streams of the PDF file, the flag coFlushPages can also be set
to reduce the memory usage during conversion (not supported by PDF/A 4). This flag can be set if a
PDF file is larger than 5 or 10 MB for example. For small PDF files the flag should be absent.

If the flag coFlushPages was set then a few objects must be written as indirect references. If you want
a perfectly organized PDF file then import the resuling PDF file again and close the file, finished.
This removes unnecessary references. However, be aware that this saves only a few bytes.

ZUGFeRD, ZUGFeRD 2.0, Factur-X / ZUGFeRD 2.1, XRechnung

The only difference between PDF/A 3b and ZUGFeRD, ZUGFeRD 2.0, or Factur-X and ZUGFeRD
2.1 or higher is that the file must contain an embedded XML invoice. The embedded invoice must be
named as follows (case-sensitive and without quotes):

• ZUGFeRD 1.0: "ZUGFeRD-invoice.xml"

• ZUGFeRD 2.0: "zugferd-invoice.xml"

• Factur-X / ZUGFeRD 2.1: "factur-x.xml"

• XRechnung: "xrechnung.xml"

Note that ZUGFeRD 2.1 or higher and Factur-X are technically indentically defined, not only in
PDF! Therefore, both formats share the same version constants!

The invoice can be attached with AttachFile() or AttachFileEx(). The embedded file must also be
associated with the global catalog object with AssociateEmbFile(). This step is optional. If the file
was not already associated with the catalog object then it will be associated automatically.

However, if set, the parameter Relationship must be set to arAlternative, arData, or arSource depending
on the output version:

Profile Relationship

ctZUGFeRD_Basic arAlternative
ctZUGFeRD_Comfort arAlternative
ctZUGFeRD_Extended arAlternative
ctZUGFeRD2_Minimum arData or arSource
ctZUGFeRD2_Basic arAlternative
ctZUGFeRD2_Basic_WL arData or arSource
ctZUGFeRD2_Comfort arAlternative
ctZUGFeRD2_Extended arAlternative
ctFacturX_Minimum arData or arSource
ctFacturX_Basic arAlternative
ctFacturX_Basic_WL arData or arSource
ctFacturX_Comfort arAlternative
ctFacturX_Extended arAlternative

Function Reference Page 216 of 854

ctFacturX_XRechnung arSource

Note that the relationship for the profiles Basic, Comfort (EN 16931), and Extended must be set
differently depending on the country for which the invoice will be created. An invoice created for a
German recipient must set the relationship to arAlternative while the same invoice created for a
recipient in France must set it to arSource.

CheckConformance() sets the relationship to arAlternate or arData for the MINIMUM and BASIC WL
profiles for ZUGFeRD 2.0 or Factur-X / ZUGFeRD 2.1 if it was not already set. If arSource should be
used then call AssociateEmbFile() for the emdedded file (the attached XML invoice). Set the
parameter DestObject to adCatalog in this case.

If the embedded invoice cannot be found then a fatal error will be raised and no PDF file will be
created. If the file was found then the remaining settings will be applied if not already present.

ZUGFeRD, and Factur-X are permanently growing standards. Minor changes in a standard do often
not affect the PDF container. For example, the FacturX constants are compatible with at least
ZUGFeRD 2.2, and with Factur-X up to version 1.0.0.6. Factur-X 1.0.0.6 and ZUGFeRD 2.2 are
technically identically defined. The name ZUGFeRD is used for historical reasons.

Please send us an email if you're unsure whether a specific version is supported by DynaPDF.

Notice:

Although it would be technically no problem to create one large PDF file for multiple invoices, this
is not allowed in these standards. A valid ZUGFeRD or Factur-X invoice file can contain one invoice
only.

PDF/A conversion and normalization with enabled font embedding depends strongly on the
availability of fonts. The ability to convert standard fonts to Type3 was mainly added for the font
ZapfDingbats because this font is not available on most systems.

Return values

If the PDF file is compatible to PDF/A 1b the function returns one of the following values:

• 0 -> The PDF file is fully compatible to PDF/A 1b. Close the file with CloseFile(), finished.

• 1 -> A RGB ICC profile must be added to the document with AddOutputIntent().

• 2 -> A CMYK ICC profile must be added to the document with AddOutputIntent().

• 3 -> A Gray, RGB, or CMYK ICC profile must be added to the document with
AddOutputIntent() or AddOutputIntentEx(). DeviceGray compatible ICC profiles are rarely
available since this is mostly just a gamma table. However, you can use a RGB or CMYK
profile instead (a sRGB profile is preferred due to the smaller size).

• < 0 -> A negative return value indicates that an error occurred during conversion to PDF/A.
Note that the function raises always fatal exceptions, there is no PDF file in memory if the
conversion fails.

Function Reference Page 217 of 854

Remarks:

The return value of the function must not be ignored. If a required ICC profile will not be added to
the file, the resulting PDF file will not be compatible to PDF/A! The PDF file must be closed with
CloseFile(). The usage of CloseFileEx() is prohibited because PDF/A files must not be encrypted.

CheckConformance() can be called after the entire document was fully created. You must not call
the function multiple times on the same document in memory!

Example (C++):
// This example converts an arbitrary PDF file to PDF/A. In order to execute this code with a
// licensed version of DynaPDF, you need also a license of the PDF/A Extension. If you don't have
// such a license then don't set a license key! Otherwise the function would return with the error
// that claims that this feature is not available in your license...

// Warnings and errors are passed to the error callback function. The messages should normally be
// stored in an error log.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char* ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}
// This function will be called when a non-embedded font was not found on the system.
// DynaPDF uses already an internal mapping table for the most known good matches. However,
// some drivers write invalid font names into the file, e.g. when the PDF file was created
// from a PCL recourse. For such cases you can create your own mapping table or a default
// font.

// Since DynaPDF 3.0.49.148 the function is no longer called for the 14 PDF standard fonts
// because DynaPDF can now create Type3 versions of these fonts if no suitable system font
// is available.

SI32 PDF_CALL pdf_OnFontNotFount(const void* Data, const void* PDFFont,
 const char* FontName, SI32 Style, SI32 StdFontIndex, LBOOL IsSymbolFont)
{
 // Here you could use your own mapping table.
 // In this example we replace the font simply with Arial
 if (WeightFromStyle(Style) < 500)
 {
 // Only the weights 500 and 700 of Arial are installed by default.
 // If you have also light variants then it is not required to change the style.
 Style &= 0xF;
 Style |= fsRegular;
 }
 return pdfReplaceFont(Data, PDFFont, "Arial", Style, true);
}

SI32 PDF_CALL pdf_OnReplaceICCProfile(const void* Data, TICCProfileType Type, SI32 ColorSpace)
{
 // The ICC profiles to be used should normally be configured by the user.
 switch(Type)
 {
 case ictGray:
 return pdfReplaceICCProfile(Data, ColorSpace,
 "c:/Windows/System32/spool/drivers/color/gray_gamma2.2.icm");
 case ictRGB:
 return pdfReplaceICCProfile(Data, ColorSpace,
 "c:/Windows/System32/spool/drivers/color/sRGB Color Space Profile.icm");
 case ictCMYK:
 return pdfReplaceICCProfile(Data, ColorSpace,
 "c:/Windows/System32/spool/drivers/color/EuropeISOCoatedFOGRA27.icc");
 default: return -1;
 }
}

Function Reference Page 218 of 854

SI32 PDFToPDFA(const void* PDF, const char* InFileName, const char* OutFileName)
{
 pdfCreateNewPDF(PDF, NULL);
 // Don't override the producer with "DynaPDF 4.0..."
 pdfSetDocInfo(PDF, diProducer, NULL);
 // The flag ifPrepareForPDFA is required!
 pdfSetImportFlags(PDF,ifImportAll | ifImportAsPage | ifPrepareForPDFA);
 // Optional but recommended to reduce the memory usage
 pdfSetImportFlags2(PDF, if2UseProxy);
 if (pdfOpenImportFile(PDF, InFileName, ptOpen, NULL) < 0)
 {
 pdfFreePDF(PDF);
 return -1;
 }
 pdfImportPDFFile(PDF, 1, 1.0, 1.0);
 switch(pdfCheckConformance(PDF, ctPDFA_1b_2005, coDefault_PDFA_1,
 PDF, // We need the instance pointer in the callback functions
 pdf_OnFontNotFount,
 pdf_OnReplaceICCProfile))
 {
 case 1: pdfAddRenderingIntent(PDF, m_RGBProfile); break;
 case 2: pdfAddRenderingIntent(PDF, m_CMYKProfile); break;
 case 3: pdfAddRenderingIntent(PDF, m_GrayProfile); break;
 default: break;
 }
 // Still a PDF file in memory?
 if (pdfHaveOpenDoc(PDF))
 {
 if (!pdfOpenOutputFile(PDF, OutFileName))
 {
 pdfFreePDF(PDF);
 return -2;
 }
 pdfCloseFile(PDF);
 }
 TPDFError msg;
 msg.StructSize = sizeof(msg);
 SI32 e, errMsgCount = pdfGetErrLogMessageCount(PDF);
 for (e = 0; e < errMsgCount; e++)
 {
 pdfGetErrLogMessage(PDF, e, &msg);
 printf("Error: %s\n", msg.Message);
 }
 return 0;
}

int main(int argc, char* argv[])
{
 // Process as many files as possible with one instance
 void* pdf = pdfNewPDF();
 if (!pdf) return -3; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);

 pdfSetLicenseKey(pdf, "...");

 // Not required but strongly recommended. External CMaps should be available when converting
 // imported PDF files. The files are only loaded if necessary.

 // Use an absolute path if possible! Otherwise the CMaps cannot be loaded if the working
 // directory was changed.
 pdfSetCMapDir("c:/MyAppPath/Resource/CMap/", TLoadCMapFlags(lcmDelayed | lcmRecursive));

 SI32 retval = PDFToPDFA(pdf, "c:/test.pdf", "c:/cppout.pdf");

 pdfDeletePDF(pdf);
 return retval;
}

Function Reference Page 219 of 854

CheckFieldNames

Syntax:
SI32 pdfCheckFieldNames(
 const PPDF* IPDF) // Instance pointer

This function checks all currently defined interactive form fields for invalid duplicate field names.
Use this function if multiple interactive forms were imported. DynaPDF does not check or change
duplicate field names during import. Therefore, check the field names and change invalid names if
necessary before closing the document. If an interactive form contains duplicate field names of fields
with different types, the document will be damaged.

Remarks:

If a form contains invalid duplicate field names, the names must be changed with SetFieldName().
However, if such a field is used in a JavaScript action or by a global JavaScript, the JavaScript(s)
must also be changed to avoid error messages in Adobe's Acrobat.

Global JavaScripts can be accessed with the function GetJavaScript() and changed with the function
ChangeJavaScript(). A JavaScript action can be accessed with the function GetJavaScriptAction() and
changed with the function ChangeJavaScriptAction().

Return values:

The function returns the handle of the first invalid field name that was found, that is a value greater
or equal zero. If no invalid field name was found the return value is -1.

CircleAnnot

Syntax:
SI32 pdfCircleAnnot(
 const PPDF* IPDF, // Instance pointer
 double PosX, // y-coordinate of the annotation
 double PosY, // x-coordinate of the annotation
 double Width, // Width of the annotation
 double Height, // Height of the annotation
 double LineWidth, // Line width of the circle or ellipse
 UI32 FillColor, // Fill color or NO_COLOR. See description
 UI32 StrokeColor, // Stroke color or NO_COLOR. See description
 TPDFColorSpace CS, // Color space of the fill and stroke colors
 const char* Author, // Optional author
 const char* Subject, // Optional subject
 const char* Comment) // Optional comment

The function draws a circle annotation on the current open page. If the parameters Width and Height
are equal the function draws a circle, an ellipse otherwise. If the annotation should be drawn
without a border, set the parameter LineWidth to zero or StrokeColor to the special constant
NO_COLOR.

Function Reference Page 220 of 854

If the interior should be transparent set FillColor to the special constant NO_COLOR.

Although the line width can be set to any positive floating point value, Adobe’s Acrobat or Reader
restrict the line width to 0 through 12 units. The line width should be restricted in the same way to
avoid issues in Adobe viewer products.

Remarks:

This function is implemented in an Ansi and Unicode compatible variant. Ansi strings are
interpreted in the Windows code page 1252.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails, the return value is a negative error code.

ClearAutoTemplates

Syntax:
SI32 pdfClearAutoTemplates(
 const PPDF* IPDF) // Instance pointer

This function deletes the array of templates which are automatically added to newly created pages.
See AutoTemplate() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ClearErrorLog

Syntax:
void pdfClearErrorLog(
 const PPDF* IPDF) // Instance pointer

The clears the error log. The error log can be cleared before another function will be executed. This
makes it easier to determine whether errors occurred during execution of a specific function.

The error log is always cleared when the PDF file in memory is released.

ClearHostFonts

Syntax:
SI32 pdfClearHostFonts(
 const PPDF* IPDF) // Instance pointer

This function deletes the array of fonts included in all currently defined font search paths. After the
list was deleted it is still possible to use the fonts which are already in use. The 14 standard fonts are
also available depending on whether the property UseStdFonts (Get/SetUseStdFonts()) is true or

Function Reference Page 221 of 854

false. If no font was already in use and if the property UseStdFonts is set to false it is not possible to
select a font until a new font search path was added (see AddFontSearchPath()).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ClipPath

Syntax:
SI32 pdfClipPath(
 const PPDF* IPDF, // Instance pointer
 TClippingMode ClipMode, // Clipping mode (Winding or Even-Odd)
 TPathFillMode FillMode) // Path fill mode

typedef enum
{

cmEvenOdd, // Use the Even-Odd rule
 cmWinding // Use the nonzero Winding Number rule
}TClippingMode;

typedef enum
{
 fmFillNoClose, // not allowed, path must be closed
 fmStrokeNoClose, // not allowed, path must be closed
 fmFillStrokeNoClose, // not allowed, path must be closed
 fmFill, // fill the path (winding)
 fmStroke, // stroke the path (winding)
 fmFillStroke, // fill and stroke the path (winding)
 fmFillEvOdd, // fill the path (even-odd)
 fmFillStrokeEvOdd, // fill and stroke the path (even-odd)
 fmFillEvOddNoClose, // not allowed, path must be closed
 fmFillStrokeEvOddNoClose, // not allowed, path must be closed
 fmNoFill, // close but do not paint the path
 fmClose // same as fmNoFill
}TPathFillMode;

This function marks the current path as clipping path. The function must be called after a closable
path was created. A path that consists of a MoveTo() and LineTo() only call cannot be closed!

A clipping path can also be filled, stroked, or both in one pass. However, the combination of a
clipping path operator with a path painting operator is seldom used and not supported in all PDF
viewers. To avoid unnecessary problems a path should always be clipped and painted in two
separate steps, also if this causes some unnecessary overhead.

Once the clipping was created and activated with ClipPath() you can draw arbitrary contents into it,
such as images, text, or vector graphics.

A clipping path is part of the current graphics state. The only way to deactivate a clipping path is to
restore the graphics state with RestoreGraphicState(). This assumes that it was saved with
SaveGraphicState() before the clipping path was created.

Note that it is not possible to extend or widen an active clipping path. It is only possible to intersect
it with a new one. The intersection of two clipping paths is never larger than the initial clipping
path.

Function Reference Page 222 of 854

Remarks:

Text objects are handled separately in PDF for use as clipping path. See SetTextDrawMode() for
further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CloseAndSignFile

Syntax:
SI32 pdfCloseAndSignFile(
 const PPDF* IPDF, // Instance pointer
 const char* CertFile, // File path to a PKCS#12 certificate file
 const char* Password, // Password to decrypt the cert's private key
 const char* Reason, // Optional reason string
 const char* Location) // Optional signers location string

This function finishes the PDF file, digitally signs it, and frees all used resources if the file was not
created in memory. The parameter CertFile must be a valid path to a PKCS#12 certificate file.

DynaPDF signs PDF files on Windows with the Windows Crypt API. This signature handler
supports certificates with up to 4096 bits key length.

On non-Windows systems the function uses the AiCrpyto library to sign PDF files. This signature
handler supports certificates with up to 1024 bits key lengths only. However, if certificates with a
stronger encryption should be used it is possible to sign the file with an external signature handler
(see CloseAndSignFileExt() for further information).

The parameter Password holds the password to decrypt the private key. The parameters Reason and
Location are both optional. These strings are printed into the signature field if set.

Digital signatures are stored in a signature field which is a special type of Interactive Form field. If
no signature field exist when the function is called then DynaPDF creates an invisible signature
field. Hidden signature fields appear in the signatures tab of Adobe's Acrobat.

If one or more signature fields exist when the function is called then the first signature field is used
for signing. Signature fields can be created with the function CreateSigField() but it is also possible
to import empty signature fields from an external PDF file.

Importing signed PDF files

Signed PDF files can only be changed, without invalidating existing signatures, when changes are
stored with an incremental update. An incremental update is a special way to modify a PDF file;
changes are appended to the end of the file, leaving its original contents intact. This technique is
required since altering any existing bytes in the file invalidates existing signatures.

Function Reference Page 223 of 854

However, incremental updates are not supported by DynaPDF that is the reason why only empty
signature fields are imported. Because DynaPDF creates always a completely new PDF file, it makes
no sense to import existing signatures, they would become invalid.

Possible function errors

When trying to sign a PDF file the function must first parse the certificate file before a signature can
be created. This process can fail, due to an invalid file path or due to an unsupported certificate file
format that was passed to the function. The PDF file will only be closed and signed if the certificate
file was valid and if no other error occurred during the parsing process.

If an error occurred due to an invalid certificate file, invalid file path and so on, the function returns
zero and passes an error message to the error callback function if any. All errors during the parsing
process of the certificate file are non-fatal so that the PDF file is still in memory when the function
returns. It is then possible to change the certificate file and trying to sign the PDF file again.

To determine whether the PDF was already deleted or of it is still in memory use the function
HaveOpenDoc(). The function returns true if the PDF file is still in memory. If the function returns
false, the last error was fatal and the PDF file has already been deleted.

The buffer of a memory based PDF file can be returned by GetBuffer() after this function was called.
Note that GetBuffer() does not free the used resources because it returns a pointer to the original
buffer. After the buffer was processed by your application call FreePDF() to free the uses resources.

See also CreateNewPDF(), GetBuffer(), FreePDF().

Remarks:

Further information about digital signatures can be found under Digital Signatures. To encrypt and
sign a PDF file use the function CloseAndSingFileEx(). The appearance of a signature field can be
user defined. See CreateSigFieldAP() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CloseAndSignFileEx

Syntax:
SI32 pdfCloseAndSignFileEx(
 const PPDF* IPDF, // Instance pointer
 const char* OpenPwd, // Optional Open password
 const char* OwnerPwd, // Optional Owner password
 TKeyLen KeyLen, // Key length (40 or 128 bit)
 TRestrictions Restrict, // Restrictions
 const char* CertFile, // File path to a PKCS#12 certificate file
 const char* Password, // Password to decrypt the cert's private key
 const char* Reason, // Optional reason string
 const char* Location) // Optional signers location string

Function Reference Page 224 of 854

This function finishes the PDF file, encrypts it, digitally signs it, and frees all used resources if the
file was not created in memory. The first five parameters have the same meaning as of the function
CloseFileEx(). The remaining parameters are identical to CloseAndSignFile(). This function simply
combines both functions because a PDF file must be encrypted and digitally signed in one pass. The
encryption parameters are described in detail under CloseFileEx().

The parameter CertFile must be a valid path to a PKCS#12 certificate file. DynaPDF supports
certificate files with 1024 bits encrypted private keys only. The parameter Password holds the
password to decrypt the private key. The parameters Reason and Location are both optional. These
strings are printed into the signature field if set.

Digital signatures are stored in a signature field which is a special type of Interactive Form field. If
no signature field exist when the function is called then DynaPDF creates an invisible signature
field. Hidden signature fields appear in the signatures tab of Adobe's Acrobat.

If one or more signature fields exist when the function is called then the first signature field is used
for signing. Signature fields can be created with the function CreateSigField() but it is also possible
to import empty signature fields from an external PDF file.

Importing signed PDF files

Signed PDF files can only be changed, without invalidating an existing signature, when changes are
stored with an incremental update. An incremental update is a special way to modify a PDF file;
changes are appended to the end of the file, leaving its original contents intact. This technique is
required since altering any existing bytes in the file invalidates existing signatures.

However, incremental updates are not supported by DynaPDF that is why only empty signature
fields are imported. Because DynaPDF creates always a completely new PDF file, it makes no sense
to import existing signatures, they would become invalid.

Possible function errors

When trying to sign a PDF file the function must first parse the certificate file before a signature can
be created. This process can fail, due to an invalid file path or due to an unsupported certificate file
format that was passed to the function. The PDF file will be closed and signed if the certificate file
was valid and no other error occurred during the parsing process of the certificate file.

If an error occurred during the parsing process, e.g. invalid certificate file, invalid file path and so
on, the function returns zero and passes an error message to the error callback function if any. All
errors during the parsing process of the certificate file are non-fatal so that the PDF file is still in
memory when the function returns. It is then possible to change the certificate file and trying to sign
the PDF file again.

To determine whether the PDF was already deleted or of it is still in memory call the function
HaveOpenDoc(). The function returns true if the PDF file is in memory. If the function returns false,
the last error was fatal and the PDF file has already been deleted.

Function Reference Page 225 of 854

The buffer of a memory based PDF file can be returned by GetBuffer() after this function was called.
Note that GetBuffer() does not free the used resources because it returns a pointer to the original
buffer. After the buffer was processed by your application call FreePDF() to free the uses resources.

See also CreateSigFieldAP(), CreateNewPDF(), GetBuffer(), FreePDF().

Remarks:

Further information about digital signatures can be found under Digital Signatures. The appearance
of a signature field can be user defined. See CreateSigFieldAP() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CloseAndSignFileExt

Syntax:
LBOOL pdfCloseAndSignFileExt(

const PPDF* IPDF, // Instance pointer
struct TPDFSigParms* SigParms) // Important parameters

typedef enum
{
 htDetached, // Byte ranges of the finish PDF file will be returned
 htSHA1 // The SHA1 hash to be signed will be returned
}THashType;

struct TPDFSigParms
{

UI32 StructSize; // Must be set to sizeof(TSignParms)
UI32 PKCS7ObjLen; // Max length of the signed PKCS#7 object
THashType HashType; // See description
const BYTE* Range1; // Out -> Hash or byte range
UI32 Range1Len; // Out -> Length of the buffer
const BYTE* Range2; // Out -> Set only if HashType = htDetached
UI32 Range2Len; // Out -> Length of the buffer
const char* ContactInfoA; // Optional, e.g. an email address
const UI16* ContactInfoW; // Optional, e.g. an email address
const char* LocationA; // Optional location of the signer
const UI16* LocationW; // Optional location of the signer
const char* ReasonA; // Optional reason why the file was signed
const UI16* ReasonW; // Optional reason why the file was signed
const char* SignerA; // Optional, see comment
const UI16* SignerW; // Optional, see comment
LBOOL Encrypt; // If true, the file will be encrypted
// These members will be ignored if Encrypt is set to false
const char* OpenPwd; // Optional open password
const char* OwnerPwd; // Optional owner password

 TKeyLen KeyLen; // Key length to encrypt the file
 TRestrictions Restrict; // What should be restricted?
};

The function closes the PDF file and returns either the file hash or the byte ranges to be signed by an
external signature handler. The member StructSize must be initialized to sizeof(TPDFSigParms)
(C/C++ only).

Most string values can be set either with an Ansi or Unicode string. If both strings are present the
Ansi version takes precedence. The string Signer is normally taken from the PKCS#7 certificate and

Function Reference Page 226 of 854

not displayed in PDF viewer applications. The string is only used if the issuer of the certificate
cannot be extracted.

If Encrypt is set to true the PDF file will also be encrypted.

Signing a PDF file with an external signature handler is a five step process:

1. Open a certificate from the certificate store or file
2. Compute the size of the signed PKCS#7 object with a dummy string
3. Call CloseAndSignFileExt() to obtain the file hash or the byte ranges to be signed
4. Sign the provided hash or byte ranges with a cryptographic library
5. Call FinishSignature() to write the signature to the PDF file and to finish the signing process.

As described above the size of the PKCS#7 object must be computed before the function can be
called. How this must be done depends on the used signature handler. When using the Windows
CryptAPI, pass a 20 bytes long dummy string to CryptSignMessage() and set the parameter
pbSignedBlob to NULL. The size of the PKCS#7 object is then copied to the parameter pcbSignedBlob.
When creating a detached signature the length of the dummy string can be just one byte long
because the length of the PKCS#7 object does not depend on the string length.

The member HashType specifies whether the function should return the SHA1 hash or the byte
ranges of the PDF file. In the latter case the signature handler must create a detached signature.
However, when using programming languages like Visual Basic, VB. Net, or C# it is recommended
to sign a SHA1 hash because it is not required to copy the PDF buffer in this case.

The hash algorithm that is used to sign the hash or byte ranges can be MD2, MD5, SHA1, SHA256,
SHA384, SHA512, or RIPEMD160. MD2 and MD5 are not documented in the PDF Reference but
work very well too.

Detached signatures require no data to be encapsulated in the PKCS#7 SignedData field. When
signing a SHA1 hash the signature handler must store the hash in the SignedData field of the
PKCS#7 object.

Supported PKCS#7 Format

PKCS #7 objects are ASN1 encoded binary objects. The ASN1 standard defines a set of Basic
Encoding Rules (BER) which describe how ASN1 objects must be encoded. This Standard defines
also a set of Distinguished Encoding Rules (DER) and a set of Canonical Encoding Rules (CER) both
of which provide constraints on the Basic Encoding Rules (BER). The key difference between them is
that DER uses the definite length form of encoding while CER uses the indefinite length form.

PDF compatible PKCS#7 objects must be DER encoded because Adobe's Acrobat or Reader does not
support indefinite length encoding. However, not all cryptographic providers support definite
length encoding. Whether this is the case or not is also often not documented.

The Windows CryptAPI creates DER encoded PKCS#7 objects which are fully PDF compatible.
However, when using another cryptographic library and if Adobe's Acrobat or Reader reports an

Function Reference Page 227 of 854

error like "Error reading BER encoded object" when trying to validate the signature, the library does
probably not create definite length encoded PKCS#7 objects.

Hardware Certificates

Signing a PDF file with a hardware certificate works exactly in the same way as with a software
certificate as long as the certificate was installed in the certificate store of the operating system.

Hardware certificates like smart cards, USB sticks, or something similar are normally delivered with
software that is able to install the certificate on the operating system. Once a certificate was installed
in the certificate store it can be used like any other certificate.

The Windows CryptAPI for example, hides the certificate type fully for the developer. Whether the
user selects a software or hardware certificate is simply not of interest because nothing special must
be done in either case. You still call CryptSignMessage(), that's all. If a password is required the
CryptAPI displays automatically a dialog to enter the password. The communication with the
hardware is done in background.

Remarks:

If the function succeeds the signature must be written to the PDF file with FinishSignature(). Take a
look into the example external_signatures to determine how the function can be used. It is usually
best to open the the output file right before FinishSignature() will be called (see OpenOutputFile()).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CloseFile

Syntax:
LBOOL pdfCloseFile(
 const PPDF* IPDF) // Instance pointer

This function finishes the PDF file and frees all used resources if the file was not created in memory.
The buffer of a memory based PDF file can be returned by GetBuffer() after this function was called.
Note that GetBuffer() does not free the used resources because it returns a pointer to the original
buffer. After the buffer was processed by your application call FreePDF() to free the used resources.
See also CreateNewPDF(), GetBuffer(), FreePDF().

Remarks:

To encrypt a PDF file use CloseFileEx() instead of CloseFile().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 228 of 854

CloseFileEx

Syntax:
LBOOL pdfCloseFileEx(
 const PPDF* IPDF, // Instance pointer
 const char* OpenPwd, // Open password (can be NULL)
 const char* OwnerPwd, // Owner password (can be NULL)
 TKeyLen KeyLen, // Key length (40 or 128 bit)
 TRestrictions Restrict) // Flags to restrict certain features

typedef enum
{

kl40bit = 0, // RC4 Encryption -> PDF 1.2, Acrobat 3 or higher
 kl128bit = 1, // RC4 Encryption -> PDF 1.4, Acrobat 5 or higher
 kl128bitEx = 2, // RC4 Encryption -> PDF 1.5, Acrobat 6 or higher
 klAES128 = 3, // AES Encryption -> PDF 1.6, Acrobat 7 or higher
 klAES256 = 4, // AES Encryption -> PDF 1.7, Acrobat 9 or higher
 klAESRev6 = 5 // AES Encryption -> PDF 2.0, Acrobat X or higher
}TKeyLen;

typedef SI32 TRestrictions;
#define rsDenyNothing 0x00000000 // Encrypt the file only
#define rsDenyAll 0x00000F3C // Deny anything
#define rsPrint 0x00000004 // Deny printing
#define rsModify 0x00000008 // Deny modification of contents
#define rsCopyObj 0x00000010 // Deny copying of contents
#define rsAddObj 0x00000020 // No commenting
/* 128/256 bit encryption only -> ignored if 40 bit encryption is used */
#define rsFillInFormFields 0x00000100 // requires rsModify + rsAddObj
#define rsExtractObj 0x00000200 // requires rsModify
#define rsAssemble 0x00000400 // requires rsModify
#define rsPrintHighRes 0x00000800 // Disable high res. printing
#define rsExlMetadata 0x00001000 // PDF 1.5 Exclude metadata streams
#define rsEmbFilesOnly 0x00002000 // PDF 1.6 AES Encryption only

The function finishes the PDF file, encrypts it, and frees all used resources if the file was not created
in memory. The buffer of a memory based PDF file can be accessed with GetBuffer() after the
function was called. Note that GetBuffer() does not free the used resources because it returns a
pointer to the original buffer. After the buffer was processed by your application call FreePDF() to
free the used resources. See also CreateNewPDF(), GetBuffer(), FreePDF().

The parameter KeyLen specifies the encryption filter and key length which should be used to encrypt
the PDF file. The parameter Restrict specifies which features should be disabled in a viewer
application. Note that several restriction flags depend on the used encryption filter. Flags which are
not supported by the encryption filter will be ignored.

However, the restriction flags cannot be combined in any order; only specific flag combinations are
allowed. Valid flag combinations are described in detail on the next page.

Passwords

PDF files support two different passwords to decrypt a PDF file. A PDF viewer asks for the owner
password when the user tries to change the encryption settings. So, the owner password grands full
access to the PDF file. If no open password is set, a viewer opens the PDF file with user privilegs
without asking for a password.

Function Reference Page 229 of 854

If an open password is set, the PDF file cannot be opened without entering the open password. The
open password causes the file to be opened with user privilegs. So, the user cannot change the
security settings and only non-restricted features can be used.

Beginning with PDF 1.6 it is also possible to encrypt embedded files only (flag rsEmbFilesOnly). The
PDF file is left unencrypted in this case but access to the embedded files can be restriced. The open
password can be used to grand access on the embedded file to authorized persons only. A viewer
asks for the password only if it is set and if the user tries to open or extract the embedded file.

Note that this feature is supported since Adobe's Acrobat or Reader 7. Prior versions cannot open
such a PDF file also if it is unencrypted.

In no password is set the PDF file is still encrypted and the file is opened with user privilegs in a
viewer. However, the seceurity settings can be easily changed in this case if the user tests an empty
password.

Because the PDF file can be decrypted without requiring a password if no open password was set, it
is easy to remove the entire encryption settings, this can be done by many tools incl. DynaPDF.

Remarks:

A PDF file can always be decrypted with a PDF library like DynaPDF if the user or owner password
is not set. So, if a PDF file must be secure then both password must be set!

Password encodings

On Windows, Linux, and Unix operating systems passwords are converted to the code page 1252
(WinAnsi) and then to PDFDoc encoding. On Mac OS X or iOS passwords are converted to
MacRoman and then to PDFDoc encoding. PDFDoc encoding is a superset of WinAnsi and
MacRoman encoding that ensures that a password can be correctly interpreted on these operating
systems.

UTF-8 Passwords

All Ansi functions accept UTF-8 Unicode strings as input if the flag gfAnsiStringIsUTF8 is set (see
SetGStateFlags() for further information). However, only the encryption handlers klAES256 and
klAESRev6 support Unicode passwords.

For every other encryption handler DynaPDF converts the string to the code page 1252 on
Windows, Linux, or Unix operating systems, or to MacRoman on Mac OS X and iOS.

Encryption flags

As mentioned earlier only specific flag combinations are allowed to use depending on the
encryption filter. We want now determine how the 40 bit encryption flags can be used in
comparison to the Acrobat input mask. The encryption mask in Acrobat 9 looks as follows:

Function Reference Page 230 of 854

The combo box at "Printing Allowed" sets the flag rsPrint if printing should be disabled. The combo
box at "Changes Allowed" sets the following flag combinations:

• None: rsModify + rsAddObj
• Commenting, Filling in form fields and signing: rsModify
• Page layout, filling in form fields: No additional flags!
• Any except extracting pages: No additional flags!

As you can see above the third and forth options set the same flags. The forth value is just a
duplicate of the third with another description.

The check box "Enable copying of text, images, and other…" sets the flag rsCopyObj if it is unchecked!
Multiple flags must be combined with a binary or operator.

The input mask for the key lengths kl128bit (Acrobat 5) and kl128bitEx (Acrobat 6) look nearly
identically. However, only the latter one supports the additional flag rsExludeMetaData.

The first combo box at "Printing Allowed" contains now three choice values which sets the following
flags:

• None: rsPrint
• Low Resolution (150 DPI): rsPrintHighRes
• High Resolution: No additional flags!

Function Reference Page 231 of 854

The second combo box at "Changes Allowed" sets the following flags:

• None: rsModify + rsAddObj + rsFillInFormFields + rsAssemble
• Inserting, deleting, and…: rsModify + rsAddObj + rsFillInFormFields
• Filling in form field…: rsModify + rsAddObj
• Commenting, filling in…: rsModify
• Any except extracting…: No additional flags!

The check box "Enable copying of text, images, and other…" sets the flag rsCopyObj, if unchecked!
The check box "Enable text access for screen readers…" sets the flag rsExtractObj, if unchecked!

The key lengths klAES128 and klAES256 support also the flag rsEmbFiles only. If this flag is set all
other flags are ignored becaus the PDF file is left unencrypted in this case (with exception of
embedded files).

Remarks:

Due to a bug in Acrobat 6 the permission rsPrintHighRes is not displayed in the security settings but
it is still applied.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 232 of 854

CloseImage

Syntax:
LBOOL pdfCloseImage(
 const PPDF* IPDF) // Instance pointer

The function closes the current open image file and frees the internal used resources if the image
was not created in memory. The buffer of a memory based image file can be returned by
GetImageBuffer() after this function was called. Note that GetImageBuffer() does not free the
internal used resources because it returns a pointer to the original buffer. After the buffer was
processed by your application call FreeImageBuffer() to free the used resources. See also
CreateImage(), GetImageBuffer(), FreeImageBuffer().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CloseImportFile

Syntax:
LBOOL pdfCloseImportFile(
 const PPDF* IPDF) // Instance pointer

This function closes an open import file that was be opened by OpenImportFile() or
OpenImportBuffer(). If no import file was opened before the functions returns without an error.

This function cannot fail; the return value is always 1.

CloseImportFileEx

Syntax:
LBOOL pdfCloseImportFileEx(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // File handle

The function closes a specific import file and deletes the corresponding parser instance. The
parameter Handle must be a valid file handle that was returned by OpenImportFile() or
OpenImportBuffer(). See OpenImportFile() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 233 of 854

ClosePath

Syntax:
LBOOL pdfClosePath(
 const PPDF* IPDF, // Instance pointer
 TPathFillMode FillMode) // see below

typedef enum
{ // Nonzero Winding Number Rule

fmFillNoClose, // Fill but do not close the path
fmStrokeNoClose, // Stroke but do not close the path
fmFillStrokeNoClose, // Fill and stroke but do not close the path
fmFill, // Fill the path
fmStroke, // Stroke the path
fmFillStroke, // Fill and stroke the path
// Even-Odd Rule
fmFillEvOdd, // Fill the path
fmFillStrokeEvOdd, // Fill and stroke the path
fmFillEvOddNoClose, // Fill but do not close the path
fmFillStrokeEvOddNoClose, // Fill and stroke but do not close the path
fmNoFill, // Discard the path

 fmClose // Close the path and begin a new sub path
}TPathFillMode;

In PDF all vector graphics are paths. Paths can be filled, stroked, or both. Filled path can be drawn
by applying the nonzero winding number rule or the even-odd rule (see Path Construction and
Painting for further information). Both rules produce different results on complex paths but they
have no effect on simple paths like rectangles, circles, and so on.

The filling rules are can be used to produce holes in a path; an area that is left unpainted. The draw
direction is important when drawing simple shapes like rectangles and so on. See
SetDrawDirection() for further information.

The flag fmNoFill can be used to discard a path that was already drawn.

Remarks:

Paths are invisible until they will be filled or stroked. DynaPDF displays a warning if an unused
path is in memory when drawing an image, text, or when closing the page. The function checks
whether a path is in memory prior execution. If no open path is detected the function returns with
an error message.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 234 of 854

CloseTag

Syntax:
LBOOL pdfCloseTag(

const PPDF* IPDF) // Instance pointer

The function closes the current open tag that was opened by OpenTag() beforehand.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ComputeBBox

Syntax:
LBOOL pdfComputeBBox(

const PPDF* IPDF, // Instance pointer
struct TPDFRect ADDR BBox, // TPDFRect structure
TCompBBoxFlags Flags) // See below

typedef UI32 TCompBBoxFlags;
#define cbfNone 0x00000000
#define cbfIgnoreWhiteAreas 0x00000001 // Ignore white areas
#define cbfParse1BitImages 0x00000002 // Process 1 bit images
#define cbfParseGrayImages 0x00000004 // Process gray images
#define cbfParseColorImages 0x00000008 // Process color images
#define cbfParseAllImages 0x0000000E // Process all images

The function computes the visible area of the current opened page. If images are processed,
DynaPDF decompresses the images and computes the visible area by checking for non-white pixels.
Images which use a complex color space like DeviceN or Separation are converted into the alternate
color space beforehand. Please note that every non-white pixel is considered as part of the visible
area.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ConnectPageBreakEvent

Syntax:
Public Sub ConnectPageBreakEvent(
 ByVal Connect As Boolean) // If True, the event is connected

This procedure connects the OnPageBreakEvent with the internal callback function so that the event
function can be raised by the wrapper class CPDF. This function is included in the Visual Basic and
VB .Net interfaces only. The manually connection of the event function is required to avoid different
runtime behaviour of the function WriteFText().

Function Reference Page 235 of 854

ConvColor

Syntax:
UI32 pdfConvColor(

const double* Color, // Array of color components
UI32 NumComps, // Number of color components
TExtColorSpace SourceCS, // Source color space
const void* IColorSpace, // Pointer to internal color space object
TExtColorSpace DestCS) // Destination color space

The function converts a color of a PDF color space to a device color space. The function was
originally designed to convert colors of a PDF color space which was returned by the content parser,
but it is also possible to use the function stand alone, e.g. to calculate a spot color of a DeviceN or
Separation color space.

If used with the content parser, the required parameters Color, NumComps, SourceCS, and IColorSpace
are provided in the TSetFillColor or TSetStrokeColor callback functions. See ParseContent() for
further information.

The parameter DestCS defines the destination color space into which the color should be converted.
The destination color space must be a device color space (esDeviceGray, esDeviceRGB, or
esDeviceCMYK).

If the function should be used stand alone, the parameters SourceCS and IColorSpace are provided in
the TPDFColorSpaceObj structure, see GetColorSpaceObj() for further information.

The array Color represents a color defined in the PDF color space. The array must be at least
NumInComponents values long. The number of color components is provided in the
TPDFColorSpaceObj structure.

The color components must be defined in the range of the color space, that is typically 0 through 1
for Device, ICCBased, Calibrated, DeviceN, NChannel, and Separation color spaces.

The default range of a Lab color space is [0..100, -128..127, -128..127] . The range of the L channel is
fixed, it ranges always from 0 though 100. The range of the a and b components can be restricted if
the color space contains a Range array.

The range of an Indexed color space is 0 through NumColors – 1. In any case, values which fall
outside the valid range will be adjusted to the nearest valid value.

In most cases the function is used to calculate the color of spot colorants. Spot colors can be defined
in Separation, DeviceN, and NChannel color spaces. NChannel is an extended DeviceN color space
that contains always attributed while they are optional for DeviceN color spaces. The attributes
dictionary of a DeviceN or NChannel color space lists all spot colorants in an array of Separation
color spaces (see GetColorSpaceObj()). Use the Separation colorspaces to calculate the color values
in this case. If a DeviceN color space contains no attributes dictionary then it is still possible to
enumerate and calculate the color values of spot colorants which are used by the color space but it is
some more work.

Function Reference Page 236 of 854

DeviceN and Separation color spaces are subtractive color spaces. Thus, a tint value of 0.0 denotes
the lightest color that can be achieved with a given colorant, and 1.0 denotes the darkest.

If you want to calculate the color of a spot colorant then initialize the color channel that corresponds
to the spot colorant to 1.0 and the remaining channels to 0.0, if any.

Now it is important to know what is a spot colorant? A Separation color space supports two special
colorant names: All and None. The value All refers to all channels of the output device and None
produces no visible output.

DeviceN supports 5 reserved values: the colorant names Cyan, Magenty, Yellow, and Black are
always treated as device colorants, and the special colorant name None produces no visible output.

All other colorant names are considered as spot colorants. Colorant names must be compared case-
sensitive.

So, if you want to calculate the color value of a spot colorant, then you must first compare the
colorant names against the reserved or special colorant names of the color space. If a spot color was
found, initialize that color channel to 1.0 and all others to 0.0. Continue until all colorants of the
color space were visited, see example below.

Return values:

If the function succeeds the return value is the color value defined in the destination color space. If
the function fails the return value is zero without further error indication. However, the function
cannot fail if valid values were passed to the function.

Example (C++):
...
// Returns true if the colorant is a spot colorant
bool IsSpotColor(const char* Colorant, bool Separation)
{
 if (Separation)
 return (strcmp(Colorant, "None") && strcmp(Colorant, "All"));
 else
 return (strcmp(Colorant, "Cyan") && strcmp(Colorant, "Magenta")
 && strcmp(Colorant, "Yellow") && strcmp(Colorant, "Black")
 && strcmp(Colorant, "None"));
}
// Helper function to process the spot colors in DeviceN, NChannel, and
// Separation color spaces
void ProcessColorSpace(TPDFColorSpaceObj &CS)
{
 UI32 i, color;
 double inClr[32] = {0}; // More than 32 channels cannot occur!
 for (i = 0; i < CS.ColorantsCount; i++)
 {
 if (IsSpotColor((char*)CS.Colorants[i], CS.Type == esSeparation))
 {
 inClr[i] = 1.0;
 // Do something with the color...
 color = pdfConvColor(inClr,
 CS.NumInComponents,
 CS.Type,

Function Reference Page 237 of 854

 CS.IColorSpaceObj,
 esDeviceCMYK);
 inClr[i] = 0.0;
 }
 }
}

void EnumSpotColors(const void* PDF)
{
 UI32 j;
 SI32 i, count;
 TPDFColorSpaceObj cs;
 TDeviceNAttributes at;
 count = pdfGetColorSpaceCount(PDF);
 for (i = 0; i < count; i++)
 {
 if (pdfGetColorSpaceObj(PDF, i, &cs))
 {
 switch(cs.Type)
 {
 case esDeviceN:
 case esNChannel:
 {
 if (cs.IAttributes)
 {
 // Process the separation color spaces directly
 if (pdfGetDeviceNAttributes(cs.IAttributes, &at))
 {
 for (j = 0; j < at.SeparationsCount; j++)
 {
 if (pdfGetColorSpaceObjEx(at.Separations[j],&cs))
 ProcessColorSpace(cs);
 }
 }
 continue;
 }
 }
 case esSeparation: ProcessColorSpace(cs); continue;
 default: continue;
 }
 }
 }
}
...

Function Reference Page 238 of 854

ConvertColors

Syntax:
LBOOL pdfConvertColors(

const PPDF* IPDF, // Instance pointer
TColorConvFlags Flags, // See below
const float* Add) // Optional, see description below

typedef enum
{

ccfBW_To_Gray = 0, // Default, RGB B/W to gray
ccfRGB_To_Gray = 1, // RGB to gray
ccfToGrayAdjust = 2 // Lighten or darken colors

}TColorConvFlags;

The function converts inline RGB operators in the current open page to gray. At time of publication
only inline operators like g, rg, G, and RG are processed. CMYK colors will be left unchanged. The
parameter Add is optional and considered only if the constant ccfToGrayAdjust is used.

The conversion of RGB inline color operators can be useful if the document was created with a GDI
application, e.g. Microsoft Word, Excel and so on and if the file must be split into black & white and
color pages. IsColorPage() can then be used to determine whether the page contains still colored
objects. The advantage is that RGB black & white values, which are used for text and vector
graphics, are already removed so that IsColorPage() returns only true if any other object uses a
color, e.g. an image.

The constant ccfToGrayAdjust can be used to convert RGB colors to gray and to darken or lighten
RGB and gray colors. The parameter Add must be a pointer of a floating point variable. The value
can be in the range -1.0 through 1.0. Colors in PDF are stored as floating point values in the range 0.0
through 1.0. Since DeviceGray is an additive color space, 0 denotes black and 1.0 white. If all color
operators should be set to black for example, then set the variable to -1.0. The function performs a
range check. If the color becomes out of range then it will be adjusted to the nearest value that is
inside the allowed color range.

Example (C++):
// This example converts all RGB and gray colors to black.
...
pdfEditPage(PDF, 1);
float add = -1.0;
pdfConvertColors(PDF, ccfToGrayAdjust, &add);
pdfEndPage(PDF);
...

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 239 of 854

ConvertEMFSpool

Syntax:
SI32 pdfConvertEMFSpool(
 const PPDF* IPDF, // Instance pointer
 const char* SpoolFile, // The spool file that should be converted
 double LeftMargin, // Additional margin
 double TopMargin, // Additional margin
 TSpoolConvFlags Flags) // see below

typedef enum
{
 spcDefault = 0,
 spcIgnorePaperFormat = 1, // See description
 spcDontAddMargins = 2, // See description
 spcLoadSpoolFontsOnly = 4, // Load embedded fonts only
 spcFlushPages = 8 // Write every page to the output file
}TSpoolConvFlags;

The function converts an EMF spool file to PDF. The function loads also embedded fonts which are
required to sucessfully convert the embedded EMF files. The function does not create a new PDF file
and it does not close the PDF file after all pages were converted. The EMF pages will be added to the
end of the exiting pages of the PDF file in memory (see example below the function description).

Before calling the function, the page format of the first page should be set with SetBBox() or with
SetPageWidth() / SetPageHeight(). The initial page format is usually taken from the DEVMODE
structure of the print job. The current page format is used by default to calculate margins which are
maybe required.

The current orientation is set to all pages which will be added (see SetOrientation()). The current
color space can be set to any device color space. If the color space is set to DeviceGray or
DeviceCMYK then all colors will be converted to that color space. If the current color space is set to
a non-device space, then it will be changed to DeviceRGB.

Flag Description

spcIgnorePaperFormat If set, all pages are scaled to the width of the current page format.

spcDontAddMargins If set, the page format is calculated from the rclFrame rectangle of each EMF
file as usual but the current page format is not used to calculate margins which
are maybe required. The parameters Left- and TopMargin will still be
considered.

This flag can be set if the margins for the print spool are known. It is
meaningful only if the flag spcIgnorePaperFormat is absent.

spcLoadSpoolFontsOnly If set, the function loads only embedded fonts and does not convert any EMF
file. This flag can be useful if you want to use your own spool file parser and if
the parser is not able to load embedded fonts. The flags mfUseUnicode and
mfIgnoreEmbFonts must be set when converting the EMF files of the spool
file.

Function Reference Page 240 of 854

Flag Description

spcFlushPages If set, the function writes every page directly to the output file to reduce the
memory usage. This flag is meaningful only if the PDF file is not created in
memory. Note also that it is not possible to access already flushed pages again
with EditPage().

Spool files contain sometimes subset fonts and corresponding delta fonts which must be merged
and converted back to regular TrueType fonts. DynaPDF supports these font formats natively.
Microsoft's fontsub.dll is not used for the conversion. This makes it possible to use the function also
on non-Windows operating systems like Linux, Unix, or Mac OS X.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Unicode paths are
converted to UTF-8 on non-Windows operating systems.

Please note that spool files can be very large. Since the dynapdfm.dll comes without 64 bit file
support, the spool file cannot exceet the 2 GB limit. C or C++ developers should use the regular
dynapdf.dll instead. Customers with a DynaPDF Enterprise license can compile the Multithreaded
DLL variant with Visual Studio 2005 or higher to enable 64 bit file support. Note that the library
depends then on the Visual Studio Redistributable package of the used VS version.

Return values:

The return value depends on the flag spcLoadSpoolFontsOnly. If the flag is set, the function returns
the number of processed font records on success, or the number of converted pages otherwise. If the
function fails, the return value is a negative error code.

Example (C++):
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode,
 const char* ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0; // We try to continue
}

SI32 ConvertSpoolFile(const void* PDF, const char* FileName,
 const char* OutFile)
{
 if (pdfCreateNewPDF(PDF, OutFile) < 0) return -3;
 // In this example we don't need to access the converted pages.
 // We can set the flag spcFlushPages to reduce the memory usage.
 pdfConvertEMFSpool(PDF, FileName, 0.0, 0.0, spcFlushPages);
 // The output intent represents the destination color space for which
 // the file was created. It makes sure that we get consistent color
 // results in different PDF viewers and when printing the PDF file.
 pdfAddOutputIntent(PDF, "../icc/sRGB.icc"); // Optional but recommended
 pdfCloseFile(PDF);

Function Reference Page 241 of 854

}

int main(int argc, char* argv[])
{
 if (argc < 2) return -1;
 void* pdf = pdfNewPDF();
 if (!pdf) return -2; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 // The resolution is used for images. 300 or 600 DPI are recommended.
 pdfSetResolution(pdf, 600);
 pdfSetCompressionFilter(pdf, cfFlate); // Default
 pdfSetColorSpace(pdf, csDeviceRGB); // Default
 pdfSetPageCoords(pdf, pcTopDown); // Recommended
 // The page format should be set to the value of the DEVMODE structure.
 pdfSetPageFormat(pdf, pfDIN_A4);
 return ConvertSpoolFile(pdf, argv[1]);
}

ConvToUnicode

Syntax:
UI16* pdfConvToUnicode(
 const PPDF* IPDF, // Instance pointer
 const char* AString, // Null-terminated string
 TCodepage CP) // Used base encoding

typedef enum
{
 cp1250, // Eastern European
 cp1251, // Cyrillic
 cp1252, // Latin 1 Western European
 cp1253, // Greek
 cp1254, // Turkish
 cp1255, // Hebrew
 cp1256, // Arabic
 cp1257, // Baltic
 cp1258, // Vietnamese
 cp8859_2, // Latin 2 Central Europe
 cp8859_3, // Latin 3 Maltese
 cp8859_4, // Baltic
 cp8859_5, // Cyrillic
 cp8859_6, // Arabic
 cp8859_7, // Greek
 cp8859_8, // Hebrew
 cp8859_9, // Latin 5 Turkish
 cp8859_10, // Latin 6 Nordic Area
 cp8859_13, // Latin 7 Baltic Rim
 cp8859_14, // Latin 8 Celtic
 cp8859_15, // Latin 9 French
 cp8859_16, // Latin 10 Hungarian

Function Reference Page 242 of 854

 cpSymbol, // Symbol
 cp437, // DOS USA
 cp737, // DOS Greek
 cp775, // DOS Baltic Rim
 cp850, // DOS Multilingual
 cp852, // DOS Slavic
 cp855, // DOS Cyrillic
 cp857, // DOS Turkish
 cp860, // DOS Portuguese
 cp861, // DOS Icelandic
 cp862, // DOS Hebrew
 cp863, // DOS French (Canada)
 cp864, // DOS Arabic
 cp865, // DOS Nordic
 cp866, // DOS Russian
 cp869, // DOS Modern Greek
 cp874, // DOS Thai
 cpUnicode, // We convert to Unicode -> NOT ALLOWED!
 cpCJK_Big5_Uni, // Big5 plus HKSCS extension
 cpCJK_EUC_JP_Uni, // EUC-JP
 cpCJK_EUC_KR_Uni, // EUC-KR
 cpCJK_EUC_TW_Uni, // CNS-11643-1992 (Planes 1-15)
 cpCJK_GBK_Uni, // MS code page 936 (GB2312, EUC-CN plus GBK)
 cpCJK_GB12345_Uni, // GB-12345-1990 (Trad. Chinese form of GB-2312)
 cpCJK_HZ_Uni, // Mixed ASCII / GB-2312 encoding
 cpCJK_2022_CN_Uni, // ISO-2022-CN-EXT (GB-2312 plus ISO-11643)
 cpCJK_2022_JP_Uni, // ISO-2022-JP
 cpCJK_2022_KR_Uni, // ISO-2022-KR
 cpCJK_646_CN_Uni, // ISO-646-CN (GB-1988-80)
 cpCJK_646_JP_Uni, // ISO-646-JP (JIS_C6220-1969-RO)
 cpCJK_IR_165_Uni, // ISO-IR-165 (extended version of GB-2312)
 cpCJK_932_Uni, // Microsoft extended version of SHIFT_JIS
 cpCJK_949_Uni, // EUC-KR extended with UHC (Unified Hangul Codes)
 cpCJK_950_Uni, // Microsoft extended version of Big5
 cpCJK_JOHAB_Uni, // JOHAB
 // These are character sets, not code pages. The character sets can
 // not be used for Unicode conversion.
 cpShiftJIS, // Use cpCJK_932_Uni or cpCJK_EUC_JP_Uni instead.
 cpBig5, // Use cpCJK_Big5_Uni instead.
 cpGB2312, // Use cpCJK_GBK_Uni instead.
 cpWansung, // Use cpCJK_949_Uni or cpCJK_JOHAB_Uni instead.

cpJohab // Use cpCJK_JOHAB_Uni instead.
cpMacRoman // Mac Roman encoding

}

This function converts a string of a specific 8 bit or CJK encoding to Unicode. It can be used
especially to convert strings for use with bookmarks or other global objects such as text annotations
and so on which do not support 8 bit encodings but Unicode.

Function Reference Page 243 of 854

The function can be used multiple times without causing a memory leak. The internal used
conversion buffer is freed automatically before the function is executed. However, the buffer can be
freed manually with the function FreeUniBuf().

Remarks:

This function depends not on an open PDF file; it can be used at any time. The conversion
algorithms are binary save but because no string length is used the string must not contain null
characters (except to terminate the string). No error messages are displayed if this function fails.

Return values:

If the function succeeds the return value is a pointer to null-terminated Unicode string in the byte
ordering supported by the CPU. If the function fails the return value is NULL.

CopyChoiceValues

Syntax:
LBOOL pdfCopyChoiceValues(
 const PPDF* IPDF, // Instance pointer
 UI32 Source, // Source field handle
 UI32 Dest, // Destination field handle
 LBOOL Share) // If true, both fields share the same list items

The function copies the list items, default value, and value of the source field to the destination field.
The source and destination field can be combo and list boxes. It is allowed to copy the list items of a
list box to a combo box or vice versa.

If Share is true, the function adds just a reference to the list item so that both fields share the same list
items. This is still the case if more list items will be added to such a field. If Share is false, the list
items will be copied to the destination field. Both fields contain independent list items in this case.

Already existing list items of the destination field will be deleted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 244 of 854

Create3DAnnot

Syntax:
SI32 pdfCreate3DAnnot(

const PPDF* IPDF, // Instance pointer
double PosX, // X-Coordinate of the annotation
double PosY, // Y-Coordinate of the annotation
double Width, // Width of the annotation
double Height, // Height of the Annotation
const char* Author, // Optional author
const char* Name, // Optional annotation name
const char* U3DFile, // Required U3D or PRC file
const char* Image) // Optional image to display the closed annotation

The function creates a 3D annotation from a U3D or PRC file. The image is used to create the default
appearance of the annotation; it is shown when the annotation is deactivated or when viewing the
file with a viewer that does not support 3D annotations. If no image file is provided the background
is filled with the current field background color (see SetFieldBackColor()). Note that the default
background color is transparent, that means no background will be drawn if the color was not
changed beforehand.

The annotation’s name can be used to access the annotation from a JavaScript or JavaScript action.
The name must be unique if defined. Make sure that no other annotation exists with the same name.
Note that DynaPDF performs no duplicate check during creation of the annotation.

A 3D annotation requires usually at least a default view that defines the rendering mode and
lighting scheme to get suitable results (see Create3DView()). Without a view the viewer application
uses default settings to display the annotation.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 245 of 854

Create3DBackground

Syntax:
LBOOL pdfCreate3DBackground(

const PPDF* IPDF, // Instance pointer
const void* IView, // 3D View handle
UI32 BackColor); // RGB background color

The function creates a background dictionary for a 3D annotation that is used to change the
annotation’s background color. The background color must be defined in RGB color space.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Create3DGotoViewAction

Syntax:
SI32 pdfCreate3DGotoViewAction(

const PPDF* IPDF, // Instance pointer
UI32 Base3DAnnot, // 3D Annotation handle
const void* IView, // 3D View handle or
T3DNamedAction Named) // Named 3D action

typedef enum
{
 naDefault,
 naFirst,
 naLast,
 naNext,
 naPrevious
}T3DNamedAction;

A GoTo3DView action can be used to dynamically change the view of a 3D annotation. If the
parameter IView is not NULL the created action opens explicitly the defined view. The parameter
Named is ignored in this case. If IView is NULL, the named action is used instead.

A GoTo3DView action can be used like any other action. The action can be added with
AddActionToObj() to a bookmark, page link, or interactive form field, e.g. a button field.

Remarks:

Due to certain bugs in the 3D rendering engine of Adobe’s Acrobat Reader versions prior to 7.0.9, go
to 3D view actions do not properly work in these Acrobat Reader versions. The bugs were solved in
Acrobat Reader 7.0.9. Make sure that your customers use the latest version.

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 246 of 854

Create3DProjection

Syntax:
LBOOL pdfCreate3DProjection(

const PPDF* IPDF, // Instance pointer
const void* IView, // 3D View handle (required)
T3DProjType ProjType, // Projection type
T3DScaleType ScaleType, // Scaling type
double Diameter, // Scale factor, see below
double FOV) // Field of View, see below

typedef enum
{
 pt3DOrthographic, // Orthographic projection
 pt3DPerspective // Perspective projection
}T3DProjType;

typedef enum
{
 st3DValue, // Default for orthographic projection, see description
 st3DWidth, // Default for perspective projection
 st3DHeight,
 st3DMin,
 st3DMax
}T3DScaleType;

The function creates a projection dictionary for a 3D annotation. A projection dictionary defines the
mapping of 3D camera coordinates onto the target coordinate system. A projection dictionary can
only be added to a 3D view of a 3D annotation. The 3D view must be created beforehand with
Create3DView().

The parameter ProjType defines the kind of projection that should be used, e.g. orthographic or
perspective projection. Depending on the projection type the parameters ScaleType, Diameter, and
FOV have different meanings:

Perspective projection

The parameter ScaleType specifies the scaling used when projecting the 3D artwork onto the
annotation’s target coordinate system. If ScaleType is set to st3DValue the parameter Diameter
defines the diameter of the circle formed by the intersection of the near plane and the cone specified
by FOV. Diameter must be a positive number in this case. If ScaleType is set to another value than
st3DValue the parameter Diameter is ignored.

The parameter FOV must be a number between 0.0 and 180.0, inclusive, specifying the field of view
of the virtual camera in degrees. It defines a cone in 3D space centered on the z axis and a circle
where the cone intersects the near clipping plane. The circle, along with the value of Diameter and
ScaleType, specify the scaling of the projected artwork when rendered in the 2D plane of the
annotation. See also PDF Reference 1.7.

Function Reference Page 247 of 854

Orthographic projection

The parameter ScaleType specifies the strategy for scaling to fit the near plane’s x and y coordinates
onto the annotation’s target coordinate system. The value st3DValue refers to absolute scaling, that
means no scaling should occur due to binding. The parameter Diameter is ignored if orthographic
projection is used.

The parameter FOV specifies the scale factor to be applied to both the x and y coordinates when
projecting onto the annotation’s target coordinate system (the z coordinate is discarded). The default
value is 1.0.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Create3DView

Syntax:
void* pdfCreate3DView(

const PPDF* IPDF, // Instance pointer
UI32 Base3DAnnot, // 3D Annotation handle
const char* Name, // Unique name that describes the view (required)
LBOOL SetAsDefault, // If true, the view is used as default view
double* Matrix, // Optional 3D transformation matrix
double CamDistance, // Camera distance or 0.0 if not known
T3DRenderingMode RM, // 3D Rendering mode
T3DLightingSheme LS) // 3D Lighting scheme

typedef enum
{
 rmBoundingBox,
 rmHiddenWireframe,
 rmIllustration,
 rmShadedIllustration,
 rmShadedVertices,
 rmShadedWireframe,
 rmSolid,
 rmSolidOutline,
 rmSolidWireframe,
 rmTransparent,
 rmTranspBBox,
 rmTranspBBoxOutline,
 rmTranspWireframe,
 rmVertices,
 rmWireframe,
 rmNotSet
}T3DRenderingMode;

Function Reference Page 248 of 854

typedef enum
{
 lsArtwork, // Lights from file
 lsBlue,
 lsCAD,
 lsCube,
 lsDay,
 lsHard,
 lsHeadlamp,
 lsNight,
 lsNoLights,
 lsPrimary,
 lsRed,
 lsWhite,
 lsNotSet
}T3DLightingSheme;

The function creates a 3D view for a 3D annotation. A 3D annotation can contain multiple 3D views
while one 3D view should always be marked as default view. Note that a default view does not
appear in the list of views in the model tree of Adobe’s Acrobat.

A 3D view must always define a unique name that describes the view, e.g. Left, Right, Top, or any
other string. Note that the name is shown in the model tree, it should be human readable.

The parameter Matrix can be used to transform the 3D coordinate space, e.g. to rotate the 3D
artwork. The matrix is optional, if set, it must consist of an array of double that contains exactly 12
entries. A 3D matrix is usually created interactively in a 3D viewer application. Without a visual
feedback it is practically impossible to define the matrix.

The parameter CamDistance specifies a distance in the camera coordinate system along the z axis to
the center of orbit for this view. If zero, the viewer application must determine the center of orbit.
See PDF Reference 1.7 for further information.

Notice:

If a correct 3D matrix cannot be calculated in your application then set the parameter Matrix to
NULL and NOT to the identity matrix. The viewer application tries then to fit the 3D artwork into
the annotation’s bounding box.

The last two parameters RM and LS define the 3D rendering mode and lighting scheme to be used
to render the 3D artwork.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is a pointer to the view. If the function fails the return value
is NULL.

Function Reference Page 249 of 854

CreateAltFontList

Syntax:
SI32 pdfCreateAltFontList(
 const PPDF* IPDF) // Instance pointer

The function creates an alternate font list, that can be filled with data by SetAltFonts(). It is possible
to create an arbitrary number of alternate font lists. Multiple lists can be created because different
fonts and languages require different fallback fonts. For example, one could create one list for
proportional fonts and another one for fixed pitch fonts, or different lists for different languages.

Each list can be activated or deactivated with ActivateAltFontList() arbitrary often. Changing the
active alternate font list is very fast and causes no overhead.

Once a font list was created it can be filled with data with SetAltFonts(). A font list that is no longer
needed can be deleted with DeleteAltFontList().

Please note that alternate font lists are used only, if complex text layout was enabled. This can be
done by setting the flag gfComplexText with SetGStateFlags().

Return values:

If the function succeeds the return value is the handle of the font list, a value greater or equal zero. If
the function fails the return value is a negative error code.

CreateAnnotAP

Syntax:
SI32 pdfCreateAnnotAP(

const PPDF* IPDF, // Instance pointer
UI32 Annot) // Annotation handle

The function creates a user defined appearance stream for an annotation and activates it so that
arbitrary contents can be drawn into it, such as text, images, or vector graphics. An appearance
stream is a normal template in the size of the annotation. The template must be closed when finish
with EndTemplate().

Note that the template is reserved for the annotation and must not be used on pages or other
templates.

At time of publication user defined appearance streams can be created for Stamp and FreeText
annotations. However, the main application is the creation of user defined stamps. The appearance
stream of a FreeText annotation should correspond to the annotation's value.

It is allowed to insert an EMF file into a user defined appearance stream. If the contents should be
imported from an external PDF file then import the wished page with ImportPage() and place the
resulting template into this one with PlaceTemplate() or PlaceTemplateEx(). The latter version is
preferred because it considers the original page orientation and bounding boxes. See
PlaceTemplateEx() for further information.

Function Reference Page 250 of 854

Return values:

If the function succeeds the return value is the handle of the template that was created for the
annotation, a value greater or equal zero. If the function fails the return value is a negative error
code.

CreateArticleThread

Syntax:
SI32 pdfCreateArticleThread(
 const PPDF* IPDF, // Instance pointer
 const char* ThreadName) // Name of the thread

This function creates a new article thread. An article thread is a container for articles which must be
created separately with AddArticle(). A document can contain an arbitrary count of article threads.
The names of the threads should be unique otherwise it is not possible to distinguish between them
in Adobe's Acrobat.

Some types of documents may contain sequences of content items that are logically connected but
not physically sequential. For example, a news story may begin on the first page of a newsletter and
run over onto one or more non-consecutive interior pages. To represent such sequences of
physically discontinuous but logically related items, a PDF document may define one or more
articles.

The sequential flow of an article is defined by an article thread; the individual content items that
make up the article are called beads on the thread. PDF viewer applications such as Adobe’s
Acrobat provide navigation facilities to allow the user to follow a thread from one bead to the next.

Remarks:

Due to a bug in Acrobat 6 articles can cause a zoom out. The pages of a document appear then as
small thumb nails. It is highly recommended to test your articles with Acrobat 6.

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create an article thread in an arbitrary encoding
convert the string to Unicode with the function ConvToIncode() first and use the Unicode version to
create the article thread.

Return values:

If the function succeeds the return value is the handle of the article thread, a value greater or equal
zero. If the function fails the return value is a negative error code.

Function Reference Page 251 of 854

CreateAxialShading

Syntax:
SI32 pdfCreateAxialShading(
 const PPDF* IPDF, // Instance pointer
 double sX, // X-Coordinate of the start point
 double sY, // Y-Coordinate of the start point
 double eX, // X-Coordinate of the end point
 double eY, // Y-Coordinate of the end point
 double SCenter, // Shading center
 UI32 SColor, // Start color
 UI32 EColor, // End color
 LBOOL Extend1, // Extend the shading beyond the start point
 LBOOL Extend2) // Extend the shading beyond the end point

Axial shadings define a color blend or gradient that varies along a linear axis between two
endpoints and extends indefinitely perpendicular to that axis. The shading may optionally be
extended beyond either or both endpoints by continuing the boundary colors indefinitely.

The shading center defines the point from where the first color will blend into the other. A value of 1
determines the exact center between the starting and ending point of the shading. Smaller values
shift the shading center in direction to the start point, greater values in the direction to the end
point.

Axial shadings can be drawn into a clipping path to restrict painting into this path. If the shading is
drawn outside of a clipping path it is applied to the entire page. Not that extended shadings are
opaque, objects behind the shading becomes invisible if they are overprinted by the shading.

Shadings are drawn by using the current coordinate system. It is recommended to understand that
shadings have its own dimension like a normal shape. The parameters Extend1 and Extend2 extend
the shading beyond its dimension. If the shading is extended it must normally be drawn into a
clipping path to avoid overprinting of other objects.

Shadings support the color spaces DeviceGray, DeviceRGB, and DeviceCMYK. The color values of
the start and end color must be defined in the current color space. See also SetColorSpace().

Shadings are invisible as long they are not drawn by using the function ApplyShading().
ApplyShading() requires a shading handle that was returned by this function.

Remarks:

See the function ApplyShading() for an example application.

Return values:

If the function succeeds the return value is the handle of the shading, a value greater or equal zero.
If the function fails the return value is a negative error code.

Function Reference Page 252 of 854

CreateBarcodeField

Syntax:
SI32 pdfCreateBarcodeField(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Field name
 SI32 Parent, // Parent field or -1
 double PosX, // X-Coordinate of the barcode field
 double PosY, // Y-Coordinate of the barcode field
 double Width, // Width in unscaled units
 double Height, // Height in unscaled units
 struct TPDFBarcode* Barcode) // see below

struct TPDFBarcode
{
 UI32 StructSize; // Must be set to sizeof(TPDFBarcode)
 const char* CaptionA; // Optional
 const UI16* CaptionW; // Optional

float ECC; // 0..8 for PDF417, or 0..3 for QRCode
 float Height; // Height in inches (field height / 72.0)
 float nCodeWordCol; // Number of codewords per barcode coloumn
 float nCodeWordRow; // Codewords per barcode row (PDF417)
 UI32 Resolution; // Resolution
 const char* Symbology; // Must be PDF417, QRCode, or DataMatrix
 float Version; // Should be 1
 float Width; // Width in inches (field width / 72.0)
 float XSymHeight; // Only needed for PDF417. The vertical distance between two barcode
 // modules, measured in pixels. The ratio XSymHeight / XSymWidth shall
 // be an integer value. For PDF417, the acceptable ratio range is from
 // 1 to 4. For QRCode and DataMatrix, this ratio shall always be 1.
 float XSymWidth; // The horizontal distance, in pixels, between two barcode modules.
};

The function creates a barcode field.

The structure TPDFBarcode must be fully initialized with correct values for the wished barcode type.
An example for the PDF417 barcode is provided below the function description. For other barcodes
please consult the correcponding barcode reference.

The value of a barcode field is normally dynamically set with a JavaScript action that is associated
with the OnCalc event of the barcode field. It is also possible to use a global JavaScript function or
other events depending on when the barcode should be updated or how the value must be
calculated.

Because DynaPDF does not contain a barcode library it is recommended to set the the
NeedAppearance flag of the AcroForm to true (see SetNeedAppearance()). Alternatively barcodes
can be initialized with a JavaScript action, e.g. in the pages OnOpen event. Without initialisation the
barcode field appears as gray box on the page.

Barcode field require a specific set of field flags which must be present:

flags = ffPrint | ffReadOnly | ffNoExport | ffMultiline | ffDoNotSpellCheck;

DynaPDF sets the above flags when creating the field. Changing the field flags can cause errors in
Adobe's Acrobat or prevent that the barcode becomes rendered.

Function Reference Page 253 of 854

The parameter Name must be a unique name for the barcode field.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
barcode field. If the coordinate system is top-down it defines the upper left corner.

The barcode covers the entire visible area of the field. So, the field is rendered without a border.
Changing the border color or border width has no effect.

Remarks:

A barcode field is a text field that contains a barcode dictionary. When enumerating fields with
GetFieldEx() check whether IBarcode is set to determine whether the field is a barcode field or an
ordinary text field.

Return values:

If the function succeeds the return value is the field handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Example (C++):
// Error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode,
const char* ErrMessage, SI32 ErrType)
{

printf("%s\n", ErrMessage);
return 0;

}
SI32 TestBarcode(void)
{
 float w, h;
 TPDFBarcode b;
 SI32 retval, f, act;
 PPDF* pdf = pdfNewPDF();
 if (!pdf) return -1; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);

 pdfCreateNewPDF(pdf, "barcode.pdf");
 pdfSetPageCoords(pdf, pcTopDown);

 pdfAppend(pdf);

 // Two text fields to enter some test data...
 pdfCreateTextField(pdf, "Name", -1, false, -1, 50, 50, 150, 20);
 pdfCreateTextField(pdf, "Email", -1, false, -1, 50, 80, 150, 20);

 // A button to reset the form
 f = pdfCreateButton(pdf, "Reset", "Reset", -1, 250, 50, 100, 20);
 act = pdfCreateResetAction(pdf);
 pdfAddActionToObj(pdf, otField, oeOnMouseUp, act, f);

Function Reference Page 254 of 854

 w = 200.0f; // Field width
 h = 200.0f; // Field height

 // Initialize the structure with zero
 memset(&b, 0, sizeof(b));
 b.StructSize = sizeof(TPDFFieldEx); // Required!
 b.ECC = 5.0f;
 b.Height = h / 72.0f;
 b.nCodeWordCol = 10.0f;
 b.nCodeWordRow = 90.0f;
 b.Resolution = 300;
 b.Symbology = "PDF417";
 b.Version = 1.0f;
 b.Width = w / 72.0f;
 b.XSymHeight = 8.0f;
 b.XSymWidth = 4.0f;
 f = pdfCreateBarcodeField(pdf, "Barcode", -1, 50.0, 200.0, w, h, &b);

 // Generic script to update the barcode
 char updateBarcode[] =
 "function strTabDelimited(oParam)\n"
 "{\n"
 " var bNeedTab = false;\n"
 " var strNames = \"\";\n"
 " var strValues = \"\";\n"
 " for (var i = 0; i < oParam.oDoc.numFields; ++i)\n"
 " {\n"
 " var strFieldName = oParam.oDoc.getNthFieldName(i);\n"
 " var f = oParam.oDoc.getField(strFieldName);\n"
 " if (f != oParam.oTarget && f.type != \"button\")\n"
 " {\n"
 " if (bNeedTab)\n"
 " {\n"
 " if (oParam.bFieldNames)\n"
 " strNames += \"\\t\";\n"
 " strValues += \"\\t\";\n"
 " }\n"
 " if (oParam.bFieldNames)\n"
 " strNames += strFieldName;\n"
 " strValues += f.value;\n"
 " bNeedTab = true;\n"
 " }\n"
 " }\n"
 " if (oParam.bFieldNames)\n"
 " return strNames + \"\\n\" + strValues;\n"
 " else\n"
 " return strValues;\n"
 "}\n"
 "try\n"

Function Reference Page 255 of 854

 "{\n"
 " event.value = strTabDelimited({oDoc: this, oTarget:"
 "event.target, bFieldNames: true});\n"
 "}\n"
 "catch(e)\n"
 "{\n"
 " event.value = \" \";\n"
 "};\n";

 act = pdfCreateJSAction(pdf, updateBarcode);
 // Add the action to the barcode field
 pdfAddActionToObj(pdf, otField, oeOnCalc, act, f);

 pdfEndPage(pdf);

 // Make sure that a viewer updates the field appearance
 pdfSetNeedAppearance(pdf, true);

 retval = pdfCloseFile(pdf);
 pdfDeletePDF(pdf);
 return retval;
}

CreateButton

Syntax:
SI32 pdfCreateButton(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the button
 const char* Caption, // Caption
 SI32 Parent, // Parent group field or -1
 double PosX, // X-Coordinate of the button
 double PosY, // Y-Coordinate of the button
 double Width, // Width in unscaled units
 double Height) // Height in unscaled units

This function creates a push button. The parameter Name must be a unique name for the button
field. It is not allowed to create two buttons with an identical name within the hierarchy in which
they appear.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
button. If the coordinate system is top-down it defines the upper left corner.

Like all form fields, the width and height is measured incl. the line width of the border. The size of
normal vector graphics is measured without the line width; this must be taken into account when
calculating the width and height of a form field.

The border is drawn by using the current line width and border style (see SetBorderStyle()).
However, interactive form fields support natively the line width 1, 2 and 3 units only (thin, medium,

Function Reference Page 256 of 854

thick). Other values can be applied but the appearance can be changed by Adobe's Acrobat when
the form is reset by a Reset Form Action.

The appearance can be influenced with the following properties:

• Get/SetFieldBackColor() // Background color

• Get/SetFieldBorderColor() // Border color

• Get/SetFieldColor() // Change a specific color of a field

• Get/SetFieldTextColor() // Color of the caption

• Get/SetLineWidth() // Line width of the border

The border and background color can be set to NO_COLOR, the background or border appears then
transparent. The border appears also transparent when the line width was set to zero.

DynaPDF supports also image buttons. To create an image button store the handle of the button in a
variable and add one or more images to the different button states (see AddButtonImage() for
further information). The caption of the button will be overridden when an image to the up state is
added.

Buttons are used to execute an action; the following events are supported by button fields:

• OnMouseUp

• OnMouseDown

• OnMouseExit

• OnFocus

• OnBlur

Remarks:

This function is implemented in an Ansi and Unicode compatible version. However, CJK encodings
or Unicode are NOT supported by form fields. It is possible to use Unicode strings but the font must
NOT use the code page cpUnicode. Unicode strings must contain characters of the actual used 8 bit
code page.

Buttons requires a font, if no font was set before Helvetica is used to draw the caption by using the
code page 1252. The caption is centred horizontally and vertically. By default the caption is drawn
on multiple lines if it does not fit into a single line. To avoid a line break inside a button field remove
the flag ffMultiline (see SetFieldFlags()).

Buttons are excluded from printing by default. If a button should be printable set the flag ffPrint (see
SetFieldFlags() for further information).

Remarks:

Interactive form fields can be structured into several groups by passing a handle of a group field to
the parameter Parent. See CreateGroupField() for further information.

Function Reference Page 257 of 854

Return values:

If the function succeeds the return value is the field handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateCheckBox

Syntax:
SI32 pdfCreateCheckBox(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the check box (see note below)
 const char* ExpValue, // Export value (required)
 LBOOL Checked, // If true, the check box appears checked
 SI32 Parent, // A parent group or radio button field or -1
 double PosX, // X-Coordinate of the button
 double PosY, // Y-Coordinate of the button
 double Width, // Width of the check box
 double Height) // Height of the check box

This function creates a check box. A check box can be a subfield of a radio button or of a group field
(see also CreateRadioButton(), CreateGroupField()). If the parameter Parent is -1 the check box is
creates as stand alone field.

The parameter Name is ignored if the check box is a sub control of a radio button field, it can be
NULL in the latter case. However, the name is required if the check box is used as stand alone field.

The parameter ExpValue defines the export value of the check box for the on state. This value is
exported if the state of the check box is on and if the form is submitted to a web server. The export
value must not be an empty string. The export value for the off state is always "Off".

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
button. If the coordinate system is top-down it defines the upper left corner.

Like all form fields the width and height is measured incl. the line width of the border. The size of
normal vector graphics is measured without the line width; this must be taken into account when
calculating the width or height of a form field. The line width of the border is derived from the
current graphics state (see SetLineWidth()), it should be either 0, 1, 2, or 3 units (no border, thin,
medium, or thick). The border style can be changed with the functions SetBorderStyle() or
SetFieldBorderStyle().

Check boxes use always the standard font ZapfDingbats to draw the check box symbol. It is not
possible to change the font but it is possible to use a custom font size. The font size is used from the
active font; the kind of font that is active is ignored. There is no need to set ZapfDingbats as active
font to enable the usage of a custom font size. The font size is calculated to an optimal value if the
size of the active font is set to 1 unit or if no font is active.

Function Reference Page 258 of 854

The check box character can be changed with the property Get/SetCheckBoxChar(). If the check box
character is ccCircle, the border appears circular if the check box is a sub control of a radio button
field. If the check box is used stand alone, the border appears always rectangular.

Specific flags supported by check boxes only:

• ffRadioIsUnion: If set, a group of radio buttons within a radio button field that use the
same export value for the on state will turn on and off in unison; that is if one is checked,
they are all checked. This flag requires Acrobat 6 or higher.

Remarks:

Interactive form fields can be structured into several groups by passing a handle of a group field to
the parameter Parent. See CreateGroupField() for further information.

Return values:

If the function succeeds the return value is the field handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateCIEColorSpace

Syntax:
SI32 pdfCreateCIEColorSpace(

const PPDF* IPDF, // Instance pointer
TExtColorSpace CS, // Allowed values: esCalGray, esCalRGB, esLab
float* WhitePoint, // White point -> required
float* BlackPoint, // Optional black point
float* Gamma, // Optional gamma per component or Range in Lab
float* Matrix) // Optional transformation matrix -> CalRGB only

The function creates a CIE-based color space. Three CIE-based color spaces are supported: CalGray,
CalRGB, and Lab.

The semantics of CIE-based color spaces are defined in terms of the relationship between the space’s
components and the tristimulus values X, Y, and Z of the CIE 1931 XYZ space. The CalRGB and Lab
color spaces (PDF 1.1) are special cases of three-component CIE-based color spaces, known as CIE-
based ABC color spaces. These spaces are defined in terms of a two-stage, nonlinear transformation
of the CIE 1931 XYZ space. See PDF Reference for further information.

A CalGray color space (PDF 1.1) is a special case of a single-component CIEbased color space,
known as CIE-based A color space. This type of space is the one-dimensional (and usually
achromatic) analog of CIE-based ABC spaces. Color values in a CIE-based A space have a single
component, arbitrarily named A.

The white point is an array of three numbers [XW YW ZW] specifying the tristimulus value, in the
CIE 1931 XYZ space, of the diffuse white point. The numbers XW and ZW must be positive, and YW
must be equal to 1.0. The parameter WhitePoint is always required.

Function Reference Page 259 of 854

The optional black point is an array of three numbers [XB YB ZB] specifying the tristimulus value, in
the CIE 1931 XYZ space, of the diffuse black point. All three of these numbers must be non-negative.
Default value: [0.0 0.0 0.0].

The parameter Gamma is optional and its meaning is different depending on the underlying color
space. If the color space is CalRGB or CalGray the array must contain gamma values for each
component. Default value: [1.0 1.0 1.0].

The Lab color space does not support gamma but it supports a range array which can be used to
define the valid ranges of the a* and b* components of the color space. So, the parameter Gamma can
be named as Range when a Lab color space will be created. If set, the array must contain exactly 4
values in the form [amin amax bmin bmax]. Default value: [-100 100 -100 100]. The valid range of the L*
component is always 0 to 100.

The parameter Matrix is optional and used in CalRGB color spaces only. If set, the array must
contain exactly 9 numbers representing a 3 x 3 matrix which specifies the linear interpretation of the
decoded A, B, and C components of the color space with respect to the final XYZ representation.

How to define CalGray colors?

Since CalGray colors consist of only one component which ranges from 0 to 255 the colors can be
defined as if you would use DeviceGray. No further conversion function is required.

How to define CalcRGB colors?

CalRGB can be used in the same way as DeviceRGB. Each component of a CalRGB color space
ranges from 0 to 255. Use the macro PDF_RGB() to convert color components to a 32 bit integer.
Other programming languages than C/C++ support mostly a function like rgb() which does
essentially the same as the C macro PDF_RGB().

How to define Lab colors?

The Lab color space is a three component space where each component supports different ranges:

• L* 0 to 100

• a* -128 to 127

• b* -128 to 127

The ranges above define the maximum ranges which can be used in a Lab color space. In
comparison to RGB each component is defined as signed char while in RGB each component is
defined as unsigned char. C/C++ programmers can still use the macro PDF_RGB() to convert Lab
colors to 32 bit integers.

If you use another programming language it is usually best to convert negative component values to
unsigned char before passing the value to a function like rgb().

Function Reference Page 260 of 854

Example:
if (component_value < 0)

result = 256 + component_value; // Note that we add a negative number!
else
 result = component_value;

Notice:

Non-device color spaces cannot be used for interactive objects such as annotations or form fields.
The active color space must always be changed to a device color space before creating interactive
objects; see SetColorSpace(). Note also that annotations support DeviceRGB only. Form fields
support DeviceGray, DeviceRGB, and DeviceCMYK.

Remarks:

Use the function SetExtColorSpace() to activate the color space in the graphics state. To set a color of
a CIE-based color space convert the color value to a 32 bit integer as described above and pass the
result to SetFillColor(), SetStrokeColor(), or SetColors().

Return values:

If the function succeeds the return value is the color space handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

CreateColItemDate

Syntax:
LBOOL pdfCreateColItemDate(

const PPDF* IPDF, // Instance pointer
UI32 EmbFile, // Handle of an embedded file
const char* Key, // The key defined in the collection field
long Date, // The date time value as integer
const char* Prefix) // Optional prefix to be added to the value

The function creates a user defined collection item which accepts a date time value. The parameter
Key must be the key that was used in the related collection field in which the value should be
shown.

The parameter Date is passed to the Ansi function localtime() or gmtime() to create a PDF
compatible date time value. Therefore, the value must be defined in the format which these
functions accept. It is usually defined as the number of seconds elapsed since midnight (00:00:00),
January 1, 1970. However, depending on the operating system, the base date can be different.

The parameter Prefix is optional. If set, it is concatenated with the text string presented to the user.
This entry is ignored when a PDF viewer application sorts the items in the collection.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 261 of 854

CreateColItemNumber

Syntax:
LBOOL pdfCreateColItemNumber(

const PPDF* IPDF, // Instance pointer
UI32 EmbFile, // Handle of an embedded file
const char* Key, // The key defined in the collection field
double Value, // The value for the key
const char* Prefix) // Optional prefix to be added to the value

The function creates a user defined collection item which accepts an arbitrary number as value.

The parameter Key must be the key that was used in the related collection field in which the value
should be shown. The parameter Value can be any positive or negative number. The parameter
Prefix is optional. If set, it is concatenated with the text string presented to the user. This entry is
ignored when a PDF viewer application sorts the items in the collection.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CreateColItemString

Syntax:
LBOOL pdfCreateColItemString(

const PPDF* IPDF, // Instance pointer
UI32 EmbFile, // Handle of an embedded file
const char* Key, // The key defined in the collection field
const char* Value, // The value for the key
const char* Prefix) // Optional prefix to be added to the value

The function creates a user defined collection item which accepts an arbitrary string as value.

The parameter Key must be the key that was used in the related collection field in which the value
should be shown. The parameter Value can be an arbitrary string. However, the string should be
human readable because it is displayed in the user interface.

The parameter Prefix is optional. If set, it is concatenated with the text string presented to the user.
This entry is ignored when a PDF viewer application sorts the items in the collection.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 262 of 854

CreateCollection
LBOOL pdfCreateCollection(

const PPDF* IPDF, // Instance pointer
TColView View) // Initial view

typedef enum
{
 civNotSet, // Internal, not usable
 civDetails,
 civTile,
 civHidden,
 civCustom // Not usable. The view is presented by a SWF file.
}TColView;

The function marks the current PDF file in memory as PDF collection, also known as PDF Package.

Beginning with PDF 1.7, PDF documents can specify how a viewer application’s user interface
presents collections of file attachments, where the attachments are related in structure or content.
Such a presentation is called a portable collection.

The intent of portable collections is to present, sort, and search collections of related documents,
such as email achieves, photo collections, and engineering bid sets. There is no requirement that files
in a collection have an implicit relationship or even a similarity; however, showing differentiating
characteristics of related documents can be helpful for document navigation.

A collection consists of a normal PDF document (container PDF) that can be created in the usual
way, and of a set of file attachments. The difference between a normal PDF file and a portable
collection is that the viewer application provides navigation facilities for the file attachments and it
is possible to open attached PDF files directly in the viewer application without loosing the
navigation plane of the container PDF.

When a PDF 1.7-compliant viewer application first opens a PDF document containing a collection, it
displays the contents of the initial document, along with a list of the embedded files.

The initial document is usually taken from the embedded files while the container PDF consists of
only one page that displays a message that this PDF file is a collection that requires a PDF 1.7
compliant viewer which is aware of PDF collections.

Older viewer applications display just the container PDF while a PDF 1.7 compliant viewer opens
the initial document taken from the embedded files in this case.

However, the initial document can be the container PDF or one of the embedded documents. The
default initial document is the container PDF. If an embedded file should be initially opened then
mark the embedded file as default file with SetColDefFile().

Notice:

Adobe has changed the way how PDF Collections are displayed in Acrobat 9 or higher. So, the
information provided in the following section is no longer fully valid. The main difference is that

Function Reference Page 263 of 854

Acrobat 9 or higher displays the embedded files as thumbnails in a navigation pane. The fields
FileName and Description are shown below or beside the thumbnail. The other fields are displayed
in the Properties dialog of an embedded file.

Acrobat 9 or higher support also SWF files to manage the collection presentation. It is not possible to
create SWF based collections with DynaPDF but it is possible to import such a collection and to add
further embedded files to it.

The embedded files of a collection are shown in a list view in Acrobat or Reader 8. Without
adding further information to the collection, the list view contains a set of default columns such
as file name, description, modification date and so on, displayed in the current language of the
viewer. The information displayed in the rows is taken from the embedded files.

The information displayed in the list view can be customized to your own requirements. To
understand how this works keep in mind that a list view consists of columns and rows. The
columns which should be displayed are defined in the collection (collection fields) while the
information displayed in the rows is taken from the embedded files.

To customize the list view of a collection you must first create one or more collection fields with
CreateCollectionField(). The function defines the column name as well as the key and data type
to be used for that column. The information for the collection field is stored in the embedded
files.

Therefore, each field that was defined in the collection should have a related collection item in
all embedded files file specification dictionaries. However, only user defined fields require a
collection item. Depending on the data type that was defined for a specific collection field, the
collection items can be added to the embedded files with the following functions:

• CreateColItemDate()

• CreateColItemNumber()

• CreateColItemString()

The functions above require always the embedded file’s handle, the key, and the data for that
key. The key was defined in the prior CreateCollectionField() call. Note that the key of a
collection field is used to find the data in the embedded files file specification dictionaries. The
column name is used to display it in the user interface.

Once the collection fields and items were defined it is possible to mark one field as sort field.
The list is then sorted by this field either in ascending or descending order (see SetColSortField()
for further information).

Remarks:

DynaPDF contains example projects which demonstrate how collection fields and items can be
created. Use the function CheckCollection() to determine whether the connection between collection
fields and collection items is valid.

Function Reference Page 264 of 854

The container PDF should always consist of only one page that displays the compatibility message
as described above and shown in the demo projects. Collections which are created in this way are
very suitable for merging multiple collections into one file. If the container PDF is a normal PDF file,
many advantages of collections are lost. Especially merging of such files is then as difficult as with
normal PDF files.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CreateCollectionField

Syntax:
SI32 pdfCreateCollectionField(

const PPDF* IPDF, // Instance pointer
TColColumnType ColType, // Data type for the column
SI32 Column, // Column index or -1, see below
const char* Name, // Column name to be displayed in the viewer
const char* Key, // Key to find the data for that column
LBOOL Visible, // If false, the column is not displayed
LBOOL Editable) // If true, the column is editable

typedef enum
{
 cisCreationDate, // Predefined column, no collection item required
 cisDescription, // Predefined column, no collection item required
 cisFileName, // Predefined column, no collection item required
 cisModDate, // Predefined column, no collection item required
 cisSize, // Predefined column, no collection item required
 cisCustomDate, // User defined date
 cisCustomNumber, // User defined number
 cisCustomString // User defined string
}TColColumnType;

The function creates a user defined collection field. A collection field represents a column in the list
view of the user interface of a PDF 1.7 compliant PDF viewer. The parameter ColType defines the
type of the column that should be added to the list. Predefined columns are already available in the
embedded files file specification dictionaries; there is no need to create collection items for these
fields.

User defined fields are available for three basic data types depending on the value that should be
stored in the collection item. User defined column types require always relating collection items in
all embedded files file specification dictionaries. A collection item holds the data that should be
displayed in a given column. See also CreateColItemDate(), CreateColItemNumber(),
CreateColItemString().

The parameter Name represents the column name that should be displayed in the list view of the
viewer application. The parameter Key is used to find the value for the column in the embedded files
file specification dictionaries. It should be defined as a 7 bit ASCII string without any special
character. The key is also required to create the relating collection items for the embedded files.

Function Reference Page 265 of 854

Make sure that you use exactly the same key to create the collection items and that the right data
type is used.

Use the function SetColSortField() to sort the list of embedded files by a specific collection field.

It is usually best to check the validity of the collection with CheckCollection() after it was fully
created. This is especially important if multiple collections were merged into one file.

The order in which collection fields and collections items are created can be arbitrary. The collection
items can be created before the collection fields and vice versa.

Remarks:

This function is implemented in an Ansi and Unicode compatible variant. The relationship between
collection fields and collection items is explained in more detail under CreateCollection(). DynaPDF
contains also example projects which demonstrate how collection fields and items can be created.
Use the function CheckCollection() to determine whether the connection between collection fields
and collection items is valid.

Return values:

If the function succeeds the return value is the handle of the collection field, a value greater or equal
zero. If the function fails the return value is a negative error code.

CreateComboBox

Syntax:
SI32 pdfCreateComboBox(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of combo box
 LBOOL Sort, // Sort the choice values
 SI32 Parent, // Parent group field or -1
 double PosX, // X-Coordinate of the combo box
 double PosY, // Y-Coordinate of the combo box
 double Width, // Width of the combo box
 double Height) // Height of the combo box

This function creates a combo box. The choice values of the combo box must be added with the
function AddValToChoiceField(). This function requires the field handle that was returned by this
function.

A combo box can contain value that is not included in the array of choice values. This value can be
used to display a string in the combo box when no choice value is selected, e.g. "Select a value!".

The field value can be set with the function SetFieldExpValue() as follows:

The parameter ValIndex of the function SetFieldExpValue() must be set to PDF_MAX_INT and the
parameter Value must contain the wished value or NULL. If Value is NULL or an empty string, a
maybe existing field value will be deleted. The choice values of the combo box get the state
unselected when setting a field value in this way.

Function Reference Page 266 of 854

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
button. If the coordinate system is top-down it defines the upper left corner.

Like all form fields the width and height is measured incl. the line width of the border. The size of
normal vector graphics is measured without the line width; this must be taken into account when
calculating the width or height of a form field. The line width of the border is derived from the
current graphics state (see SetLineWidth()), it should be either 0, 1, 2, or 3 units (no border, thin,
medium, or thick). The border style can be changed with the functions SetBorderStyle() or
SetFieldBorderStyle().

The values of the combo box are sorted if the parameter Sort is true.

A combo box requires a font. If no font is active the standard font Helvetica is used. Note: If the
form must be compatible to Acrobat 4 the used fonts by the form fields must be restricted to the 14
standard fonts (see SetFont() for further information). Acrobat 4 does not support interactive forms
that use other fonts than the 14 standard fonts. Such a form requires Acrobat 5 or higher.

Form fields support natively the code pages 1252 and MacRoman. However, other code pages and
Unicode can be used too as long as a few external cmaps are available. See SetFieldFont() for further
information.

The font size of a combo box is set to "auto" if either the font size of the active font is set to 1.0 unit or
if no font is active when the field is created.

Specific flags supported by combo boxes:

• ffEdit // Enable adding of values in Adobe's Acrobat

• ffSorted // Change the sort flag if necessary

• ffCommitOnSelCh // Submit the new value immediately (PDF 1.5)

• ffDoNotSpellCheck // Disable spell checking (requires ffEdit)

Remarks:

Interactive form fields can be structured into several groups by passing a handle of a group field to
the parameter Parent. See CreateGroupField() for further information.

Return values:

If the function succeeds the return value is the handle of the combo box, a value greater or equal
zero. If the function fails the return value is a negative error code.

Function Reference Page 267 of 854

CreateDeviceNColorSpace

Syntax:
SI32 pdfCreateDeviceNColorSpace(

const PPDF* IPDF, // Instance pointer
const char** Colorants, // Array of colorant names (required)
UI32 NumColorants, // Number of colorants in the array
const char* PostScriptFunc, // Postscript calculator function

(required)
TExtColorSpace Alternate, // Alternate color space
SI32 Handle) // Handle of the alternate color space or -

1

The function creates a DeviceN color space. DeviceN color spaces (PDF 1.3) can contain up to 32
color components. They provide greater flexibility than is possible with standard device color spaces
such as DeviceCMYK or with individual Separation color spaces. For example, it is possible to create
a DeviceN color space consisting of only the cyan, magenta, and yellow color components, with the
black component excluded.

Colors of a DeviceN color space are always treated as subtractive colors, even if the device produces
output for the designated component by an additive method. Thus, a tint value of 0 denotes the
lightest color that can be achieved with the given colorant and 255 the darkest. This convention is
the same one as for DeviceCMYK color components but opposite to the one for DeviceGray or
DeviceRGB.

DeviceN was designed to represent color spaces containing multiple components that correspond to
colorants of some target device. As with Separation color spaces, PDF consumer applications must
be able to approximate the colorants if they are not available on the current output device, such as a
display. To accomplish this, the color space definition provides a tint transformation function that
can be used to convert all the components to an alternate color space.

The tint transformation function consists of a PostScript calculator function that is called with n tint
values and returns m color component values, where n is the number of components needed to
specify a color in the DeviceN color space and m is the number of components required by the
alternate color space.

Note: Painting in the alternate color space may produce a good approximation of the intended color
when only opaque objects are painted. However, it does not correctly represent the interactions
between an object and its backdrop when the object is painted with transparency or when
overprinting is enabled (see also CreateExtGState()).

A DeviceN color space supports the special colorant name None which produces no visible output
on the device. When a DeviceN color space is painting the named device colorants directly, color
components corresponding to None colorants are discarded. However, when the DeviceN color
space reverts to its alternate color space, those components are passed to the tint transformation
function, which can use them as desired.

Function Reference Page 268 of 854

Note: A DeviceN color space whose component colorant names are all None always discards its
output, just the same as a Separation color space for None; it never reverts to the alternate color
space. Reversion occurs only if at least one color component (other than None) is specified and is not
available on the device.

Encoding of Colorant Names

Colorant names are interpreted in the code page 1252 by default. Because colorant names are stored
in UTF-8 Unicode format in PDF, it is also possible to pass UTF-8 encoded Unicode strings to the
function. However, the function must be able to distinguish between both string formats. To achieve
this, the parameter NumColorants accepts the special flag 0x10000000 that specifies that the Colorants
array contains UTF-8 encoded strings. The flag must be combined with the number of colorants
with a binary or operator:
numColorants |= 0x10000000; // C/C++, C#
numColorants = numColorants Or &H10000000 // Visual Basic
numColorants := numColorants or $10000000 // Delphi

DeviceN Attributes

DeviceN and NChannel color spaces can contain optional attributes describing further
characteristics of the color space. The most important attributes are the definitions of the spot and
process colorants which are used by the color space. These attributes are required to enable certain
features in a viewer application, e.g. the Output Preview in Adobe's Acrobat depends on it.

Notice: Although the definition of spot and process colorants is optional, it is bad practice to create a
DeviceN color space without this information.

Spot colorant attributes

Spot colorants can be defined as normal Separation color spaces and then added as an attribute to
the color space with AddDeviceNSeparations(). The advantage is that the alternate color space and
tint transformation function of the Separation color space describe the appearance of that colorant
alone, whereas those of a DeviceN color space describe only the appearance of its colorants in
combination. The definition of the spot colorants is optional but strongly recommended because it is
the only way to render a spot colorant alone. Note that the Output Preview in Adobe's Acrobat
depends on properly defined spot colorants.

Process colorant attributes

If a DeviceN color space contains components of a process color space then it should include
information about the color space in which these components are defined. This can be done with the
function AddDeviceNProcessColorants() which accepts an array of colorant names and the
underlying process color space. The process color space can be any device or CIE based color space.
If an ICCBased color space is specified, it must provide calibration information appropriate for the
process color components specified in the names array of the DeviceN color space.

Function Reference Page 269 of 854

The array of colorant names must correspond, in order, to the components of the process color
space. For example, an RGB color space must have three names corresponding to red, green, and
blue. The names may be arbitrary (that is, not the same as the standard names for the color space
components) but must match those specified in the DeviceN color space, even if not all components
are present in the DeviceN color space.

The defintion of process colorants of a DeviceCMYK color space is optional since the colorant names
Cyan, Magenta, Yellow, and Black are always considered as color components of a DeviceCMYK
color space.

How to create the PostScript Calculator Function?

A PostScript calculator function is represented as a string containing code written in a small subset
of the PostScript language. The language that can be used in a PostScript calculator function
contains expressions involving integers, real numbers, and boolean values only. There are no
composite data structures such as strings or arrays, no procedures, and no variables or names.

The following operators are supported in a PostScript calculator function:

Operator type Operators
Arithmetic operators abs

add
atan
ceiling
cos

cvi
cvr
div
exp

floor
idiv
ln
log

mod
mul
neg
round

sin
sqrt
sub
truncate

Relational, boolean,
and bitwise operators

and
bitshift
eq

false
ge
gt

le
lt
ne

not
or

true
xor

Conditional operators if ifelse

Stack operators copy
dup

exch
index

pop
roll

For more information on these operators, see Appendix B of the PostScript Language Reference,
Third Edition. The operand syntax for PostScript calculator functions follows PDF conventions
rather than PostScript conventions. The entire code defining the function is enclosed in braces { }.
Braces also delimit expressions that are executed conditionally by the if and ifelse operators:

boolean { expression } if

boolean { expression1 } { expression2 } ifelse

This construct is purely syntactic; unlike in PostScript, no "procedure objects" are involved.

When executing the function, the application pushes first the tint values of the setcolor operator or
the corresponding image components on the stack. The function is then executed and the remaining

Function Reference Page 270 of 854

components on the stack are adjusted to the valid input range of the alternate color space and then
passed to it.

Note also that the remaining components on the stack must match the number of input colorants of
the alternate color space. It is an error to leave more or less components on the stack than supported
by the alternate color space.

Example 1:

In this example we create a DeviceN color space that contains the process colorants Cyan, Magenta,
and Yellow. The alternate color space is of course DeviceCMYK. The definition of the PostScript
calculator function is very simple in this example because we need to add the missing Black
component only. The array cls includes also the Black component here because we need the colorant
names later to add the definition of the process components to the DeviceN color space:
...
const char* cls[] = {"Cyan", "Magenta", "Yellow", "Black"};
const char ps[] = "{0}"; // Just add the missing Black component

pdfAppend(pdf);

// Note that the Black component is not part of the DeviceN color space
SI32 cs = pdfCreateDeviceNColorSpace(pdf, cls, 3, ps, esDeviceCMYK, -1);
// Optional but strongly recommended: Add the defintion of the process
// colorants to the DeviceN color space.
pdfAddDeviceNProcessColorants(pdf, cls, 4, esDeviceCMYK, -1);

// Draw a rectangle in the alternate DeviceCMYK color space
pdfSetFillColorSpace(pdf, csDeviceCMYK);
pdfSetFillColor(pdf, PDF_CMYK(135, 65, 160, 0));
pdfRectangle(pdf, 50.0, 50.0, 200.0, 100.0, fmFill);
// Now we use the DeviceN color space. The colors of both rectangles must
// be identically. If you see a difference, then disable the output
// preview in Adobe's Acrobat, since the color is converted into the
// simulation profile otherwise...
pdfSetExtColorSpace(pdf, cs);
BYTE color[] = {135, 65, 160};
pdfSetFillColorEx(pdf, color, 3);
pdfRectangle(pdf, 50.0, 150.0, 200.0, 100.0, fmFill);

pdfEndPage(pdf);
...

Example 2:

In this example we want to define a DeviceN color space that contains 2 spot colors and the process
color yellow. The alternate color space for the spot colors is DeviceCMYK in this example and the
process colorant is defined in this color space too.

Function Reference Page 271 of 854

The tint transformation function for such a color space must be able to compute one color from
arbitrary combinations of these three colors. So, we need essentially a blend function expressed in
PostScript syntax.

The definition of a blend function is not difficult but long because the entire code is stack based.
However, let us first keep in mind what we need to do. We have already three values on the stack
when the function is executed. These are the tint values which were passed to the DeviceN color
space. We need to multiply the tint values with the four components of the alternate color
representations of all three channels and finally we need to combine these three colors so that we get
the resulting output color. This sounds difficult, because a lot of multiplications and additions are
required to produce the wished result, but you'll see it's easier as it looks like.

The used colors in the DeviceN color space are defined as follows:

Colorant name CMYK representation
PANTONE 345 CVC (coated) {0.38, 0.00, 0.34, 0.0} or { 97, 0, 87, 0}
PANTONE 293 CVC (coated) {1.00, 0.56, 0.00, 0.0} or {255, 143, 0, 0}
Yellow {0.00, 0.00, 1.00, 0.0} or { 0, 0, 255, 0}

The CMYK color values of the spot colors are taken from the color picker of Adobe's Photoshop.

Now, we have all information we need to create the PostScript calculator function.

The multiplication of the color channels with the tint values must be done for all three colors
included in the color space. Because these are repeating operations we can easily develop a function
that creates the necessary code for us:
// The following function creates the PostScript code to multiply the tint
// values with the components of the CMYK color representation. 0 and 1
// color values are optimized to more efficient code.
UI32 AddOperator(char* Dest, float Value, UI32 Index)
{
 if (Value == 0.0f) // Zero is always zero
 return sprintf(Dest, "0 ");
 else if (Value == 1.0f) // 1.0 represents the tint value
 return sprintf(Dest, "%d index ", Index);
 else // Other color values must be multiplied with the tint value
 return sprintf(Dest, "%d index %.2f mul ", Index, Value);
}
// Note that this function does not allocate memory. The string must be long enough to hold the
// resulting PostScript code. The function can be used to create the blend function for DeviceN color
// spaces with up to 32 color channels. The alternate color space must be DeviceCMYK or an ICCBased
// color space whose base color space is in turn DeviceCMYK. Since the alternate color space must be
// DeviceCMYK, NumColorants is always a multiple of 4!
void CreateBlendFunction(

char* Dest, // Destination string buffer
float* Colorants, // Array of color values
UI32 NumColorants) // Must be a multiple of 4!

{
UI32 i, j, len = 1;
UI32 numColors = NumColorants / 4;
UI32 index = numColors - 1;
Dest[0] = '{'; // The PostScript code must be enclosed in braces
for (i = 0; i < 4; i++, index++)
{

for (j = 0; j < NumColorants; j += 4)
{

 // Create code to multiply the tint values with the color values

Function Reference Page 272 of 854

len += AddOperator(Dest + len, Colorants[i+j], index);
}
// Add the resulting components. No range check is required...
for (j = 0; j < numColors - 1; j++)

len += sprintf(Dest + len, "add ");
}
// We are almost finished. Place the tint values on top of the stack
len += sprintf(Dest + len, "%d 4 roll", index +1);
// Remove the tint values from the stack
for (j = 0; j < numColors; j++)

len += sprintf(Dest + len, " pop");
strcpy(Dest + len, "}"); // Finish the code with a brace

}

Now we have a simple function that creates the required PostScript code for us. The usage is as
follows:
// This is our error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode,
const char* ErrMessage, SI32 ErrType)
{

printf("%s\n", ErrMessage);
return 0;

}

SI32 TestDeviceNColorSpace(const PPDF* PDF)
{

SI32 cs;
char psFunc[512]; // Buffer that holds the PostScript code
const char* cls[] = {"PANTONE 345 CVC", "PANTONE 293 CVC", "Yellow"};
const char* pcs[] = {"Cyan", "Magenta", "Yellow", "Black"};
float colors[] =
{ // The CMYK color values are taken from Adobe's Photoshop

0.38f, 0.00f, 0.34f, 0.0f, // Definition of the first spot color
1.00f, 0.56f, 0.00f, 0.0f, // Definition of the second spot color
0.00f, 0.00f, 1.00f, 0.0f // Definition of the process color

 };

pdfSetOnErrorProc(PDF, NULL, PDFError);
if (!pdfCreateNewPDF(PDF, "test.pdf")) return -2;

pdfAppend(PDF);

// We need to create the PostScript calculator function first because
// it is a required parameter of pdfCreateDeviceNColorSpace().
CreateBlendFunction(psFunc, colors, sizeof(colors) / sizeof(float));
// Create the DeviceN color space
cs = pdfCreateDeviceNColorSpace(

PDF, // Instance pointer
cls, // The colorants array
3, // Number of colorants in the array
psFunc, // Our PostScript tint transformation function
esDeviceCMYK, // Alternate color space
-1); // No handle is required for a device color space

if (cs < 0) return cs;

// We create also Separation color spaces for the spot colors and add
// these color spaces as an attribute to the DeviceN color space:

 UI32 separations[2];
// First spot color
separations [0] = pdfCreateSeparationCS(

PDF,
cls[0],
esDeviceCMYK,
-1,
PDF_CMYK(97, 0, 87, 0)); // 0.38 * 255, 0 * 255, 0.34 * 255, 0 * 255

Function Reference Page 273 of 854

// Second spot color
separations[1] = pdfCreateSeparationCS(

PDF,
cls[1],
esDeviceCMYK,
-1,
PDF_CMYK(255, 143, 0, 0)); // 1.0 * 255, 0.56 * 255, 0 * 0, 0 * 0

// Add the separation color spaces to the DeviceN color space.
pdfAddDeviceNSeparations(

PDF, // Instance pointer
cs, // DeviceN color space handle
cls, // Colorants array
separations, // Separation color space handles for these colorants
2); // Number of Separation color spaces

// Because the DeviceN color space uses a process color we add also
// the attributes of the process color space to it. Note that all
// colorant names must be defined, also if the DeviceN color space
// uses only one component of the process color space.
pdfAddDeviceNProcessColorants(

PDF, // Instance pointer
cs, // DeviceN color space handle
pcs, // Array of process colorants
4, // Number of process colorants
esDeviceCMYK, // The used process color space
-1); // No handle is required for a device color space

// The DeviceN color space is now fully created so that we can use it
BYTE color[] = {150, 100, 100};
pdfSetExtColorSpace(PDF, cs); // Set the DeviceN color space
pdfSetFillColorEx(PDF, color, 3); // Set a fill color

// Draw a rectangle with this color
pdfRectangle(PDF, 50.0, 690.0, 200.0, 100.0, fmFill);

pdfEndPage(PDF);

return pdfCloseFile(PDF);

}

int main(int argc, char* argv[]
{
 SI32 retval;
 PPDF* pdf = pdfNewPDF();
 if (!pdf) return -1; // Out of memory?

 retval = TestDeviceNColorSpace(pdf);

 pdfFreePDF(pdf);
 return retval;
}

As you can see the creation of a DeviceN color space with multiple spot and process colorants is not
difficult. With the helper function that creates the required PostScript calculator function, you can
easily create DeviceN color spaces with up to 32 color channels.

Return values:

If the function succeeds the return value is the color space handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 274 of 854

CreateDPartRoot

Syntax:
LBOOL pdfCreateDPartRoot(
 const PPDF* IPDF, // Instance pointer
 const char** NodeNameList, // Required
 UI32 NodeNamesCount, // Number of array values
 SI32 RecordLevel) // Record level or 0

The function creates the DPartRoot dictionary that must be present before DPart nodes can be
created with AddDPartNode().

Note that the function will fail if a DPartRoot dictionary was already imported or created by this
function. You can check whether a DPartRoot dictionary exists with HaveDPartRoot().

DPart stands for Document Part. DParts are a feature of PDF/VT, a PDF format for the printing
industry.

PDF pages are internally stored in a page tree structure. Pages in this tree are organized for fast
access to abitrary pages. Beginning with PDF/VT a second tree structure was added, the DPart tree.
Unlike the page tree, the DPart tree can be used to group pages and to store additational metadata
for these nodes or pages.

Overlapping page ranges are prohibited because page objects, which are referenced by a DPart
node, get a reference of this node. One page can reference exactly one DPart node. This allows direct
access to the additional metadata of a DPart node.

DPart metadata (DPM) is stored in PDF syntax, while regular metadata streams in PDF are XML
based. DPM requires no additional XML or XMP parser and is much faster to parse.

The required parameter NodeNameList represents a label or name for each DPart node level when
displaying the DPart tree on screen with a tree control or when exporting it to XML, for example.

A child node increments the level by 1. When the children of a node were processed or displayed,
the level is decremented by 1. Every DPart node has a parent node. The root node is the one that is
created by this function.

Example:

"N" stands for Node, "P" for Parent node. The number at the end represents the tree node level.
N1,PRoot 0
 N2,P1 1
 N3,P2 2
 N4,P2 2
 N5,P2 2
 N6,P1 1
 N7,P6 2
 N8,P7 3
 N9,P8 4
 N10,P8 4

Function Reference Page 275 of 854

 N11,P1 1

The tree would be displayed or exported to XML as follows if NodeNameList would contain these 5
entries: "Root", "Pages", "RecordsList1", "RecordList2", "Other":
Root
 Pages
 RecordList1
 RecordList1
 RecordList1
 Pages
 RecordList1
 RecordList2
 Other
 Other
 Pages

As you can see the naming sheme is rather simple. What happens if no name was defined for a
specific level is implementation specific.

The parameter RecordLevel specifies where each DPart node of that level corresponds to a recipient
record. If this is unknown or if there are might be multiple levels then set the parameter to 0.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CreateExtGState

Syntax:
SI32 pdfCreateExtGState(

const PPDF* IPDF, // Instance pointer
struct TPDFExtGState* GS) // Extended graphics state structure

struct TPDFExtGState
{

UI32 AutoStrokeAdjust; // PDF_MAX_INT if not set
 TBlendMode BlendMode; // Default bmNotSet
 float FlatnessTol; // -1.0 if not set
 UI32 OverPrintFill; // PDF_MAX_INT if not set
 UI32 OverPrintStroke; // PDF_MAX_INT if not set
 UI32 OverPrintMode; // PDF_MAX_INT if not set
 TRenderingIntent RenderingIntent; // riNone if not set
 float SmoothnessTol; // -1.0 if not set
 float FillAlpha; // -1.0 if not set
 float StrokeAlpha; // -1.0 if not set
 UI32 AlphaIsShape; // PDF_MAX_INT if not set
 UI32 TextKnockout; // PDF_MAX_INT if not set
 LBOOL SoftMaskNone; // Disables a soft mask
 void* Reserved1;
 void* Reserved2;
 void* Reserved3;
 void* Reserved4;
 void* Reserved5;
 void* Reserved6;
 void* Reserved7;
 void* Reserved8;
};

Function Reference Page 276 of 854

typedef enum
{

bmNotSet = 0,
bmNormal = 1,
bmColor = 2,
bmColorBurn = 3,
bmColorDodge = 4,
bmDarken = 5,
bmDifference = 6,
bmExclusion = 7,
bmHardLight = 8,
bmHue = 9,
bmLighten = 10,
bmLuminosity = 11,
bmMultiply = 12,
bmOverlay = 13,
bmSaturation = 14,
bmScreen = 15,
bmSoftLight = 16

}TBlendMode;

typedef enum
{

riAbsoluteColorimetric = 0,
riPerceptual = 1,
riRelativeColorimetric = 2,
riSaturation = 3,
riNone = 4 // Internal

}TRenderingIntent;

The function creates an extended graphics state object from the structure GS. An extended graphics
state can be used to adjust certain properties which are not part of the normal graphics state. Such
properties can only be modified with a special PDF object called the Extended Graphics State.

The most important properties of an extended graphics state are the transparency settings (PDF 1.4)
and the overprint control (PDF 1.2 or 1.3, see below).

The structure GS must always be initialized with InitGState(). After the structure was initialized
certain members of the structure can be changed. Pass the variable then to CreateExtGState(). The
function creates an internal graphics state object and returns the handle of it. The extended graphics
state can now be applied with SetExtGState().

Note that there is only way to restore the values of an extended graphics state, you must set a
second extended graphics state that restores the values changed before.

The following values are allowed:

• AlphaIsShape -> 0 or 1 (PDF 1.4, default unknown, does nothing)

• AutoStrokeAdjust -> 0 or 1 (PDF 1.4, default 0)

• BlendMode -> see enum TBlendMode (PDF 1.4, default bmNormal)

• FlatnessTol -> 0.0..1.0, default none

• FillAlpha -> 0.0..1.0 (PDF 1.4, default 1.0)

• OverPrintFill -> 0 or 1 (PDF 1.2 if used alone, PDF 1.3
otherwise,
 default 0)

• OverPrintStroke -> 0 or 1 (PDF 1.3, default 0)

• OverPrintMode -> 0 or 1 (PDF 1.3, default 0)

Function Reference Page 277 of 854

• RenderingIntent -> see enum TRenderingIntent (PDF 1.1, default
 riRelativeColorimetric)

• SmoothnessTol; -> 0.0..1.0 (PDF 1.3, default none)

• StrokeAlpha -> 0.0..1.0 (PDF 1.4, default 1.0)

• TextKnockout -> 0 or 1 (PDF 1.4, default 1)

• SoftMaskNone -> true or false, default false

A value that should not be modified must not be changed.

The structure contains many reserved fields which are not used at this time. Future extensions will
replace reserved fields.

If an image should be inserted with transparency it is usually best to disable image transparency
which based on color key masking (see SetUseTransparency()). Images use the fill alpha constant as
alpha channel. Blend modes can be applied too. However, the result of blend modes depends
strongly on the used color space. If the image is not defined in an ICC based color space then the
result depends on the color management settings.

Whenever transparency related settings are changed (FillAlpha, StrokeAlpha, or BlendMode) it is
strongly recommended to attach an ICC profile of the output color space for which the file was
created with AddOutputIntent().

If no output intent was specified, Adobe's Acrobat or Reader simulate a default CMYK color space
as output color space if transparency is used on a page, also if the page uses RGB colors only! This
differs from normal RGB files which use no transparency and causes often unwanted color changes.

Note that this rule applies also to images which contain an alpha channel!

If the PDF file uses RGB colors only, then attach an sRGB profile to the file. Such a profile is very
small but it makes a huge difference whether the profile is present or not.

Remarks:

Transparency and blend modes are discussed in detail in the section PDF Transparency.

Return values:

If the function succeeds the return value is the extended graphics state handle, a value greater or
equal zero. If the function fails the return value is a negative error code.

Function Reference Page 278 of 854

CreateGeospatialMeasure

Syntax:
SI32 pdfCreateGeospatialMeasure(
 const PPDF* IPDF, // Instance pointer
 UI32 Viewport, // Viewport handle (required)
 const char* Attributes) // JSON like string. See description

The function creates a geospatial measure dictionary. This kind of measure dictionary can be used to
convert PDF units to geographic coordinates.

A measure dictionary is used by the measure tool of Adobe's Acrobat and by other PDF viewers
which contain a PDF compatible measure tool.

Notice:

This is a low level function for more experienced users who are familiar with PDF. It is assumed
that a copy of the ISO Standard 32000-2 or newer is available by these users.

The parameter Viewport must contain a valid viewport handle that was created by CreateViewport().

The required parameter Attributes must be a JSON like string (Javascript Object Notation) that
contains the necessary parameters for the coordinate conversion. Please have a look at the section
JSON Parser to determine how JSON strings can be created and which extensions are supported.

The function creates a dictionary that contains already the keys /Type and /Subtype. These keys are
reserved and must not be present.

Notice:

It seems that Adobes Acrobat does not consider the key /PDU (Preferred Display Units), e.g.
/PDU[/KM/SQKM/DEG]. In all tests /PDU was ignored by Acrobat. It is not known when this
key will be considered or whether it is supported at all.

Please note that double quotes in a WKT string must be preceded by a backslash since double
quotes are a string terminator in JSON grammar.

Example JSON string:

In order to test this string copy it to a text file and load the file afterwards into a string object and
pass it to the function. Note that the string must be null-terminated. The same string defined as
C/C++ literal string would require more complicated escaping due to the double quotes in the WKT
string.

The example JSON string was created from this source file:

https://sg.geodatenzentrum.de/public/gdz/themenkarten/wss-2022-07-strassentunnel.pdf

https://sg.geodatenzentrum.de/public/gdz/themenkarten/wss-2022-07-strassentunnel.pdf

Function Reference Page 279 of 854

/Bounds[0 0 0 1 1 1 1 0 0 0]
/GCS
{
 /Type/PROJCS

/WKT
"PROJCS[\"WGS_1984_Lambert_Conformal_Conic\",GEOGCS[\"GCS_WGS_1984\",DA
TUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIM
EM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]],PROJECTION[\
"Lambert_Conformal_Conic\"],PARAMETER[\"False_Easting\",0.0],PARAMETER[
\"False_Northing\",0.0],PARAMETER[\"Central_Meridian\",10.5],PARAMETER[
\"Standard_Parallel_1\",48.66666666666666],PARAMETER[\"Standard_Paralle
l_2\",53.66666666666666],PARAMETER[\"Latitude_Of_Origin\",51.0],UNIT[\"
Meter\",1.0]]"

}
/GPTS[47.09291 6.12161 54.98462 5.30494 54.99117 15.53156 47.09843
14.74047]
/LPTS[0 0 0 1 1 1 1 0]

A valid geospatial measure dictionary requires at least the keys /GCS and /GPTS. All other keys are
optional.

Example C++:
SI32 TestGeo(const PPDF* PDF, wchar_t* OutFileName)
{
 pdfCreateNewPDFW(PDF, OutFileName);
 pdfSetDocInfoA(PDF, diProducer, NULL);

 SI32 bufSize;
 // This example assumes that the above example string was copied to the file geo.txt.
 char* attr = GetFileBuf("e:/geo.txt", bufSize);
 // This code creates just an emptry page and adds a viewport to it. Open the file in
 // Acrobat and check the coordinates with the Geospatial Location Tool, for example.
 // It must show valid latitute and longitute coordinates. Distances can be measured
 // too.
 pdfAppend(PDF);
 pdfSetBBox(PDF, pbMediaBox, 0.0, 0.0, 841.88806, 1190.54883);
 SI32 vp = pdfCreateViewport(PDF, "Test", 51.2673, 88.08751, 793.90894, 1085.48682);
 pdfCreateGeospatialMeasure(PDF, vp, attr);
 free(attr);
 pdfEndPage(PDF);
 return pdfCloseFile(PDF);
}

Return values:

If the function succeeds the return value is the handle of the measure dictionary, a value greater or
equal zero. If the function fails the return value is a negative error code.

Function Reference Page 280 of 854

CreateGoToAction

Syntax:
SI32 pdfCreateGoToAction(
 const PPDF* IPDF, // Instance pointer
 TDestType DestType, // Destination type
 UI32 PageNum, // Destination page
 double a, // Various, depends on destination type
 double b, // Various, depends on destination type
 double c, // Various, depends on destination type
 double d) // Various, depends on destination type

typedef enum
{
 dtXY_Zoom, // Three parameters (a, b, c) -> (X, Y, Zoom)
 dtFit, // No parameters
 dtFitH_Top, // One parameter (a)
 dtFitV_Left, // One parameter (a)
 dtFit_Rect, // Four parameters (left, bottom, right, top)
 dtFitB, // No parameters
 dtFitBH_Top, // One parameter (a)
 dtFitBV_Left // One parameter (a)
}TDestType;

A go-to action changes the view to a specific destination (page, location, and magnification factor).
This action type is useful if a specific destination must be used by several objects such as bookmarks
and page links.

Destination type Description

dtXY_Zoom Display the page designated by page with the coordinates (left, top)
positioned at the top-left corner of the window and the contents of the page
magnified by the factor zoom. A zero value for any of the parameters left top
or zoom specifies that the current value of that parameter is to be retained
unchanged.

Example:
pdfCreateGotoAction(pdf, dtXY_Zoom, 1, 0, 750, 0, 0);

dtFit Display the page designated by page with its contents magnified just enough
to fit the entire page within the window both horizontally and vertically. If
the required horizontal and vertical magnification factors are different, use
the smaller of the two, centering the page within the window in the other
dimension. This destination type has no parameters, the values of a, b, c, d
are ignored.

Function Reference Page 281 of 854

Destination type Description

dtFitH_Top Display the page designated by page with the vertical coordinate top
positioned at the top edge of the window and the contents of the page
magnified just enough to fit the entire width of the page within the window.

Example:
// The parameter a specifies the top coordinate
pdfCreateGotoAction(pdf, dtFitH_Top, 1, 565, 0, 0, 0);

dtFitV_Left Display the page designated by page with the horizontal coordinate left
positioned at the left edge of the window and the contents of the page
magnified just enough to fit the entire height of the page within the window.

Example:
// The parameter a specifies the left edge
pdfCreateGotoAction(pdf, dtFitV_Left, 1, 60, 0, 0, 0);

dtFitRect Display the page designated by page with its contents magnified just enough
to fit the rectangle specified by the coordinates left bottom right and top
entirely within the window both horizontally and vertically. If the required
horizontal and vertical magnification factors are different, use the smaller of
the two, centering the rectangle within the window in the other dimension.
Note, the maximum zoom factor supported by Adobe's Acrobat is limited to
16 (Acrobat 4/5) or 64 if Acrobat 6 is used. It is not possible to zoom into the
rectangle if it is too small.

Example:
pdfCreateGotoAction(pdf,dtFit_Rect,1,150,550,450,700);

The destination types dtFitB, dtFitBH_Top, and dtFitBV_Left use always the media box of the page to
fit the page into the window. All other destination types use the crop box if any.

Remarks:

Actions must be added to a PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 282 of 854

CreateGoToActionEx

Syntax:
SI32 pdfCreateGoToActionEx(

const PPDF* IPDF, // Instance pointer
UI32 NamedDest) // Handle of a named destination

The function creates a go-to action which uses a named destination to open the target page. A
named destination can be used if the destination should be accessible from another PDF file. See
also CreateNamedDest().

Remarks:

Actions must be added to a PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateGoToEAction

Syntax:
SI32 pdfCreateGoToEAction(

const PPDF* IPDF, // Instance pointer
 TEmbFileLocation Location, // see below
 const char* Source, // Required for external files
 UI32 SrcPage, // If the file is located in an annotation
 const char* Target, // The target file that should be opened
 const char* DestName, // A named destination to be opened
 UI32 DestPage, // Only used if DestName is NULL
 LBOOL NewWindow) // Open the file in a new window?

typedef enum
{
 eflChild, // The file is embedded in the current file
 eflChildAnnot, // The file is embedded in a file attachment annotation
 eflExternal, // The file is an embedded file in an external file
 eflExternalAnnot, // The file is embedded in a file attachment annotation
 eflParent, // The file is located in the parent document
 eflParentAnnot // The file is located in a file attachment annotation
}TEmbFileLocation;

The function creates an embedded GoTo action. This action type opens an embedded PDF file that is
located in the current, parent, or in an external PDF file.

Embedded files can be attached directly, e.g. with AttachFile(), or embedded in file attachment
annotations with FileAttachAnnot().

The parameter Location specifies where the embedded file can be found. File attachment annotations
are stored in pages and not globally like ordinary file attachments. Therefore, the source page in

Function Reference Page 283 of 854

which the annotation can be found must be known if the target file is stored in a file attachment
annotation (parameter SrcPage). The first page number is denoted by 1.

The parameter Source specifies the source file if the embedded file is located in an external PDF file.
This parameter is only used if Location is set to eflExternal or eflExternalAnnot. It can be set to NULL
in all other cases.

The parameter Target is required; it specifies either the name of the embedded PDF file or the name
of the annotation in which the file is stored. The name of a file attachment annotation must be set
with SetAnnotString(). The names of all annotations in a page must be unique. The function does
not check whether the annotation or embedded file exists. Therefore, the target file can be
embedded before or after the action was created.

The name of an embedded file is the file name if it was attached with AttachFile() or AttachFileEx().
The function extracts the file name automatically if a path was passed to the function.

It is not allowed to use different string formats in AttachFile() or SetAnnotString() and in the
corresponding CreateGoToEAction() call. The same restriction applies to named destinations. If a
file was inserted with the Unicode version then you must use the Unicode version of
CreateGoToEAction() too. Otherwise the embedded file cannot be found.

The destination page that should be opened can be either specified directly with the parameter
DestPage or with a Named Destination (see CreateNamedDest() for further information). Named
destinations take precedence.

Remarks:

A path to an external PDF file should be defined as relative path. Actions must be added to a PDF
object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateGoToRAction

Syntax:
SI32 pdfCreateGoToRAction(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to external PDF file
 UI32 PageNum) // Destination page

This function creates a go-to-remote action. A go-to-remote action opens an external PDF file and
jumps to the page defined by the parameter PageNum. If the destination page does not exist the first
page will be displayed.

Function Reference Page 284 of 854

Remarks:

The path to the external PDF file should be defined as relative path. Actions must be added to a PDF
object with AddActionToObj(). This function is also implemented in a wide version that accepts an
Unicode file path. However, Unicode file path are supported since PDF 1.7 (Acrobat 8). Earlier
Acrobat versions will fail to open the file if the path contains non-Ansi characters.

Return value:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateGoToRActionEx

Syntax:
SI32 pdfCreateGoToRActionEx(

const PPDF* IPDF, // Instance pointer
const char* FileName, // File path to another PDF file
char* DestName, // Named Destination to access
LBOOL NewWindow) // If true, the file is opened in a new window

The function creates a go-to-remote action that opens a named destination in an external PDF file.
The parameter DestName must be the name of a named destination located in the external PDF file.
Note that this is a binary string which must be specified exactly and case-sensitive. If the name was
originally defined as an Unicode string, the go-to remote action must use the same string format.
Otherwise the destination cannot be found. See also CreateNamedDest().

Remarks:

The path to the external PDF file should be defined as relative path. Actions must be added to a PDF
object with AddActionToObj(). This function is also implemented in a wide version that accepts an
Unicode file path (CreateGoToRActionExU()). However, Unicode file path are supported since PDF
1.7 (Acrobat 8). Earlier Acrobat versions will fail to open the file if the path contains non-Ansi
characters.

Return value:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 285 of 854

CreateGroupField

Syntax:
SI32 pdfCreateGroupField(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the field
 SI32 Parent) // Parent group field if any or -1

This function creates a group field. A group field is a simple array of fields which can be used to
separate fields into several groups. The field itself has no appearance, it is invisible.

For example, if an interactive form contains fields for private personal data and fields for company
data in any kind, the fields can be structured into two base parts: PersonalData and CompanyData.
The field names of each part must be unique inside its own hierarchy. However, duplicate field
names of fields of the same type are still allowed.

Field names and Group fields

The name of a specific interactive form field is the partial field name. The fully qualified name is not
explicitly defined, but is constructed from the partial field name of the field and all of its ancestors.

For a field with no parent, the partial field name and the fully qualified name are the same; for a
field that is the child of a parent (group) field, the fully qualified name is formed by appending the
child field's partial name to the parent's fully qualified name, separated by a period (.):
parent_field_name.child_partial_name

For example, if a group field with the partial field name PersonalData has a child whose partial field
name is Address, which in turn has a child with the partial field name ZipCode, then the fully
qualified name of this last field would be
PersonalData.Address.ZipCode

Thus all fields descended from a common ancestor will share the ancestor's fully qualified field
name as a common prefix in their own fully qualified names.

The naming scheme must be taken into account when accessing fields of a group in JavaScript
functions.

Remarks:

Acrobat 4 does not support group fields inside a hide or form action. For example, if a group field
will be added to a hide action, the entire group becomes invisible if the action is executed in Acrobat
5 or higher. Acrobat 4 ignores the group field; each field of the group must be manually added to
the hide action.

Return values:

If the function succeeds the return value is the field handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 286 of 854

CreateHideAction

Syntax:
SI32 pdfCreateHideAction(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle of a field that should be hidden
 LBOOL Hide) // Hide or unhide the fields?

A hide action hides or shows one or more interactive form fields on screen by setting or clearing
their hidden flags. The parameter AField must be a valid field handle. If the parameter Hide is true,
the fields become invisible. If Hide is false, the fields become visible if their hidden flag was set
before.

Remarks:

To add more fields to the action use the function AddFieldToHideAction(). Actions must be added
to a PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateICCBasedColorSpace

Syntax:
SI32 pdfCreateICCBasedColorSpace(

const PPDF* IPDF, // Instance pointer
const char* ICCProfile) // File path of an ICC profile

The function creates an ICC-based color space. ICC-based color spaces (PDF 1.3) are based on a
cross-platform color profile as defined by the International Color Consortium (ICC). Unlike the
CalGray, CalRGB, and Lab color spaces, which are characterized by entries in the color space
dictionary, an ICC-based color space is characterized by a sequence of bytes in a standard format.

An ICC profile describes the color characteristics of a particular device and it provides necessary
information to convert color data between native device color spaces and device independent color
spaces. The ICC specification classifies color devices according to their use as input or output
devices such as monitors, scanners, cameras or printers. Depending on the output PDF format
different device classes are supported.

Supported device classes in PDF 1.3 or higher and PDF/A-1:

• scnr -> Scanners

• mntr -> Monitors

• prtr -> Printers

• spac -> Color conversion profile

Supported device classes in PDF/X-1 and PDF/X-3:

Function Reference Page 287 of 854

• prtr -> Printers

ICC profiles are available in different versions. Which profile versions are allowed to use depends
on the output PDF version:

PDF Version ICC Specification Version ICC Profile Version Number

PDF 1.3 3.3 or earlier 2.10

PDF 1.4 ICC.1:1998-09 and its addendum
ICC.1A:1999-04

2.20

PDF 1.5 ICC.1:2001-12 4.00

PDF 1.6 ICC.1:2003-09 4.10

PDF 1.7 ICC.1:2004-10 4.20

Please note that neither PDF/A-1 nor PDF/X-1 and PDF/X-3 support ICC profile major versions
higher than 2. The functions CreateICCBasedColorSpace() and AddRenderingIntent() check the
profile version only if the output version was set to a PDF/A or PDF/X compatible version (see
SetPDFVersion()).

ICC profiles are available for different input color spaces such as DeviceGray, DeviceRGB,
DeviceCMYK, or Lab. Color values must be defined in the very same as for the corresponding
device color spaces.

Notice:

Non-device color spaces cannot be used for interactive objects such as annotations or form fields.
The active color space must always be changed to a device color space before creating interactive
objects; see SetColorSpace(). Note also that annotations support DeviceRGB only. Form fields
support DeviceGray, DeviceRGB, and DeviceCMYK.

Remarks:

Use the function SetExtColorSpace() to activate the color space in the graphics state. To set a color of
an ICC-based color space convert the color value to a 32 bit integer in the very same way as for
DeviceGray, DeviceRGB, or DeviceCMYK depending on the base color space and pass the resulting
color value to SetFillColor(), SetStrokeColor(), or SetColors().

Return values:

If the function succeeds the return value is the color space handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 288 of 854

CreateICCBasedColorSpaceEx

Syntax:
SI32 CreateICCBasedColorSpaceEx(
 const PPDF* IPDF,
 const void* Buffer,
 UI32 BufSize)

The function creates an ICC-based color space exactly like CreateICCBasedColorSpace() but accepts
a file buffer as input. See CreateICCBasedColorSpace() for further information.

Return values:

If the function succeeds the return value is the color space handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

CreateImage

Syntax:
LBOOL pdfCreateImage(

const PPDF* IPDF, // Instance pointer
const char* FileName, // Ouput file name or NULL
TImageFormat Format) // Output image format

typedef enum
{

ifmTIFF, // RGB, CMYK, Gray, B&W -> CCITT 3/4, JPEG, Flate, LZW
ifmJPEG, // RGB, CMYK, Gray -> JPEG compression
ifmPNG, // Gray, RGB, B&W -> Flate compression
ifmReserved, // Reserved for future extensions
ifmBMP, // Gray, RGB, B&W -> Uncompressed
ifmJPC // RGB, CMYK, Gray -> JPEG2000 compression

}TImageFormat;

The function creates an empty image in the specified format. This is a helper function to create
image files from the rasterizer or from raw images returned by the content parser. See
ParseContent() or RenderPage() for further information. After the image was created one or more
images can be added to it with AddImage(). Note that TIFF is the only supported multi-page format.
All other formats support exactly one image.

If the parameter FileName is set to NULL the image is created in memory. In this case the image
buffer is available after CloseImage() was called. To get the file buffer call the function
GetImageBuffer(). Note that the internal resources of memory based images must be manually freed
with FreeImageBuffer() in this case.

Function Reference Page 289 of 854

When the function is used to create images from the rasterizer, the supported pixel formats of the
output image format must be considered. The following table specifies which combinations are
valid:

Image Format Supported Pixel Formats
BMP (Bitmap) pxf1Bit, pxfGray, pxfBGR, pxfBGRA
JPEG pxfGray, pxfRGB, pxfRGBA
JPEG 2000 (JPC) pxf1Bit, pxfGray, pxfRGB
PNG pxf1Bit, pxfGray, pxfRGB, pxfRGBA
TIFF pxf1Bit, pxfGray, pxfRGB, pxfRGBA

Remarks:

CreateImage() can be used in combination with ParseContent() or RenderPage() and AddImage().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

CreateImportDataAction

Syntax:
SI32 pdfCreateImpDataAction(
 const PPDF* IPDF, // Instance pointer
 const char* DataFile) // File path to FDF file

An import data action imports FDF data into the document's interactive form. FDF data files are
normally created by Adobe's Acrobat when submitting a form to a web server.

Note that the XML based format XFDF is not supported by Adobe's Acrobat.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. However, because
Acrobat does not support Unicode strings as file paths, the path is converted back to Ansi. A
Unicode string must not contain characters outside of the code page 1252.

Actions must be added to a PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 290 of 854

CreateIndexedColorSpace

Syntax:
SI32 pdfCreateIndexedColorSpace(

const PPDF* IPDF, // Instance pointer
TExtColorSpace Base, // Base color space
SI32 Handle, // Color space handle or -1 depending on Base
const void* ColorTable, // Array of colors
UI32 NumColors) // Number of colors in the array

The function creates an indexed color space which can be used for vector graphics and text output.
The parameter Base defines the underlying base color space. It can be any device or ICC-based color
space or separation space, but not a pattern space or another indexed space.

The parameter Handle must be a handle of the underlying base color space if no device color space is
used. If a device color space is used the parameter Handle is ignored.

The color table must be defined as an array of color values defined in the corresponding base color
space. For example, if the base color space is DeviceRGB, the values in the color table are to be
interpreted as red, green, and blue components; if the base color space is a CIE-based ABC space
such as a CalRGB or Lab space, the values are to be interpreted as A, B, and C components.

The number of components is taken from the base color space. The parameter NumColors defines the
number of color values defined in the array. An indexed color space cannot contain more than 256
colors.

The length of the color table in bytes must be NumColors * NumComponents.

Notice:

Non-device color spaces cannot be used for interactive objects such as annotations or form fields.
The active color space must always be changed to a device color space before creating interactive
objects, see SetColorSpace(). Note also that annotations support DeviceRGB only. Form fields
support DeviceGray, DeviceRGB, and DeviceCMYK.

Remarks:

This function does not activate the color space in the graphics state. Use the function
SetExtColorSpace() to activate the color space in the graphics state. To set a color of the indexed
color space pass the color index to SetFillColor(), SetStrokeColor(), or SetColors().

Return values:

If the function succeeds the return value is a color space handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 291 of 854

CreateJSAction

Syntax:
SI32 pdfCreateJSAction(
 const PPDF* IPDF, // Instance pointer
 const char* Script) // Must be one or more JavaScript functions

This function creates a JavaScript action. A JavaScript Action causes a script to be compiled and
executed by the JavaScript interpreter of Adobe's Acrobat. Depending on the nature of the scripts,
this can cause various interactive form fields in the document to update their values or change their
visual appearances.

The parameter Script must be a valid JavaScript. The function does not check whether the script is
valid.

A JavaScript action can be added to a field, page, or to the Catalog object with AddActionToObj().

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Because JavaScript 1.2 is
not Unicode compatible, Unicode encoded scripts are translated to a platform specific encoding
prior to interpretation by the JavaScript engine. This conversion is done by Adobe's Acrobat.
Actions must be added to a PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateLaunchAction

Syntax:
SI32 pdfCreateLaunchAction(
 const PPDF* IPDF, // Instance pointer
 TFileOP OP, // Kind of operation (open or print the file)
 const char* FileName, // File name (required)
 const char* DefDir, // Default directory (can be NULL)
 const char* Param, // Optional parameters (can be NULL)
 LBOOL NewWindow) // Open the file in a new window?

typedef enum
{
 foOpen,
 foPrint
}TFileOP;

A launch action launches an application or opens or prints a document. Acrobat passes the
parameters of a launch action directly to the API function ShellExecute(). The parameter FileName
can be an absolute or relative file path but relative file paths are preferred.

Function Reference Page 292 of 854

The parameter DefDir defines a default directory in which the file should be searched. The
parameter Param defines an optional parameter string which can be passed to the application. This
parameter should be omitted if the FileName designates a document. The parameters DefDir and
Param are both optional, they can be NULL. See also ShellExecute() of your Windows API reference
for further information.

The last parameter NewWindow specifies whether the file should be opened in a new window or not.
This parameter is ignored if the file is not a PDF file.

Remarks:

Adobe's Acrobat displays a warning before executing a launch action. Actions must be added to a
PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateLaunchActionEx

Syntax:
SI32 pdfCreateLaunchActionEx(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // Should be a relative path
 LBOOL NewWindow) // Meaningful for PDF files only

The function creates a launch action. This type of a launch action can be used to open an arbitrary
file or application on the users system. It supports no parameters like CreateLaunchAction() but it is
also available in an Unicode compatible version. Unicode paths are supported since PDF 1.7
(Acrobat 8 or higher).

Remarks:

Adobe's Acrobat displays a warning before executing a launch action. Actions must be added to a
PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 293 of 854

CreateListBox

Syntax:
SI32 pdfCreateListBox(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the list box
 LBOOL Sort, // Sort the choice values?
 SI32 Parent, // Parent group field if any or -1
 double PosX, // X-Coordinate of the list box
 double PosY, // Y-Coordinate of the list box
 double Width, // Width of the list box
 double Height) // Height of the list box

This function creates a list box. The choice values of the list box must be added with the function
AddValToChoiceField(). This function requires the field handle that was returned by this function.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the list
box. If the coordinate system is top-down it defines the upper left corner.

Like all form fields, the width and height is measured incl. the line width of the border. The size of
normal vector graphics is measured without the line width; this must be taken into account when
calculating the width or height of a form field. The line width of the border is derived from the
current graphics state (see SetLineWidth()), it should be either 0, 1, 2, or 3 units (no border, thin,
medium, or thick). The border style can be changed with the functions SetBorderStyle() or
SetFieldBorderStyle().

The values of the list box are sorted if the parameter Sort is true. List boxes support multiple selected
values. To enable multi selection add the flag ffMultiSelect to the field (see SetFieldFlags() for
further information).

A list box requires a font. If no font is active the standard font Helvetica is used. Note that if the
form must be compatible to Acrobat 4, the used fonts by the form fields must be restricted to the 14
standard fonts (see SetFont() for further information). Acrobat 4 does not support interactive forms
that use other fonts than the 14 standard fonts. Such a form requires Acrobat 5 or higher.

Form fields support natively the code pages 1252 and MacRoman. However, other code pages and
Unicode can be used too as long as a few external cmaps are available. See SetFieldFont() for further
information.

The font size of a list box is set to "auto" if either the font size of the active font is set to 1.0 unit or if
no font is active when the field is created.

A text field can be formatted and the allowed input values can be restricted to specific data formats.
See SetDateTimeFormat(), SetNumberFormat() for further information.

Function Reference Page 294 of 854

Specific flags supported by list boxes:

• ffSorted // Change the sort flag if necessary

• ffMultiSelect // Enable multi selection

Remarks:

Interactive form fields can be structured into several groups by passing a handle of a group field to
the parameter Parent. See CreateGroupField() for further information.

Return values:

If the function succeeds the return value is the handle of the combo box, a value greater or equal
zero. If the function fails the return value is a negative error code.

CreateNamedAction

Syntax:
SI32 pdfCreateNamedAction(
 const PPDF* IPDF, // Instance pointer
 TNamedAction Action) // Kind of action that should be executed

typedef enum
{

naFirstPage, // PDF 1.2 Go to the first page of the document
 naLastPage, // PDF 1.2 Go to the last page of the document
 naNextPage, // PDF 1.2 Go to the next page
 naPrevPage, // PDF 1.2 Go to the previous page
 naGoBack, // Go back to last page and position
 naOpenDlg, // Display the file open dialog
 naPrintDlg, // Display the print dialog
 naGeneralInfo, // Display the general info tab
 naFontsInfo, // Display the fonts info tab
 naSaveAs, // Display the save as dialog (requires Acrobat)
 naSecurityInfo, // Display the security settings
 naFitPage, // Fit the page into the window
 naDeletePages, // Delete one or more pages
 naQuit, // Quit the application
 naUserDefined // Internal value to store unknown imported values
}TNamedAction;

The function creates a named action. Only PDF 1.2 compatible actions are documented in the PDF
Reference. So, all other actions may still work but there is no guarantee that these actions will be
supported in future versions of Adobe's Acrobat or Reader. Actions must be added to a PDF object
with AddActionToObj() so that they can be executed.

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 295 of 854

CreateNamedDest

Syntax:
SI32 pdfCreateNamedDest(

const PPDF* IPDF, // Instance pointer
const char* Name, // Name of the destination (byte string)
UI32 DestPage, // Destination page
TDestType DestType, // Destination type

 double a, // Various, depends on destination type
 double b, // Various, depends on destination type
 double c, // Various, depends on destination type

double d) // Various, depends on destination type

The function creates a named destination that can be accessed from external PDF files. Named
destinations are useful if the destination must be accessed from another PDF file. For example, a link
to the beginning of Chapter 3 in another document might refer to the destination by a name, such as
Chap3.begin, instead of an explicit page number in the other document. This makes it possible to
change the destination in the document without invalidating the external link.

Named destinations can be used in the same document by bookmarks, page links, and go-to actions.
Named destinations which are located in another document can be accessed with a go-to-remote
action (see CreateGoToRActionEx() for further information).

The different destination types are described in detail at CreateGoToAction().

Remarks:

Make sure that the same string format is used in a named destination and in a go-to remote action
that tries to access it. Note that the destination cannot be found if the string format is different, e.g.
Ansi in the named destination and Unicode in the go-to remote action.

To avoid unnecessary issues it is usually best to use 7 bit Ansi strings for named destinations.

Return values:

If the function succeeds the return value is the destination handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 296 of 854

CreateNewPDF

Syntax:
LBOOL pdfCreateNewPDF(
 const PPDF* IPDF, // Instance pointer
 const char* OutPDF) // File name of the output file or NULL

This function creates a new PDF file. If the parameter OutPDF is an empty string the PDF file is
created in memory. This function resets also the internal error flag if it was set before.

A memory based PDF file is available after CloseFile() or CloseFileEx() was called. To get the file
buffer call the function GetBuffer(). Note that the internal used resources must be freed manually if
a PDF was created in memory. See also GetBuffer().

It is also possible to open the output file with OpenOutputFile() right before CloseFile() is called.
The advantage is that the entire PDF file can be processed before opening the output file. If an error
occurred during processing, the creation of the output file can be discarded so that no empty file
will be left on disk.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. On Windows operating
systems Unicode file names are supported on NT based systems only (Win NT, 2000, XP, and so on).
Non-Windows operating systems use UTF-8 to encode Unicode file paths. Therefore, the Ansi
version should be used to open the file. If the Unicode version is used instead the file path is
converted to UTF-8 and passed to the Ansi version of the function.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Examples (C):
Example 1: Create a PDF file in memory:

// First we declare an error callback function that is called if an
// error occurred.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}

int main(int argc, char* argv[])
{
 FILE* f; char* buffer; UI32 bufSize;
 PPDF* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?
 // No need to check return values.

Function Reference Page 297 of 854

 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfSetDocInfo(pdf, diAuthor, "Jens Boschulte");
 pdfSetDocInfo(pdf, diCreator, "C sample project");
 pdfSetDocInfo(pdf, diSubject, "How to create a PDF file in memory?");
 pdfCreateNewPDF(pdf, NULL);

 pdfAppend(pdf);
 pdfSetFont(pdf, "Arial", fsItalic, 40.0, true, cp1252);
 pdfWriteFText(pdf, taCenter, "My first memory based PDF...");
 pdfEndPage(pdf);

 pdfCloseFile(pdf);
 // The file must be opened in binary mode!
 if ((f = fopen("c:/cout.pdf", "wb")) == NULL)
 {
 pdfDeletePDF(pdf);
 printf("Cannot open output file!");
 return 3;
 }

 buffer = pdfGetBuffer(pdf, &bufSize); // Get the file buffer
 if (buffer)
 {
 // We write the buffer as it is to the file.
 fwrite(buffer, 1, bufSize, f);
 fclose(f);
 }
 // We created a new PDF instance inside the function. When the
 // instance is deleted all used resources are freed. However, in most
 // cases it is a better way to use one PDF instance for multiple PDF
 // files to improve processing speed. In the latter case we must call
 // pdfFreePDF(pdf); to free the internal used resources.
 pdfDeletePDF(pdf); // Delete the PDF instance
 return 0;
}

Example 2: Usage of OpenOutputFile()

int main(int argc, char* argv[])
{
 PPDF* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?
 // No need to check return values.
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfSetDocInfo(pdf, diSubject, "Usage of OpenOutputFile()...");
 pdfCreateNewPDF(pdf, NULL);

 pdfAppend(pdf);
 pdfSetFont(pdf, "Arial", fsItalic, 40.0, true, cp1252);

Function Reference Page 298 of 854

 pdfWriteFText(pdf, taCenter, "We use OpenOutputFile() now...");
 pdfEndPage(pdf);

 // No fatal error occurred?
 if (pdfHaveOpenDoc(pdf))
 {
 // OK, now we can open the output file.
 /* Note that the function can also be called in a while statement
 * e.g. to display a file open dialog if the file could not be
 * opened...
 */
 if (!pdfOpenOutputFile(pdf, "c:/test.pdf"))
 {
 pdfDeletePDF(pdf);
 printf("Cannot open output file!\n");
 return -1;
 }
 if (pdfCloseFile(pdf))
 {
 printf("PDF file successfully created!\n");
 }
 }
 pdfDeletePDF(pdf);

Function Reference Page 299 of 854

CreateOCG

Syntax:
SI32 pdfCreateOCG(

const PPDF* IPDF, // Instance pointer
const char* Name, // Layer name (required)
LBOOL DisplayInUI, // Display the OCG in the user interface?
LBOOL Visible, // Intitial state of the OCG
TOCGIntent Intent) // see below

typedef enum
{
 oiDesign = 2,
 oiView = 4, // Default
 oiAll = 8,
 oiEmpty = 16 // Internal (refers to oiView if used)
}TOCGIntent;

The function creates an Optional Content Group (OCG). Content that belongs to an OCG can be
made visible or invisible dynamically by users of conforming readers. OCGs are mostly called
Layers because Optional Content and Layers share the same basic functionality. A layer is a piece of
content that is associated with an OCG.

The parameter DisplayInUI specifies whether the OCG should be displayed in the user interface of a
PDF viewer. The state of invisible layers (the ones which are not displayed in the user interface) can
only be changed programmatically, e.g. with a SetOCGState or Javascript actions. Also if
DisplayInUI is set to false, the parameter Name is still required.

If DisplayInUI is set to true the layer will be added to the root of the layer tree. To reflect nesting
levels, layer groups and so on, it is also possible to configure the layer tree manually with
AddLayerToDisplTree(). The parameter DisplayInUI should be set to false in this case so that the
layer will not already be added to the tree.

The parameter Visible specifies the initial state of the OCG. If set to false, contents that belongs to this
OCG remains invisible until the state will be changed due to interaction with the user interface or
programmatically with a SetOCGState or Javascript action.

The parameter Intent specifies the intended use of the graphics in the group. It provides a way to
distinguish between different intended uses of optional content. For example, many document
design applications, such as CAD packages, offer layering features for collecting groups of graphics
together and selectively hiding or viewing them for the convenience of the author. However, this
layering may be different (at a finer granularity, for example) than would be useful to consumers of
the document. Therefore, it is possible to specify different intents for optional content groups within
a single document. A conforming reader may decide to use only groups that are of a specific intent.

The Intent entry can be used to create different configurations for viewing and design applications.
However, this functionality is not yet implemented in DynaPDF.

Function Reference Page 300 of 854

How to make content optional?

Page contents, such as text, images, and vector graphics can be associated with an OCG with
BeginLayer() / EndLayer(). Anything that is drawn between these function calls becomes part of the
layer or OCG.

Interactive objects such as Annotations and Form Fields can be added to a layer with
AddObjectToLayer(). However, interactive objects can be associated with exactly one layer at time.
In cases where the visibility should depend on more than one OCG it is possible to connect the
object with an Optional Content Membership Dictionary (OCMD). OCMDs accept an array of OCG
handles and a visibility expression that defines when the associated content should become visible
or invisible (see CreateOCMD() for further information). OCMDs can also be used with
BeginLayer(), e.g. if too many nested BeginLayer() calls would be required to achieve the same
result.

Images and templates can be associated with an OCG or OCMD too. This can be useful if the object
must be drawn outside of the parent layers or to achieve more complex visibility expressions.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Unused OCGs will not be
written to the PDF file.

Return values:

If the function succeeds the return value is the OCG handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Example (C++):
...
pdfCreateNewPDF(pdf, "test_layer.pdf");

// We use three layers in this example
SI32 oc1 = pdfCreateOCG(pdf, "Anything", true, true, oiAll);
SI32 oc2 = pdfCreateOCG(pdf, "Text and Annotations", true, true, oiAll);
SI32 oc3 = pdfCreateOCG(pdf, "Images", true, true, oiAll);

pdfSetPageCoords(pdf, pcTopDown);

pdfAppend(pdf);
// The main layer controls the visibility of all three layers in this
// example.
pdfBeginLayer(pdf, oc1);

pdfBeginLayer(pdf, oc2);
 pdfSetFont(pdf, "Arial", fsRegular, 12.0, true, cp1252);

char someText[] = "Some text with a link!!!";
pdfWriteText(pdf, 50.0, 50.0, someText);
double tw = pdfGetTextWidth(pdf, someText);

Function Reference Page 301 of 854

// To reflect the same nesting as the text layer we must
// use an OCMD for the annotation because the visibility of the
// layer oc2 depends on oc1 at this position.
pdfSetBorderStyle(pdf, bsUnderline);
pdfSetStrokeColor(pdf, PDF_BLUE);
SI32 annot = pdfWebLink(pdf, 50, 51, tw, 12, "www.dynaforms.com");
UI32 ocgs[2] = {oc1, oc2};
SI32 ocmd = pdfCreateOCMD(pdf, ovAllOn, ocgs, 2);
pdfAddObjectToLayer(pdf, ocmd, ooAnnotation, annot);

pdfEndLayer(pdf);

pdfBeginLayer(pdf, oc3);
InsertImageEx(pdf, 50.0, 70.0, 300.0, 200.0, "c:/Imgs/test.tif", 1);

pdfEndLayer(pdf);

pdfEndLayer(pdf);

pdfWriteText(pdf, 50.0, 300.0, "This text is not part of a layer!");

pdfEndPage(pdf);

pdfCloseFile(pdf);
...

CreateOCMD

Syntax:
SI32 pdfCreateOCMD(

const PPDF* IPDF, // Instance pointer
TOCVisibility Visibility, // When should the OCMD be visible?
UI32* OCGs, // Array of OCG handles (required)
UI32 Count) // Number of handles in the array (required)

typedef enum
{

ovAllOff,
ovAllOn,
ovAnyOff, // Default
ovAnyOn,
ovNotSet // Internal (defaults to ovAnyOn if used)

}TOCVisibility;

The function creates an Optional Content Membership Dictionary (OCMD). OCMDs can be used to
create visibility expressions which depend on more than one optional content group.

OCMDs are mostly used with Annotations and Form Fields because these objects can only be
associated with one OCG or one OCMD. In cases where the visibility should depend on more than
one OCG or if the object should be used in different layers, an OCMD must be used.

Function Reference Page 302 of 854

The parameter Visibility specifies when the associated objects should become visible. The parameter
OCGs must be an array of valid OCG handles. A viewer application inspects the array of OCGs and
the visibility parameter to determine whether the associated content should be visible or invisible.

Remarks:

Unused OCMDs will not be written to the PDF file.

Return values:

If the function succeeds the return value is the OCMD handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateRadialShading

Syntax:
SI32 pdfCreateRadialShading(
 const PPDF* IPDF, // Instance pointer
 double sX, // X-Coordinate of the inner circle
 double sY, // Y-Coordinate of the inner circle
 double R1, // Radius of the inner circle
 double eX, // X-Coordinate of the outer circle
 double eY, // Y-Coordinate of the outer circle
 double R2, // Radius of the outer circle
 double SCenter, // Shading center
 UI32 SColor, // Start color
 UI32 EColor, // End color
 LBOOL Extend1, // Extend the inner circle
 LBOOL Extend2) // Extend the outer circle

Radial shadings define a color blend or gradient that varies between two circles. The shading may
optionally be extended beyond the starting or ending circles by continuing the boundary colors
indefinitely. Shadings of this type are commonly used to depict three-dimensional spheres and
cones.

The shading center defines the point from where the first color will blend into the other. A value of 1
determines the exact center between the start and end point of the shading. Smaller values shift the
shading center in direction to the start circle, greater values to the end circle.

Radial shadings can be drawn into a clipping path to restrict painting into this path. If the shading is
drawn outside of a clipping path it is applied to the entire page. Not that extended shadings are
opaque, objects behind the shading become invisible if they are overprinted by the shading.

Shadings are drawn by using the current coordinate system. It is recommended to understand that
shadings have its own dimension like a normal shape. The parameters Extend1 and Extend2 extend
the shading beyond its dimension. If the shading is extended it must normally be drawn into a
clipping path to avoid overprinting of other objects.

Function Reference Page 303 of 854

Shadings support any device, ICCBased, and special color spaces like DeviceN or Separation. The
color values of the start and end color must be defined in the current color space. See also
SetColorSpace(), SetExtColorSpace().

This function creates a shading object but it doesn't draw it on the page. The shading can be drawn
with ApplyShading().

Return values:

If the function succeeds the return value is the shading handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateRadioButton

Syntax:
SI32 pdfCreateRadioButton(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the radio button
 const char* ExpValue, // Export value of the first check box
 SI32 Checked, // If true, the check box appears checked
 SI32 Parent, // Parent group field if any or -1
 double PosX, // X-Coordinate of the first check box
 double PosY, // Y-Coordinate of the first check box
 double Width, // Width of the first check box
 double Height) // Height of the first check box

A radio button field is a set of related toggle controls (check boxes), at most one of which may be on
at any given time; selecting any one of the button automatically deselects all others.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the first
check box that is automatically created by this function. If the coordinate system is top-down it
defines the upper left corner.

Like all form fields, the width and height is measured incl. the line width of the border. The size of
normal vector graphics is measured without the line width; this must be taken into account when
calculating the width or height of a form field. The line width of the border is derived from the
current graphics state (see SetLineWidth()), it should be either 0, 1, 2, or 3 units (no border, thin,
medium, or thick). The border style can be changed with the functions SetBorderStyle() or
SetFieldBorderStyle().

This field type supports two additional flags: ffNoToggleToOff and ffRadioIsUnion. The flag
ffNoToggleToOff has no more any effect in Adobes Acrobat or Reader. The radio button behaves
always as if the flag ffNoToggleToOff is set.

If the flag ffRadioIsUnion is set, and if two or more check boxes contain the same export value, then
these check boxes will be selected in unison.

Function Reference Page 304 of 854

Remarks:

It is not possible to add an action to a radio button field. Actions must be added to the check boxes
which are included in the radio button. The handle of the first check box can be calculated by
adding 1 to the handle value of the radio button field. For example, if the handle of the radio button
is 1, then the handle of the first check box is 2.

Return values:

If the function succeeds the return value is the handle of the radio button, a value greater or equal
zero. If the function fails the return value is a negative error code.

CreateRasterizer (Rendering Engine)

Syntax:
IRAS* rasCreateRasterizer(
 const PPDF* IPDF, // PDF Instance pointer
 BYTE** Rows, // Pointer to a row buffer or alternatively
 BYTE* Buffer, // Pointer to an image buffer that was allocated
 // as one large buffer.
 UI32 Width, // Width in Pixel
 UI32 Height, // Height in Pixel
 SI32 ScanlineLen, // Scanline length in bytes
 TPDFPixFormat PixFmt) // Pixel format in which the buffer is defined

typedef enum
{
 pxf1Bit, // Defined for future use, not supported yet.
 pxfGray, // 8 Bit gray
 pxfRGB, // RGB
 pxfBGR, // BGR -> Pixel format for Windows Bitmaps
 pxfRGBA, // RGBA
 pxfBGRA, // BGRA -> Pixel format for Windows Bitmaps
 pxfARGB, // ARGB
 pxfABGR // ABGR
 pxfCMYK, // CMYK
 pxfCMYKA // CMYKA
}TPDFPixFormat;

The function creates a new instance of a rasterizer. The caller is responsible to release the rasterizer
when finish with DeleteRasterizer().

The rasterizer renders objects, e.g. a PDF page (see RenderPage()), into the supplied image buffer.
Once the object was rendered, the result can be displayed on screen or saved on disk in an
appropriate image format.

The image buffer can be changed if necessary with AttachImageBuffer(). This can be useful when
the size of the image must be changed, e.g. when the user changes the window size. The overhead to
attach a larger or smaller image buffer is minimal, and hence, very fast. So, it is mostly not required

Function Reference Page 305 of 854

to allocate the image in the largest size that a user can request, e.g. in a viewer application. The
image can be reallocated in the required size and attached to the rasterizer whenever necessary.

The pixel format is directly connected with the rasterizer and cannot be changed at runtime. When
the pixel format must be changed then delete the rasterizer and create a new one in that pixel
format.

The image buffer can be either defined as one large memory block or as an array of scanlines. When
it was allocated as one large block then set the parameter Rows to NULL and pass the buffer to the
parameter Buffer. If the scanlines were allocated separately or in blocks then use the parameter Rows
instead. One of these parameters must be set but never both. The function checks first whether the
parameter Rows is present.

The rasterizer requires no special alignment of the scanlines, the scanlines can be byte aligned.

However, the scaline length can be longer than necessary, e.g. due to aligment requirements of
certain image formats like Windows Bitmaps. A negative value of the scanline length mirrors the
image vertically.

The pointer of a PDF instance is required because the rasterizer uses the error log of the PDF
instance to output warnings and errors.

The return value of the function is a pointer to the rasterizer object. This pointer is required in
functions like RenderPage().

Remarks:

The rasterizer uses the error log of the PDF instance to output warnings and error messages but it
does never raise PDF exceptions. So, an error that occurs during rendering does not affect the PDF
file in memory.

Return values:

When the function succeeds the return value is the pointer of the rasterizer object. If the function
fails the return value is NULL.

CreateRasterizerEx (Rendering Engine)

Syntax:
IRAS* rasCreateRasterizerEx(
 const PPDF* IPDF, // Instance pointer
 const void* DC, // Device Context (HDC)
 UI32 Width, // Width in Pixel
 UI32 Height, // Height in Pixel
 TPDFPixFormat PixFmt) // Wished pixel format

The function creates a new instance of a rasterizer. The caller is responsible to release the rasterizer
when finish with DeleteRasterizer().

Function Reference Page 306 of 854

The difference in comparison to CreateRasterizer() is that this version creates a DIB Section in the
specified size and pixel format that is compatible to a device context. A DIB Section is required to
render into a device context with RenderPageEx(). The image buffer is released when the rasterizer
is deleted.

The function supports the pixel formats pxf1Bit, pxfGray, pxfBGR, and pxfBGRA. The pixel format
pxfBGRA should only be used when the page is rendered over an arbitrary background image. The
default pixel format on Windows is pxfBGR.

The pixel format is directly connected with the rasterizer and cannot be changed at runtime. When
the pixel format must be changed then delete the rasterizer and create a new one in that pixel
format.

The size of the image buffer can be changed at runtime with ResizeBitmap().

Remarks:

At time of publication this function can be used on Windows only.

The rasterizer uses the error log of the PDF instance to output warnings and error messages but it
does never raise PDF exceptions. So, an error that occurs during rendering does not affect the PDF
file in memory.

Return values:

When the function succeeds the return value is the pointer of the rasterizer object. If the function
fails the return value is NULL.

CreateRectilinearMeasure

Syntax:
SI32 pdfCreateRectilinearMeasure(
 const PPDF* IPDF, // Instance pointer
 UI32 Viewport, // Viewport handle (required)
 double Scale, // Scaling factor (required)
 const char* UnitDescription, // Unit description, e.g. "Inch to mm"
 const char* LabelDistance, // Label for the distance tool, e.g. "mm"
 const char* LabelArea) // Label for the area tool, e.g. "mm²"

The function creates a rectilinear measure dictionary. This kind of measure dictionary can be used to
convert PDF units to an arbitrary other unit like millimeters, meters, feets, and so on.

A measure dictionary is used by the measure tool of Adobe's Acrobat and by other PDF viewers
which contain a PDF compatible measure tool.

The parameter Viewport must be a viewport handle that was returned by CreateViewport(). Scale is
the required scaling factor to convert a PDF unit (1/72 inch) to the wished destination unit. The
parameters UnitDescription, LabelDistance, and LabelArea are all required and cannot be NULL.

UnitDescription is a description of the coordinate conversion, e.g. "Inch to mm".

Function Reference Page 307 of 854

LabelDistance is the label for the distance tool, e.g. "mm".

LabelArea is the label for the area tool, e.g. "mm²".

Example (C++):
PPDF* pdf = pdfNewPDF();
if (!pdf) return -1; // Out of memory?
pdfCreateNewPDF(pdf, "e:/cppout.pdf");
 // We use top down coordinates in this example
 pdfSetPageCoords(pdf, pcTopDown);
 pdfAppend(pdf);
 // Just a test object of a known size that can be measured...
 pdfSetLineWidth(pdf, 0.5);
 pdfRectangle(pdf, 50.0, 50.0, 144, 72.0, fmStroke);

 TPDFRect bbox;
 pdfGetBBox(pdf, pbMediaBox, bbox);
 SI32 vp = pdfCreateViewport(
 pdf, // Instance pointer
 NULL, // Optional viewport name
 bbox.Left, // Lowever left corner
 bbox.Bottom, // Lowever left corner
 bbox.Right, // Upper right corner
 bbox.Top); // Upper right corner

 pdfCreateRectilinearMeasure(
 pdf, // Instance pointer
 vp, // Viewport handle
 25.4/72.0, // Conversion factor from 1/72 inch to mm
 "inch to mm", // Description of the measure dictionary
 "mm", // Unit label for the distance tool
 "mm²"); // Unit label for the area tool
 pdfEndPage(pdf);
pdfCloseFile(pdf);
pdfDeletePDF(pdf);

Remarks:

This function is implemented in an Ansi and Unicode compatible variant.

Return values:

If the function succeds the return value is a measure handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 308 of 854

CreateResetAction

Syntax:
SI32 pdfCreateResetAction(
 const PPDF* IPDF) // Instance pointer

A reset form action resets all or specific fields of an interactive form to their default values. If only a
few specific fields should be reset then add these fields with AddFieldToFormAction() to the action.
It is possible to exclude or include only specific fields when resetting the form. However, if no
specific fields are added to the action, all fields are reset to their default values, this is the normal
case.

Remarks:

Actions must be added to a PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateSeparationCS

Syntax:
SI32 pdfCreateSeparationCS(

const PPDF* IPDF) // Instance pointer
const char* Colorant, // Colorant name -> required
TExtColorSpace Alternate, // Alternate color space
SI32 Handle, // Alternate color space handle or -1
UI32 Color) // Color value defined in the alt. color

space

The function creates a Separation color space.

Color output devices produce full color by combining primary or process colorants in varying
amounts. On an additive color device such as a display, the primary colorants consist of red, green,
and blue phosphors; on a subtractive device such as a printer, they typically consist of cyan,
magenta, yellow, and sometimes black inks. In addition, some devices can apply special colorants,
often called spot colorants, to produce effects that cannot be achieved with the standard process
colorants alone. Examples include metallic and fluorescent colors and special textures.

When printing a page, most devices produce a single composite page on which all process colorants
(and spot colorants, if any) are combined. However, some devices, such as imagesetters, produce a
separate, monochromatic rendition of the page, called a separation, for each colorant. When the
separations are later combined—on a printing press, for example—and the proper inks or other
colorants are applied to them, the result is a full-color page.

A Separation color space (PDF 1.2) provides a means for specifying the use of additional colorants
or for isolating the control of individual color components of a device color space for a subtractive

Function Reference Page 309 of 854

device. When such a space is the current color space, the current color is a single-component value,
called a tint, that controls the application of the given colorant or color components only.

The parameter Colorant specifies the colorant name which this Separation color space is intended to
represent. The special colorant name All refers collectively to all colorants available on an output
device, including those for the standard process colorants. When a Separation space with this
colorant name is the current color space, painting operators apply tint values to all available
colorants at once. This is useful for purposes such as painting registration targets in the same place
on every separation.

Such marks are typically painted as the last step in composing a page to ensure that they are not
overwritten by subsequent painting operations.

The special colorant name None never produces any visible output. Painting operations in a
Separation space with this colorant name have no effect on the current page.

The parameter Alternate specifies the alternate color space in which the color should be rendered if
the device does not support the specified colorant. The alternate color space can be any Device or
CIE based color space but not in turn a special color space like Separation, Indexed, or DeviceN.

The parameter Handle specifies the handle of the alternate color space if a CIE based color space
should be used. If the alternate color space is a device color space the parameter Handle is ignored.

The parameter Color specifies the alternate color value, defined in the alternate color space, which is
used if the device does not support the colorant.

A color value in a Separation color space consists of a single tint component in the range 0 to 255.
The value 0 represents the minimum amount of colorant that can be applied; 255 represent the
maximum. Tints are always treated as subtractive colors, even if the device produces output for the
designated component by an additive method. Thus, a tint value of 0 denotes the lightest color that
can be achieved with the given colorant, and 255 is the darkest. This convention is the same as for
DeviceCMYK color components but opposite to the one for DeviceGray and DeviceRGB.

Encoding of Colorant Names

Colorant names are interpreted in the code page 1252 (WinAnsi) by default. Because colorant names
are stored in UTF-8 Unicode format in PDF, it is also possible to pass UTF-8 encoded Unicode
strings to the function. However, the function must be able to distinguish between both string
formats. To achieve this, the parameter Handle accepts the special flag 0x10000000 that specifies that
the parameter Colorant contains a UTF-8 encoded string. The flag must be combined with the handle
as follows:
handle |= 0x10000000; // C/C++, C#
handle = handle Or &H10000000 // Visual Basic
handle := handle or $10000000 // Delphi

If the alternate color space is a device color space, simply set the parameter to 0x10000000 to specify
that the colorant name is a UTF-8 string.

Function Reference Page 310 of 854

Notice:

Non-device color spaces cannot be used for interactive objects such as annotations or form fields.
The active color space must always be changed to a device color space before creating interactive
objects; see SetColorSpace(). Note also that annotations support DeviceRGB only. Form fields
support DeviceGray, DeviceRGB, and DeviceCMYK.

Remarks:

Use the function SetExtColorSpace() to activate the color space in the graphics state. To set a color of
a Separation space pass the wished color value to SetFillColor(), SetStrokeColor(), or SetColors().

Return values:

If the function succeeds the return value is the color space handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

CreateSetOCGStateAction

Syntax:
SI32 pdfCreateSetOCGStateAction(

const PPDF* IPDF, // Instance pointer
UI32* On, // Array of OCG handles which should be set to On
UI32 OnCount, // Number of OCGs handles in the On array
UI32* Off, // Array of OCG handles which should be set to Off
UI32 OffCount, // Number of OCG handles in the Off array
UI32* Toggle, // Array of OCG handles which should toggle the state
UI32 ToggleCount,// Number of OCG handles in the Toggle array
LBOOL PreserveRB) // Preserve radio button relationships if any?

The function creates a SetOCGState action that can be used to change the visibility state of certain
Optional Content Groups (OCGs). All arrays of OCG handles are optional but at least one array
must be provided. The parameter PreserveRB should be set to true to preserve radio button state
relashionships, if any. If set to false, radio button state relashionships will be ignored when setting
the visibility state of affected OCGs.

Actions must be added to a PDF object so that they can be executed. See AddActionToObj() for
further information and the example on the next page.

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Example (C++):

This example creates a document in two languages. The text for the different languages is placed
into separate layers. A JavaScript Action selects the correct layer depending on the viewer language
when opening the file. It is also possible to change the language with two bookmarks. The

Function Reference Page 311 of 854

bookmarks are connected with a SetOCGState action that simply toggles the layer states from on to
off or vice versa.

SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode,
 const char* ErrMessage,
 SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0; // We try to continue
}

int main(int argc, char* argv[])
{
 SI32 oc1, oc2, bmkDE, bmkEN, act, retval = -2;
 PPDF* pdf = pdfNewPDF();
 if (!pdf) return -1; // Out of memory?

 // Pass warnings and errors to this error callback function
 pdfSetOnErrorProc(pdf, NULL, PDFError);

 pdfCreateNewPDF(pdf, NULL);

 oc1 = pdfCreateOCG(pdf, "Deutsch", true, false, oiAll);
 oc2 = pdfCreateOCG(pdf, "English", true, true, oiAll);

 bmkDE = pdfAddBookmark(pdf, "Deutsch", -1, 1, false);
 bmkEN = pdfAddBookmark(pdf, "English", -1, 1, false);

 UI32 toggle[2] = {oc1, oc2};
 // Simply toggle the state from On to Off or vice versa
 act = pdfCreateSetOCGStateAction(pdf,NULL,0,NULL,0,toggle,2,true);

 // Add the action to the bookmarks
 pdfAddActionToObj(pdf, otBookmark, oeOnMouseUp, act, bmkDE);
 pdfAddActionToObj(pdf, otBookmark, oeOnMouseUp, act, bmkEN);

 pdfSetPageCoords(pdf, pcTopDown);

 pdfAppend(pdf);

 pdfSetFont(pdf, "Arial", fsRegular | fsItalic, 12.0, true, cp1252);

 // Text for the German layer
 pdfBeginLayer(pdf, oc1);
 pdfWriteFTextEx(
 pdf,
 50.0,
 50.0,
 pdfGetPageWidth(pdf) - 100.0,

Function Reference Page 312 of 854

 pdfGetPageHeight(pdf) - 100.0,
 taLeft,
 "Dieses Beispiel zeigt wie ein mehrsprachiges Dokument "
 "erzeugt werden kann.\n\n"
 "Zunächst wird beim Öffnen des Dokuments die Sprache mit "
 "einer JavaScript Aktion eingestellt.\n\n"
 "Zusätzlich kann die Sprache auch über zwei Lesezeichen "
 "ausgewählt werden. Hierbei wird lediglich ein Layer ein- "
 "bzw. ausgeblendet.\n\n"
 "Der Seiteninhalt muss natürlich zweimal erzeugt werden, "
 "einmal in Deutsch und einmal in Englisch in diesem "
 "Beispiel, jeweils in unterschiedlichen Layern.");

 pdfEndLayer(pdf);

 // Text for the English layer
 pdfBeginLayer(pdf, oc2);
 pdfWriteFTextEx(pdf,
 50.0,
 50.0,
 pdfGetPageWidth(pdf) - 100.0,
 pdfGetPageHeight(pdf) - 100.0,
 taLeft,
 "This example shows how a multi-language document can be "
 "created.\n\n"
 "The language is initially selected with a JavaScript "
 "Action when opening the file.\n\n"
 "Additionally, the wished language can be selected with two "
 "bookmarks. The bookmarks simply hide or unhide a layer.\n\n"
 "The page contents must of course be created twice, one time "
 "in English and one time in German in this example, but in "
 "different layers.");

 pdfEndLayer(pdf);

 pdfEndPage(pdf);

 // This script displays the correct layer depending on the viewer
 // language.
 SI32 actLang = pdfCreateJSAction(pdf,
 "if (app.viewerVersion >= 6.0)\n"
 "{\n"
 " var ocgArray = this.getOCGs();\n"
 " var de = (app.language == \"DEU\");\n"
 " for (var i = 0; i < ocgArray.length; i++)\n"
 " {\n"
 " if(ocgArray[i].name==\"English\")\n"
 " {\n"
 " ocgArray[i].state = !de;\n"

Function Reference Page 313 of 854

 " }else\n"
 " {\n"
 " ocgArray[i].state = de;\n"
 " }\n"
 " }\n"
 "}");

 pdfAddActionToObj(pdf, otCatalog, oeOnOpen, actLang, -1);

 if (pdfHaveOpenDoc(pdf))
 {
 if (pdfOpenOutputFile(pdf, "test_layer.pdf"))
 {
 retval = pdfCloseFile(pdf);
 }
 }
 pdfDeletePDF(pdf);
 return retval;
}

Function Reference Page 314 of 854

CreateSigField

Syntax:
SI32 pdfCreateSigField(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the signature field (required)
 SI32 Parent, // Parent group field if any or -1
 double PosX, // X-Coordinate of the field
 double PosY, // Y-Coordinate of the field
 double Width, // Width of the field box
 double Height) // Height of the field

This function creates an empty signature field which can be used to digitally sign the PDF file. If the
coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the signature
field. If the coordinate system is top-down it defines the upper left corner.

Like all form fields, the width and height is measured incl. the line width of the border. The size of
normal vector graphics is measured without the line width; this must be taken into account when
calculating the width or height of a form field. The line width of the border is derived from the
current graphics state (see SetLineWidth()), it should be either 0, 1, 2, or 3 units (no border, thin,
medium, or thick). The border style can be changed with the functions SetBorderStyle() or
SetFieldBorderStyle().

If the PDF file should be digitally signed by DynaPDF call the function CloseAndSignFile() or
CloseAndSignFileEx() after all pages has been created. The first signature field is used for signing if
multiple signature fields exist. In this case it is also possible to create a user defined appearance for
the signature field. See CreateSigFieldAP() for further information.

A signature field can be visible or invisible depending on your requirements. To create a hidden
signature field set the flag ffHidden to the field (see also SetFieldFlags()).

How to lock an Interactive Form after signing?

If an Interactive Form should be filled in and signed within the full version of Adobe's Acrobat 4 or
higher then it is possible to create an empty signature field which executes a special JavaScript
Action to lock the form after it has been signed. This can be done with a JavaScript Action which
contains the JavaScript function AFSignature_Format(). This function can be called within the
OnFormat event of the signature field. Note that this is the one and only event that signature fields
support.

The function supports two parameters, the first parameter defines whether all or only specific fields
should be locked, the second parameter contains either an empty array or an array of full qualified
field names delimited by a comma:

• AFSignature_Format("ALL", new Array ("")");

• AFSignature_Format("THESE", new Array ("Field1, Field2")");

• AFSignature_Format("EXCEPT", new Array ("Field1, Field2")");

Function Reference Page 315 of 854

Notice: If a form contains a button with a Submit Form Action then it is recommended to exclude
the button field from locking so that it is still possible to submit the form data. Otherwise, the entire
form is locked, incl. the submit button, and it is impossible to submit the form data to a web server.

Example (C++):

In this example we create a simple form with only one text field and an empty signature field. The
form should be signed by the user after it has been filled in and then submitted to a web server. The
submit button is hidden when the form is created; it becomes visible after the document has been
signed. Note that this example works only with the full version of Adobe's Acrobat 5 or higher.
#include "dynapdf.h"
using namespace DynaPDF;
// Error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return -1; // We break processing if an error occurs
}
int main(int argc, char* argv[])
{
 PPDF* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?
 char outFile[] = "c:/cppout.pdf";
 // Error messages and warnings are passed to the callback function.
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 if (!pdfCreateNewPDF(pdf, outFile))
 {
 pdfDeletePDF(pdf);
 (void)getch();
 return 1;
 }
 pdfAppend(pdf);
 pdfSetPageCoords(pdf, pcTopDown);
 pdfCreateTextField(pdf, "Test", -1, false, 0, 50.0, 50.0, 200.0, 16.0);
 SI32 sig = pdfCreateSigField(pdf,"Signature",-1,50.0,70.0,200.0,30.0);
 // We exclude the button from locking, otherwise it would be impossible
 // to execute the submit form action. The submit button becomes
 // visible after the document has been signed.
 char s[] = "AFSignature_Format(\"EXCEPT\", new Array(\"Submit\"));\n"
 "var f = this.getField(\"Submit\");\nf.hidden=false;\n";
 SI32 act = pdfCreateJSAction(pdf, s);
 pdfAddActionToObj(pdf, otField, oeOnFormat, act, sig);
 pdfSetBorderStyle(pdf, bsBevelled);
 pdfSetFieldBackColor(pdf, PDF_SILVER);
 SI32 btn = pdfCreateButton(pdf,"Submit","Submit",1,50,110,100, 20);
 pdfSetFieldFlags(pdf, btn, ffHidden, false);

Function Reference Page 316 of 854

 // The entire PDF file should be submitted to our web server.
 act = pdfCreateSubmitAction(pdf,sfPDF,"http://www.test.com/pdf.php");
 pdfAddActionToObj(pdf, otField, oeOnMouseUp, act, btn);
 pdfEndPage(pdf);
 pdfCloseFile(pdf);
 pdfDeletePDF(pdf);
 printf("PDF file %s successfully created!\n", outFile);
 return 0;
}

Remarks:

The height of a signature field should be large enough to display at least 3 lines of text. If the
optional strings "Location" and "Reason" of the function CloseAndSignFile() should be set, set the
field height to a value so that up to 5 lines of text can be drawn into the field. The resulting font size
depends on the height of the field divided by the number of text lines.

Interactive form fields can be structured into several groups by passing a handle of a group field to
the parameter Parent. See CreateGroupField() for further information.

Return values:

If the function succeeds the return value is the field handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateSigFieldAP

Syntax:
SI32 pdfCreateSigFieldAP(

const PPDF* IPDF) // Instance pointer
 UI32 SigField) // Handle of a signature field

The function creates a signature appearance template in the exact size of the base signature field.
The created template is already opened if the function succeeds and you can draw arbitrary contents
into it. After the appearance has been defined the template must be closed with EndTemplate().

Note that the template is reserved for the signature field. It must not be placed on pages or other
templates.

When creating a user defined appearance for a signature field you should also place the validation
icon properly so that it does not overprint the entire contents. See also PlaceSigFieldValidateIcon().

Remarks:

An example application that demonstrates the creation of a user defined signature appearance is
delivered with DynaPDF (see example signature_ap).

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 317 of 854

CreateSoftMask

Syntax:
void* pdfCreateSoftMask(
 const PPDF* IPDF, // Instance pointer
 UI32 TranspGroup, // Handle of the transparency group (required)
 TSoftMaskType Type, // Soft mask type, see description
 UI32 BackColor) // Background color if the type is smtLuminosity

typedef enum
{
 smtAlpha,
 smtLuminosity
}TSoftMaskType;

The function creates a soft mask from a transparency group, see BeginTransparencyGroup() for
further information. A soft mask represents an alpha channel that can be applied on vector graphics,
texts, and images.

The creation of a soft mask begins with the creation of a transparency group. The rendered result of
the transparency group represents finally the soft mask or alpha channel.

The color space of the transparency group should be device gray or a gray ICC based color space. It
is also possible to define the group in RGB or CMYK but this is not really meaningful since the
result must always be converted to gray.

Soft mask types

The parameter Type specifies the type of the soft mask. If the type is smtAlpha the mask is computed
from the group's alpha channel, disregarding any color in the group. This type of soft mask works
like a clipping path. Any pixel that is drawn in the group makes the mask transparent, uncovered
areas remain invisible. There are not many cases for which this kind of masking can be useful. It is
mostly used for images if the source image format did not support an alpha channel or if the mask
was stored in a separate image file.

If the type is smtLuminosity the group is composited with a fully opaque backdrop as specified by
the parameter BackColor (the background color must be specified in the group's color space). The
mask is finally computed from the luminosity of the resulting color at each point in the group. This
enables the definition of the mask with arbitrary vector graphics, text, shadings, and images. The
underlying transparency group must be isolated since a non-isolated group would be initialized
with the current backdrop and this conflicts with the properties of the soft mask.

This is the most common type of a soft maks since it works like a real alpha channel with the
advantage that it can be created with vector graphics and especially shadings.

Function Reference Page 318 of 854

Possible rendering issues

A soft mask is designed to mask one object at time. Although it is possible to draw arbitrary objects
when a soft mask is active, the result is maybe not what is intended because the effect on
overlapping objects is as if the mask would be applied twice. If multiple objects must be drawn then
these objects are usually placed into a transparency group since a transparency group is rendered as
a hole and hence avoids issues with overlapping objects.

How to activate a soft mask?

Once the soft mask was created it can be activated and deactivated with an extended graphics state:

Example:
// Create the transpareny group
...
SI32 grp = pdfBeginTransparancyGroup(pdf, ...);
...
pdfEndTemplate(pdf);

// A soft mask can only be activated with an extended graphics state.
TPDFExtGState gs;
pdfInitExtGState(&gs);

// Create the soft mask from the group and set it in the graphics state
// object. You can change more settings of the graphics state if
// necessary...
gs.SoftMask = pdfCreateSoftMask(pdf, grp, smtLuminosity, 0);

// Create the extended graphics state now
SI32 extGState = pdfCreateExtGState(pdf, &gs);
// And activate it...
pdfSetExtGState(pdf, extGState);
// The soft mask is now active, draw something on the page
pdfInsertImage(pdf, ...);

// The only way to deactivate a soft mask is to set a second extended
// graphics state that disables the soft mask.
gs.SoftMask = NULL;
gs.SoftMaskNone = true;
SI32 restoreSoftMask = pdfCreateExtGState(pdf, &gs);
pdfSetExtGState(pdf, restoreSoftMask);
...

Return values:

If the function succeeds the return value is a pointer to the soft mask object. This pointer is required
to create an extended graphics state so that the mask can be activated. If the function fails the return
value is NULL.

Function Reference Page 319 of 854

CreateStdPattern

Syntax:
SI32 pdfCreateStdPattern(
 const PPDF* IPDF, // Instance pointer
 TStdPattern Pattern, // Kind of pattern
 double LineWidth, // Line width to draw the pattern
 double Distance, // Distance between the lines
 UI32 LineColor, // Color of the lines
 UI32 BackColor) // Background color or NO_COLOR if transparent

typedef enum
{
 spHorizontal, /* ----- */
 spVertical, /* ||||| */
 spRDiagonal, /* \\\\\ */
 spLDiagonal, /* ///// */
 spCross, /* +++++ */
 spDiaCross /* xxxxx */
}TStdPattern;

This function creates a hatch pattern. Several types of hatch pattern can be created with this
function. The line width, line distance, and line color can be set individually. If the pattern should be
transparent set the background color to NO_COLOR.

The function creates a colored tiling pattern. See BeginPattern() for further information.

A pattern can be used like a color, it is not required to save the graphics state before applying a
pattern. A pattern remains active until the corresponding color is changed with SetFillColor() or
SetStrokeColor().

Remarks:

Patterns are invisible as long as they are not applied by the function ApplyPattern().

Return values:

If the function succeeds the return value is the pattern handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Example (C):
// First we declare an error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}

Function Reference Page 320 of 854

int main(int argc, char* argv[])
{
 SI32 pat1, pat2, pat3;
 PPDF* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfSetDocInfo(pdf, diSubject, "Standard hatch patterns");
 pdfSetDocInfo(pdf, diCreator, "C example test project");
 pdfSetDocInfo(pdf, diTitle, "Standard hatch patterns");
 pdfSetPageCoords(pdf, pcTopDown);

 pdfCreateNewPDF(pdf, "c:/cppout.pdf");

 pdfAppend(pdf);

 pat1 = pdfCreateStdPattern(pdf, spCross,2,8,PDF_RED,NO_COLOR);
 pat2 = pdfCreateStdPattern(pdf, spDiaCross,1,4,PDF_BLUE,PDF_YELLOW);
 pat3 = pdfCreateStdPattern(pdf, spDiaCross,1,4,PDF_BLUE,NO_COLOR);

 pdfApplyPattern(pdf, pat1, cmFill, 0);
 pdfApplyPattern(pdf, pat2, cmStroke, 0);
 pdfSetLineWidth(pdf, 10.0);
 pdfRectangle(pdf, 50, 50, 50, 50, fmFillStroke);
 pdfApplyPattern(pdf, pat3, cmStroke, 0);
 pdfRectangle(pdf, 120, 50, 50, 50, fmFillStroke);

 pdfEndPage(pdf);
 pdfCloseFile(pdf);
 pdfDeletePDF(pdf); // Do not forget to delete the PDF instance
}

Function Reference Page 321 of 854

Output:

Opaque background (border) Transparent background (border)

Function Reference Page 322 of 854

CreateStructureTree

Syntax:
LBOOL pdfCreateStructureTree(

const PPDF* IPDF) // Instance pointer

The function creates a global structure tree that is required to create Tagged PDF files. Tagged PDF
files require a root node of type Art, Div, Document, Part, or Sect. This function creates a root node
of type Document if nothing else was already imported. Other types can be created with the
function CreateStructureTreeEx().

Notice:

DynaPDF is able to extend an existing structure tree that was imported from an external PDF
file. However, when editing external PDF files the following rules must be considered:

• The structure information of a PDF file will only be imported when the entire PDF file is
imported with ImportPDFFile(). When importing single pages with ImportPage() or
ImportPageEx() of a PDF file that contains structure information then tagging will be
disabled because DynaPDF is not able to import the structure information of a PDF file
on a per page basis.

• Import first the PDF file and call then CreateStructureTree(). The reverse order causes

that the structure tree will not be imported and tagging will be disabled!

• Only one PDF file with structure information can be imported without invalidating the

structure information.

• Keep in mind that the structure tree of a PDF file is a complex global structure that is

difficult to edit. Because of this, probably millions of PDF files exist that contain damages
in the structure tree, mostly due to editing actions in certain viewer applications. When
opening an existing page with EditPage() the function tries to find the corresonding
StructParents array of the page in the ParentTree of the document's Structure Tree. When
this action fails then tagging will be disabled for this page. OpenTag() and CloseTag() do
not produce further warnings in this case. The function GetIsTaggingEnabled() can be
used to determine whether tagging is still enabled after an existing page was opened for
editing.

When creating Tagged PDF files it is important to create the PDF file in the logical reading order.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is zero.

Function Reference Page 323 of 854

CreateStructureTreeEx

Syntax:
LBOOL pdfCreateStructureTreeEx(
 const PPDF* IPDF, // Instance pointer
 TPDFBaseTag RootTag) // btArt, btDiv, btDocument, btPart, or btSect.
 // Any other value will be replaced by btDocument.

The function creates the global structure tree as described at CreateStructureTree(). The only
difference is that the type of the root node can be specified. See CreateStructureTree() for further
information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is zero.

CreateSubmitAction

Syntax:
SI32 pdfCreateSubmitAction(
 const PPDF* IPDF, // Instance pointer
 TSubmitFlags Flags, // Additional flags see below
 const char* URL) // URL of the web server

typedef SI32 TSubmitFlags;
#define sfNone 0x00000000 // No flags -> FDF format
#define sfExlude 0x00000001 // Excl. the fields of the action
#define sfInclNoValFields 0x00000002 // Include empty fields
#define sfHTML 0x00000004 // HTML format
#define sfGetMethod 0x00000008 // Use Get instead of Post
#define sfSubmCoords 0x00000010 // Mouse coordinates
#define sfXML 0x00000024 // XFDF format PDF 1.4
#define sfInclAppSaves 0x00000040 // Include append saves PDF 1.4
#define sfInclAnnots 0x00000080 // Include annotations PDF 1.4
#define sfPDF 0x00000100 // PDF 1.4
#define sfCanonicalFormat 0x00000200 // Canonical date format PDF 1.4
#define sfExlNonUserAnnots 0x00000400 // PDF 1.4
#define sfExlFKey 0x00000800 // PDF 1.4
#define sfEmbedForm 0x00002000 // PDF 1.5 Embed the form into FDF

A submit form action submits the field values of an interactive form to a web server. It is also
possible to submit the entire PDF file; however, this feature requires the full version of Adobe's
Acrobat (version 5 or higher).

Instead of simply submitting all field values to a web server it also possible to submit the values of
specific fields only. The fields must be added to the action with the function
AddFieldToFormAction(). The fields of the action can be included or excluded depending whether
the flag sfExclude was set or not.

Remarks:

Actions must be added to a PDF object with AddActionToObj().

Function Reference Page 324 of 854

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Flag Description

sfNone Use default settings. Field values are transmitted in Forms Data
format (FDF).

sfExlude Exclude the fields in the submit form action if any. These fields must
be added to the form action with AddFieldToFormAction().

sfInclNoValFields If set, all fields designated by the fields array of the form action are
submitted, regardless whether they have a value, only the field name
is transmitted. If no fields are added to form action this flag is applied
to all fields included in the interactive form.

sfHTML If set, the field names and values are submitted in HTML format. If
clear, they are submitted in Forms Data Format (FDF). This flag is
meaningful only when the flag sfXML is clear; if set, this flag is
ignored.

sfGetMethod Use HTTP GET request instead of POST.

sfSubmCoords If set, the coordinates of the mouse click that caused the submitform
action are transmitted as part of the form data. The coordinate values
are relative to the upper-left corner of the field ’s bounding box. They
are represented in the data in the format
 name.x = xval & name.y = yval

where name is the field name. This flag is meaningful only when the
sfHTML flag is set; if sfHTML is clear, this flag must also be clear.

sfXML (PDF 1.4) If set, field names and values are submitted in XFDF format.

sfInclAppSaves (PDF 1.4) Meaningful only when the form is being submitted in Forms
Data Format (that is, when both the sfXML and sfHTML flags are
clear). If set, the submitted FDF file includes the contents of all
incremental updates to the underlying PDF document, as contained in
the Differences entry in the FDF dictionary; if clear, the incremental
updates are not included.

Function Reference Page 325 of 854

Flag Description

sfInclAnnots (PDF 1.4) Meaningful only when the form is being submitted in Forms
Data Format (that is, when both the sfXML and sfHTML flags are
clear). If set, the submitted FDF file includes all annotations in the
underlying PDF document; if clear, the annotations are not included.

sfPDF (PDF 1.4) If set, the document is submitted in PDF format, using the
MIME content type application/pdf (described in Internet RFC 2045,
Multipurpose Internet Mail Extensions (MIME), Part One: Format of
Internet Message Bodies). If this flag is set, all other flags are ignored
except sfGetMethod. This flag is not supported by Adobe's Acrobat
Reader.

sfCanonicalFormat (PDF 1.4) If set, any submitted field values representing dates are
converted to a standard format (see next page). The interpretation of a
form field as a date is not specified explicitly in the field itself, but
only in the JavaScript code that processes it.

sfExlNonUserAnnots (PDF 1.4) Meaningful only when the form is being submitted in Forms
Data Format (that is, when both the sfXML and sfHTML flags are
clear) and the sfInclAnnots flag is set. If set, will include only those
annotations whose title matches the name of the current user, as
determined by the remote server to which the form is being
submitted. The title, which specifies the text label to be displayed in
the title bar of the annotation’s pop-up window, is assumed to
represent the name of the user authoring the annotation. This allows
multiple users to collaborate in annotating a single remote PDF
document without affecting one another’s annotations.

sfExlFKey (PDF 1.4) Meaningful only when the form is being submitted in Forms
Data Format (that is, when both the sfXML and sfHTML flags are
clear). If set, the submitted FDF will exclude the "F" entry (the PDF
document file that this FDF file was exported from).

Function Reference Page 326 of 854

Flag Description

sfEmbedForm (PDF 1.5) Meaningful only when the form is being submitted in Forms
Data Format (that is, when both the sfXML and sfHTML flags are
clear). If set, the F entry of the submitted FDF will be a file
specification containing an embedded file stream representing the
PDF file from which the FDF is being submitted. This flag is not
supported by Adobe's Acrobat Reader.

The standard date format

PDF defines a standard date format, which closely follows that of the international standard ASN.1
(Abstract Syntax Notation One), defined in ISO/IEC 8824.

A date string is defined as follows:

 (D:YYYYMMDDHHmmSSOHH'mm')

where

 YYYY is the year
 MM is the month
 DD is the day (01 –31)
 HH is the hour (00 –23)
 mm is the minute (00 –59)
 SS is the second (00 –59)
 O is the relationship of local time to Universal Time (UT), denoted by one of the characters +, -,
 or Z (see below)
 HH followed by ' is the absolute value of the offset from UT in hours (00 –23)
 mm followed by ' is the absolute value of the offset from UT in minutes (00 –59)

The apostrophe character (') after HH and mm is part of the syntax. All fields after the year are
optional. The default values for MM and DD are both 01; all other numerical fields default to zero
values. A plus sign (+) as the value of the O field signifies that local time is later than UT, a minus
sign (-) that local time is earlier than UT, and the letter Z that local time is equal to UT. If no UT
information is specified, the relationship of the specified time to UT is considered to be unknown.
Whether or not the time zone is known, the rest of the date should be specified in local time.

For example, December 23, 2004, at 7:52 PM, U.S. Pacific Standard Time, is represented by the string:
 D:200412231952-08'00'

Function Reference Page 327 of 854

CreateTextField

Syntax:
SI32 pdfCreateTextField(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the text field
 SI32 Parent, // Parent group field if any or -1
 LBOOL Multiline, // Enable multi line text output
 SI32 MaxLen, // Maximum length of the text or 0
 double PosX, // X-Coordinate of the text field
 double PosY, // Y-Coordinate of the text field
 double Width, // Width of the text field
 double Height) // Height of the text field

This function creates a text field. A text field is a box or space in which the user can enter text from
the keyboard. The text is may be restricted to a single line or may be allowed to span multiple lines,
depending whether the parameter Multiline is true or false. The parameter MaxLen specifies if the
length of the text should be restricted; if zero, the length is not restricted.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the text
field. If the coordinate system is top-down it defines the upper left corner.

Like all form fields, the width and height is measured incl. the line width of the border. The size of
normal vector graphics is measured without the line width; this must be taken into account when
calculating the width or height of a form field.

The line width of the border is taken from the current graphics state (see SetLineWidth()), it should
be either 0, 1, 2, or 3 units (no border, thin, medium, or thick). The border style can be changed with
the functions SetBorderStyle() or SetFieldBorderStyle().

A text field requires a font. If no font is active the standard font Helvetica is used. Note that when
the form must be compatible to Acrobat 4, the used fonts by the form fields must be restricted to the
14 standard fonts (see SetFont() for further information). Acrobat 4 does not support interactive
forms that use other fonts; such a form requires Acrobat 5 or higher.

Form fields support natively the code pages 1252 and MacRoman. However, other code pages and
Unicode can be used too as long as a few external cmaps are available. See SetFieldFont() for further
information.

The alignment of the text can be changed with the function SetFieldTextAlign().

The font size of a text field is set to "auto" if the flag ffMultiline is not set and if either the font size of
the active font is set to 1.0 unit or if no font is active when the field is created.

A text field can be formatted and the allowed input values can be restricted to specific data formats.
See SetDateTimeFormat(), SetNumberFormat() for further information.

Function Reference Page 328 of 854

Return values:

If the function succeeds the return value is the field handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Specific flags supported by text fields:

Flag Description

ffMultiline If set, the field may contain multiple lines of text; if clear, the field’s text
is restricted to a single line.

ffPassword If set, the field is intended for entering a secure password that should not
be echoed visibly to the screen. Characters typed from the keyboard
should instead be echoed in some unreadable form, such as asterisks or
bullet characters. To protect password confidentiality, the value of the
text field is not stored in the PDF file if this flag is set.

ffFileSelect (PDF 1.4) If set, the text entered in the field represents the pathname of a
file whose contents are to be submitted as the value of the field.

ffDoNotSpellCheck (PDF 1.4) If set, the text entered to the field will not be spell-checked.

ffDoNotScroll (PDF 1.4) If set, the field will not scroll (horizontally for single-line fields,
vertically for multi-line fields) to accommodate more text than will fit
within its annotation rectangle. Once the field is full, no further text will
be accepted.

ffComb (PDF 1.5) Meaningful only if MaxLen is set and if the flags ffMultiline,
ffPassword, and ffFileSelect flags are clear. If set, the field is
automatically divided up into as many equally spaced positions, or
combs, as the value of MaxLen, and the text is laid out into those combs.

Function Reference Page 329 of 854

CreateURIAction

Syntax:
SI32 pdfCreateURIAction(
 const PPDF* IPDF, // Instance pointer
 const char* URL) // URL of a website

A uniform resource identifier (URI) is a string that identifies (resolves to) a resource on the internet -
typically a file that is the destination of a hyperlink, although it can also resolve to a query or other
entity. A URI action causes a URI to be resolved. The parameter URL must be 7-bit ASCII string.

Remarks:

Actions must be added to a PDF object with AddActionToObj().

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateViewport

Syntax:
SI32 pdfCreateViewport(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Optional name of the viewport
 double X1, // Lower left corner
 double Y1, // Lower left corner
 double X2, // Upper right corner
 double Y2) // Upper right corner

The function creates a viewport. A viewport is a rectangular region of a page that can be associated
with a measure dictionary. A measure dictionary achieves a coordinate conversion so that the
distance and area can be calculated in other units like meters, feets, or millimeters, for example.

This is especially useful for CAD drawings which are not defined in PDF units. A PDF unit
represents 1/72 inch.

A page can contain an arbitrary number of viewports and every viewport can be assigned with its
own measure dictionary, e.g. to calculate coordinates in different units on the same page.

Viewports should be created in drawing order. Since viewports might overlap a PDF viewer
examines the array starting with the last one and itereates in reverse order. The first one whose
bounding box contains the point or cursor coordiante is chosen.

See also CreateRectilinearMeasure().

Remarks:

This function is implemented in an Ansi and Unicode compatible variant.

Function Reference Page 330 of 854

Return values:

If the function succeeds the return value is the viewport handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

CreateXFAStream

Syntax:
SI32 pdfCreateXFAStream(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Stream name, e.g. config, xdp:xdp, and so on
 const void* Buffer, // XFA buffer
 UI32 BufSize) // Buffer size in bytes

The function creates an XFA stream and adds it to the global XFA resource array. The parameter
Name must be the name of the XFA resource. Buffer must be a valid XFA stream buffer or NULL, if
the buffer should be set later with SetXFAStream().

Remarks:

This function is implemented in an Ansi and Unicode compatible variant.

Return values:

If the function succeeds the return value is the stream handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

DecryptPDF

Syntax:
SI32 pdfDecryptPDF(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // PDF file to be decrypted
 TPwdType PwdType, // Password type used to decrypt the file
 const char* Password) // Password

This function decrypts a PDF file by using the supplied password and password type. If the file is
not encrypted the parameter password is ignored. The file is recompressed during import; this
reduces the file size in most cases.

By using specific import flags (see SetImportFlags()), it is also possible to remove unwanted objects
from the PDF file, such as annotations, form fields, bookmarks and so on.

If the input file contains a compressed object structure, it will be converted back to a normal PDF
file.

The input PDF file will be replaced with the new one if no error occurred during import. If an error
occurred the file is left unchanged.

Function Reference Page 331 of 854

If document information entries are set before calling the function, existing entries in the PDF file
will be replaced with the new values, see the example below.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Unicode version is
supported by Windows NT systems only. The file path is converted back to Ansi if the Unicode
version is used under Linux or UNIX.

Return values:

If the function succeeds the return value is 0. If the function fails the return value is a negative error
code. The returned error code can be used to determine whether a wrong password was supplied to
the function. This can be done with the macro PDF_WRONG_PWD(). This macro returns true if the
password was wrong. In Delphi, the C macro is defined as a normal function.

Example (C++):
#include "dynapdf.h"
using namespace DynaPDF;
// First we declare an error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}
int main(int argc, char* argv[])
{
 pdfSetOnErrorProc(NULL, PDFError);
 // The document info entries are changed by the function if set
 pdfSetDocInfo(diSubject, "Decrypt PDF files");
 pdfSetDocInfo(diCreator, "C++ example test project");
 pdfSetDocInfo(diTitle, "Changed title");

 pdfDecryptPDF("c:/test.pdf", ptOpen, NULL);
 return 0;
}

DeleteAcroForm

Syntax:
void pdfDeleteAcroForm(

const PPDF* IPDF) // Instance pointer

The function deletes a maybe existing Interactive Form. If the document contains no interactive form
the function does nothing.

Function Reference Page 332 of 854

DeleteActionFromObj

Syntax:
SI32 pdfDeleteActionFromObj(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // Object type
 UI32 ActHandle, // Action handle
 UI32 ObjHandle) // Object handle

typedef enum
{
 otAction,
 otAnnotation,
 otBookmark,
 otCatalog,
 otField,
 otPage,
 otPageLink
}TObjType;

This function deletes an action from a PDF object. If the object type is page, then use the page
number as handle. If the handle of the action is not known, because the object was may be imported
from an external PDF file, then use the function DeleteActionFromObjEx() instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteActionFromObjEx

Syntax:
SI32 pdfDeleteActionFromObjEx(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // Object type
 UI32 ObjHandle, // Object handle
 UI32 ActIndex) // Action index (see below)

This function can be used to delete an action from an object without using an action handle. The
action handle is often not known because the object was may be imported from an external PDF file.
In this case the actions of the object can be enumerated in a while statement and deleted by this
function if necessary (see example below).

The maximum index is decremented each time an action was deleted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (C):
// In this example, all actions are removed from the object. The action index can be zero because the
// next action gets the position of the deleted one.
SI32 actCount, objHandle;
...
actCount = pdfGetObjActionCount(pdf, otBookmark, objHandle);

Function Reference Page 333 of 854

while (actCount > 0)
{
 pdfDeleteActionFromObjEx(pdf, otBookmark, objHandle, 0);
 --actCount;
}
// Now, we want to delete all actions except JavaScript actions from the
// object.
SI32 i, actCount, actType;
...
actCount = pdfGetObjActionCount(pdf, otPage, 2); // Page 2
for (i = 0; i < actCount; i++)
{
 // Check whether an error occurred
 if ((actType = pdfGetActionTypeEx(pdf, otPage, 2, i)) < 0) break;
 if (actType != (SI32)atJavaScript)
 {
 pdfDeleteActionFromObjEx(pdf, otPage, objHandle, i);
 break;
 }
}

DeleteAltFontList

Syntax:
LBOOL pdfDeleteAltFontList(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle) // List handle or -1 to delete all lists

The function deletes an alternate font list that was created by CreateAltFontList(). If the parameter
Handle was set to -1 all available lists will be deleted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteAnnotation

Syntax:
SI32 pdfDeleteAnnotation(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle) // Annotation handle

This function deletes an annotation. The parameter Handle must be a valid annotation handle.

Annotations are global objects. To delete specific annotations of a PDF file use the functions
GetAnnotCount(), GetAnnotType() and DeleteAnnotation() (see example below).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (C++):
// This example deletes all web links contained in the document
using namespace DynaPDF;
...

Function Reference Page 334 of 854

SI32 aType, annotCount = pdfGetAnnotCount(pdf);
for (SI32 i = 0; i < annotCount; i++)
{
 if ((aType = pdfGetAnnotType(pdf, i)) < 0) break;
 if ((TAnnotType)aType == atWebLink)
 pdfDeleteAnnotation(pdf, i);
}
...

DeleteAnnotationFromPage
Syntax:

LBOOL pdfDeleteAnnotationFromPage(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum, // Page number from which to delete the annotation
 UI32 Handle) // Annotation handle

The function deletes an annotation from a page. Typical annotations which are shared among pages
are Watermark and Stamp annotations. PageNum is the page number from which the annotation
should be deleted. The first page is denoted by 1.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteAppEvents

Syntax:
SI32 pdfDeleteAppEvents(
 const PPDF* IPDF, // Instance pointer
 LBOOL ApplyEvent, // Apply the visibility state Event before deletion?
 TOCAppEvent Event) // Will be ignored if ApplyEvent is false

The function deletes all application events if any. The function can optionally apply the visibility
state of an event before the application events will be deleted. The new visibility state will be stored
in the PDF file. To apply the visibility state of a specific event without deletion call
ApplyAppEvent() instead.

Return values:

If the function succeeds and if application events were deleted the return value is 1. If the no
application events were defined the return value is 0. If the function fails the return value is a
negative error code.

Function Reference Page 335 of 854

DeleteBookmark

Syntax:
SI32 pdfDeleteBookmark(
 const PPDF* IPDF, // Instance pointer
 UI32 ABmk) // Bookmark handle

This function deletes a bookmark. The parameter ABmk must be a valid bookmark handle. Please
note that this function invalidates all bookmark handles which are numerically greater than ABmk.
DynaPDF supports several functions to find or enumerate bookmarks. It is safe to delete a
bookmark within a search run. See the following functions for further information:

• GetBookmarkCount()
• GetBookmark()
• FindBookmark(), FindNextBookmark()

Return values:

If the function succeeds the return value is the remaining number of bookmarks. If the function fails
the return value is a negative error code.

DeleteDPartNode

Syntax:
LBOOL pdfDeleteDPartNode(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle) // DPart node handle or -1

The deletes a dpart node or the entire dpart structure if Handle was set to -1. DPart stands for
Document Parts, a feature of PDF/VT. If the dpart node contains children then all child nodes will be
deleted too.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteEmbeddedFile

Syntax:
LBOOL pdfDeleteEmbeddedFile(

const PPDF* IPDF, // Instance pointer
UI32 Handle) // Embedded file handle or array index.

The function deletes an embedded file. The parameter Handle must be a valid embedded file handle.
Such a handle is a simple array index. GetEmbeddedFileCount() returns the remaining number of
embedded files. If all embedded files should be deleted then delete the files from top to bottom by
decrementing the loop variable. This is faster because it is not required to reorganize the array in
which the files are stored in this case. All handles above the deleted file index become invalid after
the file was deleted.

Function Reference Page 336 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteField

Syntax:
SI32 pdfDeleteField(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

This function deletes an interactive form field. The parameter AField must be a valid field handle.

If the field is a radio button or group field, the child fields used are also deleted. There is no need to
delete each field separately.

A field is never physically deleted. All field handles are still valid after a field was deleted, but the
"Used" flag of the field is set to false (see GetField() for further information). If a field contained an
action that was not used by another object then the action is also deleted.

Fields can also be deleted by using its name instead of the handle. See DeleteFieldEx() for further
information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteFieldEx

Syntax:
SI32 pdfDeleteFieldEx(
 const PPDF* IPDF, // Instance pointer
 const char* Name) // Full qualified field name

This function deletes an interactive form field by using its full qualified name, that is the name of
any parent group field separated by a period (.) plus the field name.

Remarks:

Check boxes of a radio button have no name. It is not possible to delete such a check box by using
this function, use DeleteField() instead. However, the entire radio button can be deleted with this
function.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 337 of 854

DeleteJavaScripts

Syntax:
void pdfDeleteJavaScripts(

const PPDF* IPDF, // Instance pointer
LBOOL DelJavaScriptActions) // Delete Javascript Actions?

The function deletes all global Javascripts and optionally all Javascript Actions from the document.

DeleteNamedDest

Syntax:
PDF_EXP LBOOL pdfDeleteNamedDest(
 const PPDF* IPDF, // Instance pointer
 const UI16* Name) // Name of the named destination or NULL

The function deletes a named destination. The way how named destinations are defined in PDF was
changed in PDF 1.2. In earlier versions named destinations were accessible through byte strings
only. Since PDF 1.2 named destinations can also be defined as name tree which use either Ansi or
Unicode strings.

To avoid issues with different string formats it is strongly recommended to use the Unicode version
of this function. The Unicode version is able to find named destinations independent of the string
format that was used in the PDF file.

If Name is set to NULL or to an empty string all named destinations will be deleted.

Remarks:

All non C/C++ interface include the Unicode version of the function only.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteNamedDestByIndex

Syntax:
LBOOL pdfDeleteNamedDestByIndex(
 const PPDF* IPDF, // Instance pointer
 SI32 Index) // Array index of the named destination or -1

The function deletes a named destination. If Index is set to a negative value all named destinations
will be deleted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 338 of 854

DeleteOCGFromAppEvent

Syntax:
LBOOL pdfDeleteOCGFromAppEvent(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG Handle
 TOCAppEvent Events, // Bitmask, one or more events
 TOCGUsageCategory Categories, // Bitmask, if DelCategoryOnly is true
 LBOOL DelCategoryOnly); // If true, delete only the category from
 // the events

The function deletes an OCG or layer from one or more application events, or it deletes only one or
more categories from an application event in which the OCG was found (if DelCategoryOnly is true).

If DelCategoryOnly is true, and if no more categories are left in the application event, then the event
will be deleted. See also AddOCGToAppEvent() and SetOCGContUsage() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteOCGFromDisplayTree

Syntax:
LBOOL pdfDeleteOCGFromDisplayTree(
 const PPDF* IPDF, // Instance pointer
 UI32 OCGHandle, // OCG handle
 LBOOL Recursive) // Delete all occurrences?

The function deletes a layer or OCG (Optional Content Group) from the display tree of the currently
active layer configuration.

Notice:

If the PDF file was not imported with ImportPDFFile() the function ImportOCProperties() must
be called in order to import the global Optional Content Properties.

It is also required to load a layer configuration with LoadLayerConfig() before the function can
be called.

The display tree is a linked list that contains UI nodes. UI stands for User Interface. Every node in
this tree can contain an OCG or an array of OCGs with an optional label.

This function can be used to delete an OCG from the display tree without traversing every node of it
with GetOCUINode() beforehand. Therefore, the function is suitable for console applications but
GUI based applications should use DeleteOCUINode() instead. DeleteOCUINode() can also be used
to delete the entire display tree with just one function call.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 339 of 854

DeleteOCUINode

Syntax:

LBOOL pdfDeleteOCUINode(
 const PPDF* IPDF, // Instance pointer
 IOCN* Node) // Node to delete or NULL to delete all UI nodes

The function deletes an OCUINode (Optional Content User Interface Node) from the display tree of
the currently active layer configuration or the entire tree if Node is set to NULL.

Notice:

If the PDF file was not imported with ImportPDFFile() the function ImportOCProperties() must
be called in order to import the global Optional Content Properties.

It is also required to load a layer configuration with LoadLayerConfig() before the function can
be called.

Note that the deletion of the display tree does not delete any layer or OCG (Optional Content
Group). All OCGs still exists and are fully functional. However, users are not able to change the
visibility state of OCGs which are not included in the display tree of the corresponding layer
configuration.

If the parameter Node is set then it must be a valid pointer of an OCUINode that was returned by
GetOCUINode(). Note that the deletion of a node invalidates all pointers which were previously
returned by GetOCUINode().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteOutputIntent

Syntax:
SI32 pdfDeleteOutputIntent(
 const PPDF* IPDF, // Instance pointer
 SI32 Index) // Array index or -1 to delete all intents

The function can be used to delete a specific or all output intents. A PDF file can contain more than
one output intent. Call GetOutputIntentCount() to determine the number of available output
intents. If the parameter Index is set to -1 all output intents will be deleted.

Return values:

If the function succeeds the return value is the remaining number of output intents. If the function
fails the return value is a negative error code.

Function Reference Page 340 of 854

DeletePage

Syntax:
SI32 pdfDeletePage(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum) // Page number

This function deletes a page. The parameter PageNum must be the page number that should be
deleted. The first page has the number 1, the second 2 and so on. A page is physically deleted by this
function but no objects used by the page. All other pages and objects are still valid.

Return values:

If the function succeeds the return value is the remaining number of pages. If the function fails the
return value is a negative error code.

DeletePageLabels

Syntax:
void pdfDeletePageLabels(

const PPDF* IPDF) // Instance pointer

The function deletes all page labels contained in the current open document, if any.

DeletePDF

Syntax:
SI32 pdfDeletePDF(
 PPDF* IPDF) // Instance pointer

The function deletes a PDF instance that was previously created with the function NewPDF().

This function is automatically called in the wrapper classes for Visual Basic, Visual Basic .Net and
Delphi.

DeleteRasterizer (Rendering Engine)

Syntax:
void rasDeleteRasterizer(
 IRAS** RasPtr) // Address of the rasterizer pointer

The function deletes a rasterizer object and sets the variable to NULL. The address of the variable
must be passed to the function, e.g. rasDeleteRasterizer(&ras);

Function Reference Page 341 of 854

DeleteSeparationInfo

Syntax:
LBOOL pdfDeleteSeparationInfo(

const PPDF* IPDF, // Instance pointer
LBOOL AllPages) // Delete the separation info of all pages?

The function deleted the separation of the current open page or of all pages if the parameter
AllPages is set to true.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteTemplate

Syntax:
SI32 pdfDeleteTemplate(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Template handle

This function deletes a template. The parameter Handle must be a valid template handle. A template
is not physically deleted by this function, only the content stream is cleared. Templates can be
references in other content stream so that it is quite complex to delete a template physically at
runtime. However, this behaviour is maybe changed in a future version of DynaPDF.

Imported PDF pages are converted to templates by default. The handles of such templates are often
not known, however, it is possibly to delete them by using the function DeleteTemplateEx().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DeleteTemplateEx

Syntax:
SI32 pdfDeleteTemplateEx(
 const PPDF* IPDF, // Instance pointer
 UI32 Index) // Index of the template inside the page's array

This function deletes a template by using an index instead of a template handle. The parameter
Index represents an index into the array of templates used by the current open page. The number of
templates used by a page is returned by the function GetTemplCount().

It is not easy to identify a specific template, all templates used by a page can be deleted easily, but it
is much more complex to delete a specific template if the page contains more than one.

However, if a template contains text, then the functions EditTemplate() and GetPageText() can be
used to identify a template, but in most cases it is easier to delete a template and check the file with
Acrobat or Reader to determine whether it was the right one.

Function Reference Page 342 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (C++):
// In this example, we have a document with 10 imported pages.
// The entire document was imported with the function ImportPDFFile()
// so that all interactive features are also imported. However, the
// third page contains invalid contents that should be removed. The
// imported pages were converted to templates during import (it is also
// possible to import pages without conversion). The template handles
// of the imported pages are not known so that we use the indexes instead.
...
pdfEditPage(3);
SI32 tmplCount = pdfGetTemplCount();
for (SI32 i = 0; i < tmplCount; i++)
 pdfDeleteTemplateEx(i);
pdfEndPage();
...

DeleteWatermark

Syntax:
SI32 pdfDeleteWatermark(
 const PPDF* IPDF, // Instance pointer
 SI32 PageNum, // Page number or -1 for all pages
 LBOOL InclAnnots) // Delete watermark annotations too?

The function can be used to delete watermarks from a single page or from the entire document if
PageNum is set to -1. If InclAnnots is true, watermark annotations will be deleted too, if any.

A watermark in PDF terms is a regular template that has a ADBE_CompoundType property of type
Watermark. Such templates can be created with the Watermark tool of Adobes Acrobat, or with
DynaPDF, for example. See MarkTemplateAsWatermark() for further information.

Return values:

If the function succeeds the return value is the number of deleted watermarks. Note that deleted
watermark annotations do not increment the return value. If the function fails, the return value is a
negative error code.

Function Reference Page 343 of 854

DeleteXFAForm

Syntax:
void pdfDeleteXFAForm(

const PPDF* IPDF) // Instance pointer

The function deletes a maybe existing XFA form (XML based form) if any. This can be useful if the
PDF file contains a hybrid form because DynaPDF does not allow editing form fields as long as an
XFA form is present.

DrawArc

Syntax:
SI32 pdfDrawArc(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the midpoint of the arc
 double PosY, // Y-Coordinate of the midpoint of the arc
 double Radius, // Radius
 double StartAngle, // Start angle
 double EndAngle) // End angle

This function draws an arc by using a start and end angle. A full circle is drawn if the start and end
angles coincide. The path is not closed, stroked or filled so that it will be invisible as long it is not
stroked, filled or both (see ClosePath() or StokePath() for further information).

The current point is connected with the start point and then updated to the end point of the arc (see
example below).

The draw direction can be changed with the function SetDrawDirection(). The start and end angles
are always measured counter clockwise independent of the drawing direction.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 344 of 854

Example (Delphi):
implementation
uses dynapdf;
procedure TForm1.Button1Click(Sender: TObject);
var pdf: TPDF;
begin
 pdf := nil;
 try
 pdf := TPDF.Create;
 // Declaration of the error callback (see SetOnErrorProc())
 pdf.SetOnErrorProc(nil, @ErrProc);

 pdf.CreateNewPDF('c:\dout.pdf');

 pdf.SetDocInfo(diCreator, 'Delphi sample project');
 pdf.SetDocInfo(diSubject, 'How to draw an arc segment');
 pdf.SetDocInfo(diTitle, 'Vector graphics');
 pdf.Append;
 pdf.SetStrokeColor(clBlue);
 pdf.SetFillColor($00FFCFCF);
 pdf.SetDrawDirection(ddClockwise);
 pdf.MoveTo(250, 500);
 pdf.DrawArc(250, 500, 50, 30, 60);
 pdf.ClosePath(fmFillStroke);
 pdf.SetDrawDirection(ddCounterClockwise);
 pdf.SetStrokeColor($0000A600);
 pdf.SetFillColor($00DDFFDD);
 pdf.MoveTo(255, 505);
 pdf.DrawArc(250, 500, 50, 33, 57);
 pdf.ClosePath(fmFillStroke);
 pdf.EndPage;
 pdf.CloseFile;
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOK], 0);
 end;
 if pdf <> nil then pdf.Free;
end;

Output:

Function Reference Page 345 of 854

DrawArcEx

Syntax:
SI32 pdfDrawArcEx(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the midpoint of the arc
 double PosY, // Y-Coordinate of the midpoint of the arc
 double Width, // Width of the bounding rectangle
 double Height, // Height of the bounding rectangle
 double StartAngle, // Start angle
 double EndAngle) // End angle

This function draws an elliptical arc. A full ellipse is drawn if the start and end angles are the same.
The path is not closed, stroked or filled so that it will be invisible as long it is not stroked, filled or
both (see ClosePath() or StokePath() for further information).

The current point is connected with the start point and then updated to the end point of the ellipse.

The draw direction can be changed with the function SetDrawDirection(). The start and end angles
are always measured counter clockwise independent of the drawing direction.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DrawChord

Syntax:
SI32 pdfDrawChord(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the midpoint of the chord
 double PosY, // Y-Coordinate of the midpoint of the chord
 double Width, // Width of the bounding rectangle
 double Height, // Height of the bounding rectangle
 double StartAngle, // Start angle
 double EndAngle, // End angle
 TPathFillMode FillMode) // Fill mode

This function draws an elliptical chord (a region bounded by the intersection of an ellipse and a line
segment, called a secant).

The draw direction can be changed with the function SetDrawDirection(). The start and end angles
are always measured counter clockwise independent of the drawing direction.

A chord is a closed path that can be filled, stroked or both. It is also possible to draw a chord
invisible to apply the filling rules nonzero winding number or even-odd. The filling rules are
described under ClipPath(). The parameter FillMode is ignored if the chord is drawn inside a
clipping path. The fill modes are described under ClosePath().

Function Reference Page 346 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DrawCircle

Syntax:
SI32 pdfDrawCircle(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the midpoint of the circle
 double PosY, // X-Coordinate of the midpoint of the circle
 double Radius, // Radius
 TPathFillMode FillMode) // Fill mode

This function draws a circle. The draw direction can be changed with the function
SetDrawDirection().

A circle is a closed path that can be filled, stroked or both. It is also possible to draw a circle invisible
to apply the filling rules nonzero winding number or even-odd. The filling rules are described at
ClipPath(). The parameter FillMode is ignored if the circle is drawn inside a clipping path. The fill
modes are described at ClosePath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

DrawNGon

Syntax:
LBOOL pdfDrawNGon(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the midpoint of the ngon
 double PosY, // Y-Coordinate of the midpoint of the ngon
 double Radius, // Radius
 double Alpha, // Rotation angle in degrees
 UI32 NumSides, // Number of sides. Must be greater 2.
 TPathFillMode FillMode) // Fill mode

The function draws a n-gon. A n-gon is a polygon with "n" number of sides. The minimum number
of sides is three.

A n-gon is a closed path that can be filled, stroked or both. It is also possible to draw a n-gon
invisible to apply the filling rules nonzero winding number or even-odd. The filling rules are
described at ClipPath(). The parameter FillMode is ignored if the circle is drawn inside a clipping
path. The fill modes are described at ClosePath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 347 of 854

DrawPie

Syntax:
SI32 PDF_CALL pdfDrawPie(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the midpoint of the pie
 double PosY, // Y-Coordinate of the midpoint of the pie
 double Width, // Width of the bounding rectangle
 double Height, // Height of the bounding rectangle
 double StartAngle, // Start angle
 double EndAngle, // End angle
 TPathFillMode FillMode) // Fill mode

The function draws a pie-shaped wedge bounded by the intersection of an ellipse and two angles.

The draw direction can be changed with the function SetDrawDirection(). The start and end angles
are always measured counter clockwise independent of the drawing direction.

A pie is a closed path that can be filled, stroked or both. It is also possible to draw a pie invisible to
apply the filling rules nonzero winding number or even-odd. The filling rules are described under
ClipPath(). The parameter FillMode is ignored if the pie is drawn inside a clipping path. The fill
modes are described under ClosePath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (Delphi):
implementation

uses DynaPDF;
// First we declare an error callback function
function ErrProc(const Data: Pointer; ErrCode: Integer; const ErrMessage:
PAnsiChar; ErrType: Integer): Integer; stdcall;
var s: String;
begin
 s := Format('%s'#13'Abort processing?', [ErrMessage]);
 if MessageDlg(s, mtError, [mbYes, mbNo], 0) = mrYes then
 Result := -1 // break processing
 else
 Result := 0; // try to continue
end;

Function Reference Page 348 of 854

procedure TForm1.Button1Click(Sender: TObject);
var pdf: TPDF;
begin
 pdf := nil;
 try
 pdf := TPDF.Create;
 pdf.SetOnErrorProc(nil, @ErrProc);
 pdf.CreateNewPDF('c:\dout.pdf');
 pdf.SetDocInfo(diCreator, 'Delphi sample project');
 pdf.SetDocInfo(diSubject, 'Simple shapes');
 pdf.SetDocInfo(diTitle, 'Vector graphics');

 pdf.Append;
 pdf.SetPageCoords(pcTopDown);
 pdf.SetFont('Arial', fsNone, 12, true, cp1252);
 // default draw direction counter clockwise
 pdf.SetColors(clRed);
 pdf.WriteText(380, 143, 'DrawArcEx');
 pdf.DrawArcEx(360, 150, 200, 100, 330, 30);
 pdf.StrokePath;
 pdf.SetColors(clBlue);
 pdf.WriteText(380, 253, 'DrawPie');
 pdf.DrawPie(360, 260, 200, 100, 330, 30, fmStroke);
 pdf.SetColors(clGreen);
 pdf.WriteText(380, 363, 'DrawChord');
 pdf.DrawChord(360, 370, 200, 100, 330, 30, fmStroke);
 // new draw direction
 pdf.SetDrawDirection(ddClockWise);
 pdf.SetColors(clRed);
 pdf.WriteText(200, 143, 'DrawArcEx');
 pdf.DrawArcEx(250, 150, 200, 100, 330, 30);
 pdf.StrokePath;
 pdf.SetColors(clBlue);
 pdf.WriteText(200, 253, 'DrawPie');
 pdf.DrawPie(250, 260, 200, 100, 330, 30, fmStroke);
 pdf.SetColors(clGreen);
 pdf.WriteText(200, 363, 'DrawChord');
 pdf.DrawChord(250, 370, 200, 100, 330, 30, fmStroke);
 pdf.EndPage;
 pdf.CloseFile;
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOK], 0);
 end;
 if pdf <> nil then pdf.Free;
end;

Function Reference Page 349 of 854

Output:

Draw direction counter clockwise Draw direction clockwise

DrawArcEx

DrawPie

DrawChord

DrawArcEx

DrawPie

DrawChord

Function Reference Page 350 of 854

EditPage

Syntax:
SI32 pdfEditPage(
 const PPDF* IPDF, // Instance pointer
 SI32 PageNum) // Page number

This function prepares a page for editing. If the page does exist (PageNum is greater than the number
of pages in the document), new pages are appended until the number of pages is equal PageNum.
An open page must be closed with EndPage() after the required changes are made.

When opening an existing page for editing DynaPDF does the following:

• When the page is opened the first time, DynaPDF parses the content stream to determine the
graphics state at the end of the stream.

• When tagging is enabled and if the page contains already tagging information then it tries
also to find the StructParents array of the page in the ParentTree of the global structure tree.
If this action fails then tagging will be disabled for this page. The function
GetIsTaggingEnabled() can be used to determine whether tagging is still enabled.

• Errors in the content stream will be repaired if possible.
• If the content stream contains non-repairable errors then editing is still possible but the result

is of course undefined. Errors are written to the error log (see GetErrLogMessage()).
• When closing the page, the graphics state is stored in a compact format so that it is not

required to parse the page again when it will be edited again.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

EditTemplate

Syntax:
SI32 pdfEditTemplate(
 const PPDF* IPDF, // Instance pointer
 UI32 Index) // Array index of the template inside the page

This function prepares a template for editing. The parameter Index is the array index inside the page
that contains the template. To get the number of templates used by a page call the function
GetTemplCount().

The current graphics state is saved entirely before the template will be opened. This graphics state is
restored when the template is closed with EndTemplate(). That means, the current font, line width,
fill color and so on are all restored to its values before entering the template.

EndTemplate() requires an open page that must be opened with EditPage() beforehand. After the
changes are made the template must be closed with EndTemplate().

Function Reference Page 351 of 854

Remarks:

EditTemplate() is mostly used to extract text strings from imported PDF files because imported
pages are converted to templates by default. See GetPagetext() for an example application.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

EditTemplate2

Syntax:
SI32 pdfEditTemplate2(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Template handle

Templates can be edited multiple times in the same way as normal PDF pages. Therefore, the
function prepares the template for editing. The current graphics state is saved entirely before the
template will be opened and restored when the template will be closed with EndTemplate().The
current font, line width, fill color and so on are all restored to its values before entering the template.

The function depends not on an open page.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Ellipse

Syntax:
SI32 pdfEllipse(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the bounding rectangle
 double PosY, // Y-Coordinate of the bounding rectangle
 double Width, // Width of the bounding rectangle
 double Height, // Height of the bounding rectangle
 TPathFillMode FillMode) // Fill mode

The function draws an ellipse. If the coordinate system is bottom-up the point PosX, PosY defines
the lower left corner of the bounding rectangle. If the coordinate system is top-down it defines the
upper left corner.

The draw direction can be changed with the function SetDrawDirection().

An ellipse is a closed path that can be filled, stroked or both. It is also possible to draw an ellipse
invisible to apply the filling rules nonzero winding number or even-odd. The filling rules are
described under ClipPath(). The parameter FillMode is ignored if the ellipse is drawn inside a
clipping path. The fill modes are described under ClosePath().

Function Reference Page 352 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

EnableImageCache (Rendering engine)

Syntax:
LBOOL pdfEnableImageCache(
 const PPDF* IPDF, // Instance pointer
 UI32 MaxImageCount, // Maximum number of images to be cached
 UI32 Size) // Maximum cache size in bytes

The function creates an image cache that is used when rendering PDF pages. The maximum number
of images and the maximum cache size can be set independently of each other.

Caching can speed up rendering dramatically but caching can also slow down rendering if too
many images are in the cache. Therefore, the maximum number of images must be restricted. The
value should be between 256 and 1024 but not much higher.

The optimal cache size depends on the number of pages and whether the app is 32 or 64 bit. The
cache size can be large, e.g. up to 1 GB on 32 bit or 2 GB on 64 bit systems, if a document contains
only a few pages. Images are cached only if the system contains enough memory.

The size of the image cache should be around 30% of the entire cache size for rendered images. If the
full cache size is 1 GB, for example, then around 300 MB should be used for the image cache. Keep
all caches dynamic depending on the currently available memory.

The cache size is automatically reduced if the system has not sufficient memory.

The cache is always cleared when the PDF file in memory was closed or when FreePDF() was called.

In order to disable or delete the cache set MaxImageCount or Size to zero.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

EncryptPDF

Syntax:
SI32 pdfEncryptPDF(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File to encrypt
 const char* OpenPwd, // Open password (user password)
 const char* OwnerPwd, // Owner password
 TKeyLen KeyLen, // Key length for RC4 encryption
 TRestrictions Restrict) // Restrictions

This function encrypts a PDF file. The input file must be unencrypted or no open password must be
set and the property SetUseExactPwd() must be set to false. The file is recompressed during import;
this reduces the file size in most cases.

Function Reference Page 353 of 854

By using specific import flags (see SetImportFlags()), it is also possible to remove unwanted objects
from the PDF file, such as annotations, form fields, bookmarks and so on.

If the input file contains a compressed object structure, it will be converted back to a normal PDF
file.

The input PDF file will be replaced by the new one if no error occurred during import. If an error
occurred the file is left unchanged.

It is not possible to change the file except removing specific objects by using specific import flags.
However, the document info entries are changed to new values if they were set beforehand. See
SetDocInfo() for further information.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Unicode version is
supported by Windows NT systems only. The file path is converted back to Ansi if the Unicode
version is used under Linux or UNIX.

Return values:

If the function succeeds the return value is 0. If the function fails the return value is a negative error
code. The returned error code can be used to determine whether a password is required to open the
file. Pass the return value to the macro PDF_WRONG_PWD(). If the return value of the macro is
true, use the function ReEncryptPDF() instead.

Function Reference Page 354 of 854

EndContinueText (obsolete)

Syntax:
LBOOL pdfEndContinueText(
 const PPDF* IPDF) // Instance pointer

It is no longer required to finish a text block with this function. The function returns always true.

EndLayer

Syntax:
LBOOL pdfEndLayer(

const PPDF* IPDF) // Instance pointer

The function closes a layer that was opened by BeginLayer().

If the function succeeds the return value is 1. If the function fails the return value is 0.

EndPage

Syntax:
SI32 pdfEndPage(
 const PPDF* IPDF) // Instance pointer

This function closes an open page that was opened by Append() or EditPage().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

EndPattern

Syntax:
SI32 pdfEndPattern(
 const PPDF* IPDF) // Instance pointer

This function closes an open pattern that was opened by BeginPattern() or CreateStdPattern().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

EndTemplate

Syntax:
SI32 pdfEndTemplate(
 const PPDF* IPDF) // Instance pointer

This function closes an open template that was opened by BeginTemplate(), EditTemplate() or
EditTemplate2().

Function Reference Page 355 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

EnumDocFonts

Syntax:
SI32 pdfEnumDocFonts(

const PPDF* IPDF, // Instance pointer
const void* Data, // User defined pointer
TEnumFontProc2* EnumProc) // Callback function see below

typedef SI32 PDF_CALL TEnumFontProc2(
const void* Data, // User defined pointer
const void* PDFFont, // Pointer to font object for use with GetFont()
TFontType Type, // PDF Font type
const char* BaseFont, // Base font (PostScript or Family Name)
const char* FontName, // Font name taken from the font descriptor
LBOOL Embedded, // If true, the font is embedded
LBOOL IsFormFont, // It true, the font is reserved for form fields
UI32 Flags) // Various font properties

#define PDF_CALL __stdcall // Windows only, otherwise empty

typedef enum
{

ftMMType1 = 0, // Multiple Master
ftTrueType = 1, // TrueType font
ftType0 = 2, // CID font (multi-byte font)
ftType1 = 3, // Type1 font
ftType3 = 4 // Type3 font (kostructed with PDF objects

}TFontType;

The function enumerates all fonts used in the current PDF document. If the parameter EnumProc is
set to NULL the function returns the number of fonts used in the document. The callback function
provides the most important properties of the font as well as a pointer to the font object that can be
used to get further information about the font with GetFont(). The return value of the callback must
be 0, every other value breaks processing.

The parameters BaseFont and FontName represent the original values stored in the font object or font
descriptor. Both strings are provided because many PDF drivers set incorrect or different values to
the font name and base font.

However, font names returned by the callback function begin often with a prefix like “AOMDMK+”.
Such a prefix is used to mark a font as a subset. In general, the parameter BaseFont contains either
the family name or the postscript name of the font.

The real font name can be extracted with the function fntBuildFamilyNameAndStyle(). The function
inspects the font names and other variables of the font object and font descriptor to determine what
kind of name is provided and to extract the font style.

Function Reference Page 356 of 854

The parameter Flags provides further information about the font characteristics:

Bit Value Description
1 1 Fixed pitch.
2 2 Serif font.
3 4 Symbolic font.
4 8 Script. Glyphs resemble cursive handwriting.
6 32 Non-symbolic font. Either bit 3 or bit 6 is set at time.
7 64 Italic. Glyphs have dominant vertical strokes that are slanted.
19 262144 Force Bold. Indication for a bold font. (Ignore this flag for non Type1 fonts)

DynaPDF supports a special import flag to enable high performance access on the font objects of
PDF files. This makes it possible to enumerate the fonts of a large number of PDF files as fast as
possible.

The usage is as follows (C++):
...
pdfCreateNewPDF(pdf, NULL);
pdfSetImportFlags(pdf, ifEnumFonts); // Import font objects only
pdfOpenImportFile(pdf, "c:/test.pdf", ptOpen, NULL);
pdfImportPDFFile(pdf, 1, 1.0, 1.0);
// Now we can enumerate all PDF fonts
pdfEnumDocFonts(pdf, NULL, pdf_EnumDocFontProc);
// Only the font objects were imported. Delete the PDF file now.
pdfFreePDF(pdf);
...

The import flag ifEnumFonts causes that only font objects are imported. Anything else that can be
discarded is not imported. After the fonts were enumerated the PDF file must be deleted. Do not try
to write the file on disk, this would cause errors because certain required PDF objects are not
available. To speed up processing make sure that the PDF instance is not always deleted and newly
created when a PDF file is processed. This is especially important if a large number of PDF files
must be processed. One PDF instance can be used on an arbitrary number of PDF files; there is no
need to delete it every time a PDF file was processed.

Return values:

If the function succeeds the return value is number of fonts enumerated. If the parameter EnumProc
is set to NULL the function returns the number of used fonts in the document.

Function Reference Page 357 of 854

EnumHostFonts

Syntax:
SI32 pdfEnumHostFonts(
 const PPDF* IPDF, // Instance pointer
 const void* Data, // User defined pointer
 TEnumFontProc* EnumProc) // Callback function see below

typedef SI32 PDF_CALL TEnumFontProc(
 const void* Data, // User defined pointer
 const UI16* FamilyName, // Family name of the font (Unicode)
 const char* PostScriptName, // PostScript name of the font
 SI32 Style); // Font style (bold, italic, bold+italic)

#define PDF_CALL __stdcall // Windows only, otherwise empty

This function enumerates all fonts found in the search directories by passing the font names to a
callback function. If the parameter EnumProc is NULL the function returns the number of available
font files which are found in the search directories. This is may be not the number of font files which
are returned by the callback function!

Fewer fonts can be enumerated if the search directories contain invalid font files. However, it is also
possible that more fonts are enumerated as font files were found!

This can happen if TrueType Collection font files are stored in the search directories. Such fonts
contain more than one font in a font file, so that the number of fonts can be greater than the number
of font files. If the font names should be stored in an array you must make sure that memory can be
reallocated if the number of fonts exceeds the number of font files.

The font names passed to the callback function are null-terminated and sorted in ascending order by
PostScript name. Note that the family name is in Unicode format. The user defined pointer Data is
passed unchanged to the callback function. If this pointer is not required set it to NULL.

Enumeration stops immediately if the return value of the callback function is nonzero. This function
depends not on an open PDF file.

Remarks:

The function does not display error messages or warnings. The internal exception handling of
DynaPDF is not used by this function.

Return values:

If the function succeeds the return value is the number of available font files or zero if no font files
were found. If the function fails the return value is a negative error code. At time of publication
negative error codes are not returned.

Function Reference Page 358 of 854

Example (Delphi):
// In this example we have a combo box on the form that should be
// filled with the available fonts when the form is created.
// The font names passed to the callback function are already sorted in
// ascending order by PostScript name, so that we do not need to sort
// them again.

// Note that the font selection mode must be set to smPostScriptName
// if you want to use postscript names for font selection.
function EnumFontProc(const Data: Pointer; const FamilyName: PWideChar;
const PostScriptName: PAnsiChar; Style: TFStyle): Integer; stdcall;
var cb: TComboBox;
begin
 // Data holds the pointer of our combo box cbFonts.
 cb := Data;
 cb.AddItem(PostScriptName, nil);
 Result := 0; // Any other return value break enumeration!
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 // First, we create an instance of the class TPDF. This is our main
 // instance used until the form will be destroyed. cbFonts is the
 // combo box on our form that should be used for font selection.
 PDF := TPDF.Create;
 PDF.EnumHostHonts(cbFonts, @EnumFontProc);
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 PDF.Free;
end;

EnumHostFontsEx

Syntax:
SI32 pdfEnumHostFontsEx(

const PPDF* IPDF, // Instance pointer
const void* Data, // User defined pointer
TEnumFontProcEx* EnumProc) // Callback function see below

typedef SI32 PDF_CALL TEnumFontProcEx(

const void* Data, // User defined pointer
const UI16* FamilyName, // Family name
const char* PostScriptName, // PostScript name
SI32 Style, // Font Style
TFontBaseType BaseType, // Base font type
TEnumFontProcFlags Flags, // See below
const char* FilePath) // File path to font file

#define PDF_CALL __stdcall // Windows only, otherwise empty

Function Reference Page 359 of 854

typedef enum
{
 efpAnsiPath = 0, // Code page 1252 on Windows, UTF-8 otherwise
 efpUnicodePath = 1, // FilePath is in Unicode format (UTF-16).
 efpEmbeddable = 2, // The font has embedding rights.
 efpEditable = 4 // The font has editing rights (important for form
 // fields).
}TEnumFontProcFlags;

The function enumerates all fonts found in the search directories in the same way as
EnumHostFonts(). However, the callback function provides further information about the font such
as the font type, file path, and whether the font is embeddable or editable.

Form fields which can be edited, e.g. like text fields, require a font that is editable if the font will be
embedded. If a font has no editable rights then the fields read only flag should be set since a PDF
viewer application must replace the font if such a field would be edited. This can lead to unwanted
side effects and should be avoided. To avoid unnecessary issues, fonts with no editable rights
should not be embedded if used with form fields.

Note that the file path can be returned in Unicode or Ansi format. On Windows the string format
can be different for every font. The default string format on Windows is Unicode but the function
can also return Ansi strings, i.e. if further fonts were loaded with the Ansi version of
AddFontSearchPath().

On non-Windows operating systems the function returns always UTF-8 Unicode strings.

Remarks:

The function does not produce error messages or warnings. The internal exception handling of
DynaPDF is not used by this function.

Return values:

If the function succeeds the return value is the number of available font files or zero if no font files
were found. If the function fails the return value is a negative error code. At time of publication
negative error codes are not returned.

ExchangeBookmarks

Syntax:
LBOOL pdfExchangeBookmarks(
 const PPDF* IPDF, // Instance pointer
 SI32 Bmk1, // Handle of first bookmark
 SI32 Bmk2) // Handle of second bookmark

This function exchanges two bookmarks.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 360 of 854

ExchangePages

Syntax:
LBOOL pdfExchangePages(

const PPDF* IPDF, // Instance pointer
UI32 First, // First page number
UI32 Second) // Second page number

The function exchanges two pages. Page links, bookmarks, go-to actions, and named destinations
are changed so that the destination page still refers to the correct page. Note that page numbering
starts at 1. It is also possible to move a page to another position in the file (see MovePage() for
further information).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ExtractText

Syntax:
LBOOL pdfExtractText(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum, // Page number
 TTextExtractionFlags Flags, // See below
 struct TFltRect* Area, // Optional -> Get the text of this area
 UI16** Text, // Out (required)
 UI32* TextLen) // Out (required)

typedef enum
{

tefDefault = 0, // Create text lines in the original order.
tefSortTextX = 1, // Sort text records in x-direction.
tefSortTextY = 2, // Sort text records in y-direction.
tefSortTextXY = tefSortTextX | tefSortTextY,
tefDeleteOverlappingText = 4 // See description

}TTextExtractionFlags;

The function extracts the text of the page PageNum. The first page is denoted by 1.

Text lines can be sorted in x- and y-direction. The flag tefDeleteOverlappingText causes that identical
text records which are placed on the same position (with a tolerance of 2 units) will be deleted. The
records must occur one after the other in order to detect them.

The optional parameter Area can be set to restrict the text extraction to that rectangle. The rectangle
must be defined according to the current coordinate system. That means either in bottom up or top
down coordinates, see SetPageCoords() for further information. Note also that the function
considers the orientation of the page. The width and height of the rectangle must be exchanged if
the orientation is 90, -90, 270, or -270 degrees.

Function Reference Page 361 of 854

The function SetSpaceWidthFactor() can be used to adjust the space width factor that is used to
identify emulated space characters. This can be useful if too many or too few spaces occur in
extracted text.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FileAttachAnnot

Syntax:
SI32 pdfFileAttachAnnot(

const PPDF* IPDF, // Instance pointer
double PosX, // X-Coordinate for the annotation icon
double PosY, // Y-Coordinate for the annotation icon
TFileAttachIcon Icon, // Annotation icon
const char* Author, // Optional author
const char* Desc, // Optional description
const char* AFile, // File to be embedded (required)
LBOOL Compress) // If true, the embedded file will be compressed

typedef enum
{
 faiGraph,
 faiPaperClip,
 faiPushPin,
 faiTag
}TFileAttachIcon;

The function inserts a file attachment annotation on the current open page. If the coordinate system
is bottom-up the point PosX, PosY defines the lower left point of the annotation icon. If the
coordinate system is top-down it defines the upper left point. The width and height of the icon is not
changeable.

The embedded file is compressed if the parameter Compress is set to true. Otherwise it is left
uncompressed. It is not always useful to compress embedded files especially if the file is already
compressed, e.g. Zip files or already compressed image formats require no further compression. In
the worst case the compressed files becomes larger. However, text files and most document formats
should be compressed to reduce the file size.

File attachment annotations are supported since PDF 1.3 (Acrobat 4). File attachments are supported
since PDF 1.4 (Acrobat 5). The difference between both attachment types is that a file attachment
annotation is used as a comment that has usually a visible icon on a page, e.g. to provide additional
information about a specific object.

File attachments are used to add arbitrary files to the PDF file, e.g. job options, the original
document from which the file was created, or any other file (see also AttachFile()).

Function Reference Page 362 of 854

Note that Acrobat 7 or higher restricts access to executable files and compressed file formats such as
zip, or rar. If such files must be embedded then change the file extension, e.g. to .dat or .bin. The
user must then change the extension again when extracting the file.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Note that Unicode file
paths are not supported under Linux and UNIX. The file path is converted back to Ansi on these
operating systems before trying to open the file. This conversion can cause problems if the file name
contains special characters which are not convertible to Ansi.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

FileAttachAnnotEx

Syntax:
SI32 pdfFileAttachAnnotEx(

const PPDF* IPDF, // Instance pointer
double PosX, // X-Coordinate for the annotation icon
double PosY, // Y-Coordinate for the annotation icon

 TFileAttachIcon Icon, // Annotation icon
 const char* FileName, // File name including extension (required)
 const char* Author, // Optional author
 const char* Desc, // Optional description
 const void* Buffer, // File buffer (required)
 UI32 BufSize, // Buffer size in bytes (required)
 LBOOL Compress) // If true, the embedded file will be compressed

The function creates a file attachment annotation exactly in the same way as FileAttachAnnot() but
accepts a file buffer as input. See FileAttachAnnot() for further information. The parameter FileName
is required. It should contain the file name including extension, e.g. "MyImage.jpg".

Remarks:

The function is available in an Ansi and Unicode version.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 363 of 854

FileLink

Syntax:
SI32 pdfFileLink(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of bounding rectangle
 double PosY, // Y-Coordinate of bounding rectangle
 double Width, // Width of bounding rectangle
 double Height, // Height of bounding rectangle
 const char* AFilePath) // File path

The function creates a file link annotation. A file link annotation opens a file by using the application
that is connected with the file extension (MIME type). Viewer applications maybe display a warning
before the file is opened.

The file path can be defined as relative or absolute path. However, the usage of an absolute makes
only sense if it can be guaranteed that the path exist on an arbitrary system.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
bounding rectangle. If the coordinate system is top-down it defines the upper left corner.

The border of the link annotation is drawn by using the current line width, stroke color and line
dash pattern. If the link should appear without a border set the line width to zero beforehand.

When clicking on a link annotation the rectangle is highlighted, that is a simple visual effect. Several
highlight modes are supported, see SetLinkHighlightMode() for further information.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. On Windows operating
systems the path can be defined as Ansi or Unicode string depending on whether the Ansi or
Unicode version of the function was called.

Like all file paths, the path of the Ansi version must be an UTF-8 encoded Unicode string on non-
Windows operating systems.

The function does not check whether the path is valid.

Return values:

If the function succeeds the return value is a annotation handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 364 of 854

FindBookmark

Syntax:
SI32 pdfFindBookmark(
 const PPDF* IPDF, // Instance pointer
 SI32 DestPage, // Destination page used by the bookmark or -1
 const char* Title) // The title of the bookmark or a part of it

This function searches for a bookmark in the document outline tree. If the parameter DestPage is
greater zero the function returns the handle of the first bookmark that uses this page number as
destination page.

If DestPage is smaller 1 the function returns the handle of the first bookmark that contains the
substring Title in the bookmark title. The substring Title is compared non-case-sensitive.

The parameter Title can be NULL, the function searches for bookmarks with no title in this case. To
search for the next bookmark with the same search parameters call FindNextBookmark().

It is safe to delete a found bookmark with DeleteBookmark() and continue the search run with
FindNextBookmark().

Remarks:

This function is implemented in an Ansi and Unicode compatible variant. Bookmarks can be stored
in Unicode or Ansi string format. The function searches always by using both encodings, so that a
bookmark can also be found if the Ansi variant of FindBookmark() was used, but the bookmark was
stored in Unicode or vice versa.

Return values:

If a bookmark can be found the return value is the bookmark handle, a value greater or equal zero.
If no bookmark can be found the return value is -1. If an error occurred, the return value is a
negative error code.

FindEmbeddedFile

Syntax:
SI32 pdfFindEmbeddedFile(
 const PPDF* IPDF, // Instance pointer
 const char* Name) // Name of the embedded file

The function searches for the embedded file Name and returns the handle of it when it can be found.
The file can then be extracted with GetEmbeddedFile().

Return values:

If the function succeeds the return value is an embedded file handle, a value greater or equal zero. If
the file cannot be found the return value is -1.

Function Reference Page 365 of 854

FindField

Syntax:
SI32 pdfFindField(
 const PPDF* IPDF, // Instance pointer
 const char* Name) // Fully qualified field name

This function searches for an interactive form field by using the fully qualified field name. The fully
qualified field name is constructed from the partial field name of the field and all of its ancestors.
For a field with no parent group field, the partial and fully qualified names are the same. For a field
that is the child of another field, the fully qualified name is formed by appending the child field’s
partial name to the parent’s fully qualified name, separated by a period, e.g.
"Company.Employee.Name".

Remarks:

Field names are case-sensitive; the name must be specified exactly. This function is available in an
Ansi and Unicode compatible version. Both versions do not depend on the string format in which
the field name is defined, e.g. Unicode or Ansi string.

Return values:

If the function succeeds the return value is the field handle, a value greater or equal zero. If the
function fails the return value is a negative error code, a value smaller -1, or -1 if the field cannot be
found.

FindLinkAnnot

Syntax:
SI32 pdfFindLinkAnnot(
 const PPDF* IPDF, // Instance pointer
 const char* URL) // URL or file path

This function searches for a file link or web link annotation. The parameter URL must be the URL of
a web link annotation or the file path of a file link annotation, exactly defined in a case sensitive
manner.

Return values:

If the annotation can be found the return value is the annotation handle, a value greater or equal
zero. If the function fails the return value is a negative error code.

Function Reference Page 366 of 854

FindNextBookmark

Syntax:
SI32 pdfFindNextBookmark(
 const PPDF* IPDF) // Instance pointer

The function searches for the next bookmark with the same search parameters which were used by a
previous call of FindBookmark(). FindBookmark() must be called beforehand.

It is safe to delete a found bookmark with DeleteBookmark() and to continue the search run.

Return values:

If a bookmark can be found the return value is the bookmark handle, a value greater or equal zero.
If no bookmark can be found the return value is -1. This function cannot fail; other return values are
impossible.

FinishSignature

Syntax:
LBOOL pdfFinishSignature(

const PPDF* IPDF, // Instance pointer
const void* PKCS7Obj, // PKCS#7 object buffer
UI32 Length) // Length of the PKCS#7 object in bytes

The function writes the PKCS#7 signature object to the PDF file and writes finally the finish PDF file
to disk and frees all used resources if the file was not created in memory. If the file was created in
memory GetBuffer() can now be called to obtain the finish PDF buffer.

CloseAndSignFileExt() must be called prior this function can be called.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FlattenAnnotOrField

Syntax:
LBOOL pdfFlattenAnnotOrField(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Annotation index
 TAnnotFlattenFlags Flags) // See FlattenAnnots()

The function draws an annotation or form field on the current open page. Form fields are
annotations of type atWidget. The annotations of a page can be enumerated with GetPageAnnotEx()
/ GetPageAnnotCount().

The annotation or form field is deleted from the page's annotation array after it was flattened.

Function Reference Page 367 of 854

Remarks:

Annotations and form fields are stored in the same array but handled differently depending on the
function that is used to enumerate them. GetPageFieldEx() / GetPageFieldCount() use a pseudo
indexing scheme by skipping regular annotations between form fields (Widget Annotations).

In order to access a form field with GetPageField() or GetPageFieldEx(), the function must be
informed that an annotation index is passed to the function. This can be achieved by combining the
array index with the flag PDF_ANNOT_INDEX as follows (i represents the array index):

• C/C++: pdfGetPageFieldEx(pdf, i | PDF_ANNOT_INDEX, &f);

• VB 6: Call pdf.GetPageFieldEx(i Or PDF_ANNOT_INDEX, f)

• VB .Net: pdf.GetPageFieldEx(i Or CPDF.PDF_ANNOT_INDEX, f)

• C#: pdf.GetPageFieldEx(Convert.ToInt32(i | CPDF.PDF_ANNOT_INDEX), ref f);

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FlattenAnnots

Syntax:
SI32 pdfFlattenAnnots(

const PPDF* IPDF, // Instance pointer
TAnnotFlattenFlags Flags) // See below

typedef UI32 TAnnotFlattenFlags;
#define affNone 0x00000000 // Printable annotations
#define affUseViewState 0x00000001 // Visible annotations
#define affMarkupAnnots 0x00000002 // Markup annotations only
#define affNonPDFA_1 0x00000004 // Flatten annotations which are unsupported in PDF/A 1.
#define affNonPDFA_2 0x00000008 // Flatten annotations which are unsupported in PDF/A 2/3.
#define affNonPDFA_4e 0x00000080 // Flatten annotations which are unsupported in PDF/A 4e
#define affFormFields 0x00000010 // If set, form fields will be flattened too.
#define affUseFieldViewState 0x00000020 // Meaningful only if affFormFields is set. If set, flatten
 // the view state of form fields. Use the print state
 // otherwise.
#define affSigFields 0x00000040 // Meaningful only if affFormFields is not set. If set,
 // signed signature fields will be flattened.
#define affKeepLinkAnnots 0x00001000 // If set, link annotations will be kept.
#define affKeepFileAttach 0x00002000 // If set, file attachment annotations will be kept.
#define affKeepTextAnnots 0x00004000 // If set, text annotations will be kept.
#define affPreserveZOrder 0x00400000 // If set, preserve the z-order under any curcumstances.
 // That means visible overlapping annotations or form fields
 // will be flattened, regardless of the type.

#define affKeepEmptySigFields 0x00008000 // If set, signature fields which are not already signed
 // will be kept.

The function draws annotations and optionally form fields on the corresponding pages and deletes
the annotations when finish. The flatten flags can be combined. The flag affMarkupAnnots causes that
non-markup annotations will be left intact (all kinds of 3D, link, and sound annotations, for
example).

The function is able to create appearance streams for most annotation types but not all. Missing
appearance streams of 3D, Movie, RichMedia, Redact, PrinterMark, Projection, and Screen
annotations cannot be created on demand.

Function Reference Page 368 of 854

If form fields should be flattened too then it is usually best to flatten the print state (default) since
push puttons, for example, are usually excluded from printing.

Return values:

If the function succeeds the return value is the number of annotations which are still in memory. If
the function fails the return value is a negative error code.

FlattenForm

Syntax:
SI32 pdfFlattenForm(
 const PPDF* IPDF) // Instance pointer

The function draws all form fields on the corresponding pages and deletes the form fields, incl.
corresponding JavaScripts and JavaScript actions. The resulting PDF pages look after flattening as if
the form were printed.

Note that this function does not support XFA forms. If the form is a hybrid form, the PDF form
fields will be flattened. A maybe existing XFA form will be deleted but not flattened.

Fields, which are invisible for printing, due to an absent print flag, or if the hidden flag was set, are
excluded from flattening. These fields are deleted without drawing them on the page.

This function is especially useful if a large amount of Interactive Forms (which are already filled out
by the user) should be prepared for printing, or if the forms should be archived without allowing
further changes. Flattened forms require less disk space and can be printed faster.

Annotations and form fields can be flattened with FlattenAnnots(). This function preserves also the
z-order of annotations and form fields. This is not possible when flatting form fields and
annotations separetly.

Remarks:

Pure XFA Forms which are created by Adobe's Designer are not supported. Only hybrid forms can
be flatted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 369 of 854

FlushPageContent

Syntax:
SI32 pdfFlushPageContent(

const PPDF* IPDF, // Instance pointer
struct TPDFStack* Stack) // Operation stack

The function replaces the content stream of a page or template that was changed with the function
ReplacePageText() or ReplacePageTextEx() beforehand.

The function must be called after all changes are made. See GetPageText() for an example
application.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FlushPages

Syntax:
LBOOL pdfFlushPages(
 const PPDF* IPDF, // Instance pointer
 TFlushPageFlags Flags) // see below

typedef enum
{
 fpfDefault = 0, // Write anything to the file that is possible
 fpfImagesOnly = 1, // If set, only images are written to the PDF
 // file. All pages are still kept in memory and
 // can be modified with EditPage(). Flushed images
 // can still be referenced in other pages. The
 // image handles remain valid.
 fpfExclLastPage = 2 // If set, the last page is not flushed
}TFlushPageFlags;

The function writes the pages in memory to the PDF file. The function can be called every time a
new page was created or whenever the pages in memory are no longer required.

Calling the function on a memory based PDF file is not meaningful. The output file must already be
open before the function can be called. If no output file was set in CreateNewPDF() then open the
output file with OpenOutputFile() or OpenOutputFileEncrypted() beforehand. The latter one can be
used to create an encrypted PDF file.

Flushed pages can no longer be accessed with EditPage() but it is of course possible to add further
pages to the file.

By default, the function writes the content streams of all pages and referenced templates, patterns,
and images to the output file. The content streams of these objects will be released but the objects
remain in memory. So, all handles remain valid and it is still possible to use already flushed objects
in subsequent pages. For example, a flushed image or template can still be inserted in other pages
with PlaceImage() or PlaceTemplate() because the content streams or image buffers are not required
for this action.

Function Reference Page 370 of 854

The flag fpfImagesOnly can be used to flush the images in memory only. This can be useful if
further objects must be added to the pages in memory or if a large image was inserted.

It is allowed to call the function within an open page. In this case the function does not flush the
content stream of the current open page but anything else depending on the used flags.

Calling a function like DeletePage(), DeleteField() or any other function that deletes a flushed object
results in a damaged PDF file.

Remarks:

PDF/A 4 output requires a cleanup run when closing the file. Links to color space resources must
might be changed in this run. This is only possible if parts of the document have not already been
written to the output file. Therefore, this function cannot be used for PDF/A 4 files.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FlushPagesEx

Syntax:
LBOOL pdfFlushPagesEx(
 const PPDF* IPDF, // Instance pointer
 TFlushPageFlags Flags, // Various flags
 UI32 LastPage) // Last page that should be flushed or -1

The function writes the pages in memory to the PDF file exactly like FlushPages(). The only
difference is that the last page can be specified. The function calls FlushPages() if LastPage is
smaller 1.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FreeImageBuffer

Syntax:
void pdfFreeImageBuffer(

const PPDF* IPDF) // Instance pointer

The function frees the buffer of a memory image that was created with the function CreateImage().

Function Reference Page 371 of 854

FreeImageObj

Syntax:
LBOOL pdfFreeImageObj(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Image handle

The function releases memory that was allocated by GetImageObj() to decompress the image.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FreeImageObjEx

Syntax:
LBOOL pdfFreeImageObjEx(
 const PPDF* IPDF, // Instance pointer
 const void* ImagePtr) // Image pointer

The function releases memory that was allocated by GetImageObjEx() to decompress the image.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

FreePDF

Syntax:
SI32 pdfFreePDF(

const PPDF* IPDF) // Instance pointer

The function frees all used resources with exception of the font and external CMap cache. The font
and external CMap caches will be only freed when unloading the DLL or deleting the current PDF
instance to improve processing speed. However, the font cache can be also be freed manually with
the function ClearHostFonts().

There is normally no need to free the used resources by DynaPDF manually except for memory PDF
files. When creating PDF files in memory the internal resources are not freed automatically after
CloseFile() or CloseFileEx() was called. After the PDF buffer was retrieved by GetBuffer() call
FreePDF() to free all internal used resources.

FreePDF() can be safely called at any time so that a PDF file can be deleted if necessary.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0. This function
can normally not fail; a return value of zero indicates that an unknown fatal error occurred.

Function Reference Page 372 of 854

FreeTextAnnot

Syntax:
SI32 pdfFreeTextAnnot(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the bounding rectangle
 double PosY, // Y-Coordinate of the bounding rectangle
 double Width, // Width of the bounding rectangle
 double Height, // Height of the bounding rectangle
 const char* Author, // Author of the annotation (can be NULL)
 const char* AText, // The visible text of the annotation
 TTextAlign Align) // The text alignment see below

typedef enum
{
 taLeft,
 taCenter,
 taRight,
 taJustify
}TTextAlign;

This function creates a Free Text annotation. The text of a Free Text annotation appears directly on
screen such as normal text of a page. However, Free Text annotations are used to add comments.
Comments can be excluded from printing if necessary (see SetAnnotFlags() for further information)
and the contents of a Free Text annotation can be edited in Adobe's Acrobat.

The text of the annotation is printed into the bounding box by applying a formatting algorithm so
that the text appears left aligned, right aligned, centered, or justified. Justified text is not directly
supported by Adobe's Acrobat. However, the annotation appears correctly on screen but the
alignment is set to left aligned text if the text will be changed in Acrobat.

The border of the annotation is drawn by using the current line width, stroke color and line dash
pattern. If the annotation should appear without a border set the line width to zero beforehand.

The border appears completely inside the bounding box of the annotation. This must be considered
because normal vector graphics such as rectangles, ellipses and so on are measured without the line
width. For instance, the real width of a rectangle is the width plus the line width.

A Free Text annotation requires a font. If no font is set beforehand Helvetica is used.

Text positioning issues:

Acrobat 7 or higher use a very unusual way to place text into a Free Text annotation. While the
baseline of text is very well defined in practically all typographics systems, Acrobat uses a dynamic
position depending on the height of the largest character in the first line. The baseline is placed at
the annotation's height - border width - cap height as long as the first line contains no character with
an accent (e.g. Ä, Ö, Ü, À, È, Ê, Ñ). Because the cap height is not large enough for accented
characters Acrobat adjusts the position of the first line if necessary. So, the text position depends on
the contents of the first text line.

Function Reference Page 373 of 854

DynaPDF places the text at the annotation's height - border width - font size. This is makes it
possible to change the text of a Free Text annotation without changing its position. However, if the
annotation will be edited with Adobe's Acrobat the text position will slightly change. If the text
position is important then it is mostly better to use text fields instead (see CreateTextField()).

Remarks:

This function is implemented in an Ansi and Unicode compatible variant.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

FreeUniBuf

Syntax:
SI32 pdfFreeUniBuf(
 const PPDF* IPDF) // Instance pointer

The function frees the internal buffer used by Unicode conversion functions such as
ConvToUnicode(), ToUTF16() and so on. The conversion is automatically freed by all conversion
functions before a new buffer is allocated. However, the buffer can be freed manually to reduce
memory usage.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0. This function
can normally not fail; a return value of 0 indicates that an unknown fatal error occurred.

Get3DAnnotStream

Syntax:
LBOOL pdfGet3DAnnotStream(
 const PPDF* IPDF, // Instance pointer
 UI32 Annot, // 3D annotation handle
 BYTE** Data, // Pointer to PRC or U3D file buffer
 UI32* Size, // Data size in bytes
 char** SubType) // U3D or PRC

The function retrieves the data stream of a 3D annotation. At time of publication, PDF supports U3D
and PRC files. Check the value of the string SubType to determine the file type. The default format is
U3D. SubType can be NULL in this case. For PRC files, SubType is required to be present.

The function returns pointers of the original values. Do not free or change the values.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 374 of 854

GetActionCount

Syntax:
SI32 pdfGetActionCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of actions contained in a document. However, this value does not
include actions (mostly GoTo actions) which are defined inline in bookmarks or link annotations, for
example. Such actions are not stored in separate objects since this would slow down PDF processing
significantly.

GetActionHandle

Syntax:
SI32 pdfGetActionHandle(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // Object type which contains uses the action
 UI32 ObjHandle, // Object handle
 UI32 ActIndex) // Array index -> GetObjActionCount()

The function returns the handle of an action. To determine the number of available actions of a
specific object call GetObjActionCount(). Since the Catalog object contains no handle, the parameter
ObjHandle will be ignored for this object type.

Return values:

If the function succeeds the return value is the action handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

GetActionType

Syntax:
SI32 pdfGetActionType(
 const PPDF* IPDF, // Instance pointer
 UI32 ActHandle) // Action handle

typedef enum
{
 atGoTo, // Go-to action
 atGoToR, // Go-to remote action
 atHide, // Hide action
 atImportData, // Import data action
 atJavaScript, // JavaScript action
 atLaunch, // Launch action
 atMovie, // Movie action
 atNamed, // Named action
 atRendition, // Rendition action
 atReset, // Reset form action
 atSetOCGState, // Set OCG (optional content group) action
 atSound, // Sound action
 atSubmit, // Submit form action
 atThread, // Thread action
 atTransition, // Transition action
 atURI // URI action

Function Reference Page 375 of 854

 atGoTo3DView, // Go-to 3D view action
atGoToE, // Go-to embedded file action

 atRichMediaExec // Rich Media Execution, PDF 1.7 Extension Level 3
}TActionType;

The function returns the type of an annotation. The parameter ActHandle must be a valid action
handle. To determine the used action types of a specific object use GetActionTypeEx() instead.

Return values:

If the function succeeds the return value is the type of the annotation (make a type cast to
TActionType to determine the action type). If the function fails the return value is a negative error
code.

GetActionTypeEx

Syntax:
SI32 pdfGetActionTypeEx(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // Object type
 UI32 ObjHandle, // Object handle
 UI32 ActIndex) // Action index

typedef enum
{
 otAction,
 otAnnotation,
 otBookmark,
 otCatalog,
 otField,
 otPage,
 otPageLink
}TObjType;

The function returns the action type of an action used by a specific PDF object. The parameter
ObjType specifies the type of object that identifies the parameter ObjHandle. If the object type is a
page use the page number as handle.

The parameter ActIndex is an index into the objects action array. Use the function
GetObjActionCount() to get the number of actions used by the object. This number can be used in a
for statement to loop over the object actions. See DeleteActionFormObj() for an example application.

Return values:

If the function succeeds the return value is the type of the annotation (make a type cast to
TActionType to determine the action type). If the function fails the return value is a negative error
code.

Function Reference Page 376 of 854

GetActiveFont

Syntax:
SI32 pdfGetActiveFont(
 const PPDF* IPDF) // Instance pointer

The function returns the handle of the active font or -1 if no font is set.

GetAllocBy

Syntax:
SI32 pdfGetAllocBy(
 const PPDF* IPDF) // Instance pointer

The function returns the pre-allocated buffer size of page content streams in bytes. Memory
allocation is slow, especially re-allocation of memory by using realloc(). Because of this all content
streams are buffered by DynaPDF to avoid too much memory allocation calls. The property AllocBy
defines the size of memory that is allocated each time when more memory must be allocated.

The processing speed depends heavily on memory allocation. The default size of pre-allocated
memory for content streams is 16 KB. It can be set to a larger or smaller value if necessary to
improve processing speed.

However, if too much memory is allocated at runtime, processing speed will be slower and an out of
memory exception can occur. If the size is too small, processing speed is slower too because of the
many memory allocation calls. In most cases, it is not required to change the property AllocBy.

GetAnnot (obsolete)

Syntax:
SI32 pdfGetAnnot(
 const PPDF* IPDF) // Instance pointer
 UI32 Handle, // Annotation handle
 struct TPDFAnnotation ADDR Annot) // see below

struct TPDFAnnotation
{
 TAnnotType Type; // Annotation type
 LBOOL Deleted; // Is this annotation marked as deleted?
 struct TPDFRect BBox; // Bounding box in bottom-up coordinates
 double BorderWidth; // Border width -> see comment below
 UI32 BorderColor; // Border color -> see comment below
 TBorderStyle BorderStyle; // Border style
 UI32 BackColor; // Background color -> see comment below
 UI32 Handle; // Annotation handle
 char* AuthorA; // Annotation's author, Ansi format
 UI16* AuthorW; // Annotation's author, Unicode format
 char* ContentA; // Annotation's contents, Ansi format
 UI16* ContentW; // Annotation's contents, Unicode format
 char* NameA; // Annotation's name, Ansi format
 UI16* NameW; // Annotation's name, Unicode format
 char* SubjectA; // Annotation's subject, Ansi format
 UI16* SubjectW; // Annotation's subject, Unicode format
 UI32 PageNum; // Page on which the annotation appears

Function Reference Page 377 of 854

 THighlightMode HighlightMode; // Visual effect
};

This function retrieves the most important properties of an annotation. This function is marked as
obsolete and should no longer be used. Please use GetAnnotEx() if possible.

All strings are pointers to the original string buffers or NULL if not set. The application must not
change or free these values. Only one string can be set at time, either the Ansi string or Unicode
string but not both. String values are always null-terminated.

Return values:

If the function succeeds the return value is 1 and the parameter Annot is filled with values. If the
function fails the return value is 0 and the parameter Annot is left unchanged.

GetAnnotBBox

Syntax:
SI32 pdfGetAnnotBBox(
 const PPDF* IPDF) // Instance pointer
 UI32 Handle, // Annotation handle
 struct TPDFRect ADDR BBox) // see below

struct TPDFRect
{
 double Left; // Lower x-coordinate
 double Bottom; // Lower y-coordinate
 double Right; // Upper x-coordinate
 double Top; // Upper y-coordinate
};

This function retrieves the bounding box of an annotation measured in bottom-up coordinates. A
bounding box is defined as rectangle giving the coordinates of a pair of diagonally opposite corners.

Remarks:

It is possible to change the bounding box of an annotation with the function ChangeAnnotPos().

Return values:

If the function succeeds the return value is 1 and the parameter BBox is filled with values. If the
function fails the return value is 0 and the parameter BBox is left unchanged.

GetAnnotCount

Syntax:
SI32 pdfGetAnnotCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of annotations currently used in the document. Note: This value
includes also annotations which were deleted by DeleteAnnotation() because annotations are not
physically deleted at runtime. This value can be used to loop over all annotations. Annotation
handles are simple array indexes.

Function Reference Page 378 of 854

GetAnnotEx

Syntax:
LBOOL pdfGetAnnotEx(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
struct TPDFAnnotationEx ADDR Annot) // Structure to be filled

struct TPDFAnnotationEx
{

TAnnotType Type;
LBOOL Deleted; // Marked as deleted?
struct TPDFRect BBox; // Bounding box in bottom-up coordinates
float BorderWidth;
UI32 BorderColor;
TBorderStyle BorderStyle;
UI32 BackColor;
UI32 Handle;
char* AuthorA;
UI16* AuthorW;
char* ContentA;
UI16* ContentW;
char* NameA;
UI16* NameW;
char* SubjectA;
UI16* SubjectW;
UI32 PageNum;
THighlightMode HighlightMode;
// Page link annotations only
SI32 DestPage;
struct TPDFRect DestPos;
TDestType DestType;
char* DestFile; // File link or web link annotations
// The Icon type depends on the annotation type. If the annotation type
// is atText the Icon is of type TAnnotIcon. If the annotation type is
// atFileAttach then it is of type TFileAttachIcon. If the annotation
// type is atStamp the Icon is the stamp type (TRubberStamp).
// For any other annotation type this value is not set (-1).
SI32 Icon;
char* StampName; // Set only, if Icon == rsUserDefined
UI32 AnnotFlags; // See TAnnotFlags for available flags
char* CreateDate; // Optional Creation Date
char* ModDate; // Optional Modification Date
// Grouped is meaningful only if Parent != -1 and Type != atPopUp. If
// true, the annotation is part of an annotation group. Properties like
// Content, CreateDate, ModDate, BackColor, Subject, and Open must be
// taken from the parent annotation.
LBOOL Grouped;
LBOOL Open; // If the annotation has a PopUp annotation.

// The Parent annotation handle is set if the annotation is a PopUp
// Annotation or if this annotation represents a state of a base
// annotation. In this case, the annotation type is always atText and
// only the following members should be considered:
// State -> The current state
// StateModel -> Marked, Review, and so on
// CreateDate -> Creation Date
// ModDate -> Modification Date
// Author -> The user who has set the state
// Content -> Not displayed in Adobe's Acrobat...
// Subject -> Not displayed in Adobe's Acrobat...
// The PopUp annotation of a text annotation which represent an
// Annotation State must be ignored.
SI32 Parent;
SI32 PopUp; // Handle of the PopUp annotation if any

Function Reference Page 379 of 854

char* State; // The state of the annotation
char* StateModel; // State model (Marked, Review, ...)
// FileAttach annotations only. This is a handle of an embedded file.
// The embedded file can be accessed with GetEmbeddedFile().
SI32 EmbeddedFile;
char* Subtype; // Set only, if Type == atUnknown
LBOOL MarkupAnnot; // If true, the annotation is a markup
 // annotation. Markup annotations can be
 // flattened separately (FlattenAnnots()).
float Opacity; // Opacity = 1.0 = Opaque,
 // Opacity < 1.0 = Transparent, Markup
 // annotations only

 float* QuadPoints; // Highlight, Link, and Redact annotations only
 UI32 QuadPointsCount; // Number of values in the array. Since a quadpoint requires
 // always four coordinate pairs, the number of QuadPoints is
 // QuadPointsCount divided by 8.

 float* DashPattern; // If BorderStyle == bsDashed
 UI32 DashPatternCount;// Number of values in the array

 char* Intent; // Markup annotations only. The intent allows to distinguish
 // between different uses of an annotation. For example, line
 // annotations have two intents: LineArrow and LineDimension.

 TLineEndStyle LE1; // Style of the start point -> Line and PolyLine annotations
only
 TLineEndStyle LE2; // Style of the end point -> Line and PolyLine annotations only

 float* Vertices; // Line, PolyLine, and Polygon annotations only
 UI32 VerticesCount; // Number of values in the array. This is the raw number of
 // floating point values. Since a vertice requires always two
 // coordinate pairs, the number of vertices or points is
 // VerticeCount divided by 2.

 // Line annotations only. These properties should only be considered if the member Intent is set
 // to the string "LineDimension".
 LBOOL Caption; // If true, the annotation string Content is used as caption.
 // The string is shown in a PopUp annotation otherwise.
 float CaptionOffsetX; // Horizontal offset of the caption from its normal position
 float CaptionOffsetY; // Vertical offset of the caption from its normal position
 TLineCaptionPos CaptionPos; // The position where the caption should be drawn if present
 float LeaderLineLen; // Length of the leader lines (positive or negative)
 float LeaderLineExtend;// Optional leader line extend beyond the leader line
 float LeaderLineOffset;// Amount of space between the endpoints of the annotation and
 // the leader lines.

 TBorderEffect BorderEffect; // Circle, Square, FreeText, and Polygon annotations.
char* RichStyle; // Optional default style string. -> FreeText annotations.

 char* RichText; // Optional rich text string (RC key). -> Markup annotations.
 const ILST** InkList; // Ink annotations only. Array of array. The sub arrays can be
 // accessed with GetInkList().
 UI32 InkListCount; // Number of ink arrays.
 SI32 OC; // Handle of an OCG or OCMD or -1 if not set. See description.
};

The function returns the most important properties of an annotation. The parameter Handle must be
a valid annotation handle. All string values are pointers to the original string buffer. You must not
modify or free such a string. Reserved fields must be initialized with NULL.

The function returns also deleted annotations because DeleteAnnotation() does not physically delete
annotations.

Function Reference Page 380 of 854

The members QuadPoints and Vertices contain the raw floating point values which are stored in the
annotation. The corresponding values QuadPointCount and VerticesCount contain the number of
floating point values and not the number of vertices or quad points which are stored in the arrays.

Note that the number of values can be odd if an imported annotation contains errors.

Optional Content

Annotations can be part of an Optional Content Group (OCG) or Optional Content Membership
Dictionary (OCMD). If OC is greater -1 an OCG or OCMD handle was set. To determine whether an
OCG handle was set, check whether the value is smaller 0x40000000:
bool IsOCG(SI32 Handle)
{
 return (Handle > -1 && Handle < 0x40000000);
}

Migration states

The migration state of a base annotation is stored in text annotations. The base annotation can be an
arbitrary markup annotation, incl. text annotations. A text annotation represents a migration state if
Parent > -1, if Group is false, and if State and StateModel are non-null.

The migration states of a base annotation are usually stored as single linked list. That means the last
state is a just reply of the previous state and so on. The base annotation is the one that has no parent
and this annotation must be a markup annotation.

Return values:

If the function succeeds the return value is 1 and the parameter Annot is filled with values. If the
function fails the return value is 0 and the parameter Annot is left unchanged.

Function Reference Page 381 of 854

GetAnnotFlags

Syntax:
SI32 pdfGetAnnotFlags(
 const PPDF* IPDF) // Instance pointer

typedef UI32 TAnnotFlags;
#define afNone 0x00000000 // No flags are set
#define afInvisible 0x00000001 // see below
#define afHidden 0x00000002 // see below
#define afPrint 0x00000004 // Annotation is printable
#define afNoZoom 0x00000008 // Do not zoom the annotation
#define afNoRotate 0x00000010 // Do not rotate the annotation
#define afNoView 0x00000020 // see below
#define afReadOnly 0x00000040 // Changes are not allowed

The function returns the default flags used for newly created annotations. The return value is a bit
mask; the flags must be mask out with the bitwise and operator.

The flags are described in detail on the next page.

Flag Description

afNone No flags are set.

afInvisible If set, do not display the annotation if it does not belong to one of the
standard annotation types and no annotation handler is available.

afHidden (PDF 1.2) If set, do not display or print the annotation or allow it to
interact with the user, regardless of its annotation type or whether an
annotation handler is available.

afPrint (PDF 1.2) If set, print the annotation when the page is printed. If clear,
never print the annotation, regardless of whether it is displayed on the
screen. This can be useful, for example, for annotations representing
interactive pushbuttons, which would serve no meaningful purpose on
the printed page.

afNoZoom (PDF 1.3) If set, do not scale the annotation’s appearance to match the
magnification of the page. The location of the annotation on the page
(defined by the upper-left corner of its annotation rectangle) remains
fixed, regardless of the page magnification.

afNoRotate (PDF 1.3) If set, do not rotate the annotation’s appearance to match the
rotation of the page. The upper-left corner of the annotation rectangle
remains in a fixed location on the page, regardless of the page rotation.

Function Reference Page 382 of 854

Flag Description

afNoView (PDF 1.3) If set, do not display the annotation on the screen or allow it to
interact with the user. The annotation may be printed (depending on the
setting of the afPrint flag), but should be considered hidden for purposes
of on-screen display and user interaction.

afReadOnly (PDF 1.3) If set, do not allow the annotation to interact with the user. The
annotation may be displayed or printed (depending on the settings of the
afNoView and afPrint flags), but should not respond to mouse clicks or
change its appearance in response to mouse motions.

GetAnnotLink

Syntax:
char* pdfGetAnnotLink(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Annotation handle

This function returns the URL or file path of a file link annotation. The parameter AHandle must be a
valid handle of a file link, page link, or web link annotation. The return value is a pointer to the
original string value. The string must not be changed or freed within your application.

Remarks:

Imported file link or web link annotations are mostly defined as page link annotation because it is
impossible to distinguish between these types during import. Use the function FindLinkAnnot() if
you need to change an imported file link or web link annotation.

Return values:

If the function succeeds the return value is a pointer to the original string value. If the function fails
the return value is NULL.

Function Reference Page 383 of 854

GetAnnotType

Syntax:
SI32 pdfGetAnnotType(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Annotation handle

typedef enum
{

atCaret, // Caret annotation
atCircle, // Circle annotation
atFileLink, // A Link annotation with an associated GoToR action

 atFreeText,
 atHighlight, // Highlight annotation
 atInk,
 atLine,
 atPageLink, // A Link annotation with an associated GoTo action
 atPolygon,
 atPolyLine,
 atPopUp,
 atSquare,
 atSquiggly, // Highlight annotation
 atStamp,
 atStrikeOut, // Highlight annotation
 atText, // Also used as container to store the State Model
 atUnderline, // Highlight annotation
 atWebLink, // A Link annotation with an associated URI action
 atWidget, // Form Fields are handled separately
 at3D, // PDF 1.6
 atSoundAnnot, // PDF 1.2
 atFileAttach, // PDF 1.3
 atRedact, // PDF 1.7
 atWatermark, // PDF 1.6
 atUnknown, // Unknown annotation type
 atMovieAnnot, // PDF 1.2
 atPrinterMark, // PDF 1.4
 atProjection, // PDF 1.7 Extension Level 3
 atRichMedia, // PDF 1.7 Extension Level 3
 atScreen, // PDF 1.5
 atTrapNet // PDF 1.3
}TAnnotType;

The function returns the type of a specific annotation. The parameter Handle must be a valid
annotation handle. If the function succeeds the return value is the annotation type (make a type cast
to TAnnotType to determine the annotation type). If the function fails the return value is a negative
error code.

Function Reference Page 384 of 854

GetAscent

Syntax:
double pdfGetAscent(
 const PPDF* IPDF) // Instance pointer

The function returns the ascender of the active font. The ascender is a typographic value that
specifies the maximum extent to which characters rise above the baseline.

If no font is set the return value is a negative error code.

GetBarcodeDict

Syntax:
LBOOL pdfGetBarcodeDict(
 const PPDF* IBarcode, // Pointer of a barcode dictionary
 struct TPDFBarcode* Barcode) // see below

struct TPDFBarcode
{
 UI32 StructSize; // Must be set to sizeof(TPDFBarcode)
 const char* CaptionA; // Optional
 const UI16* CaptionW; // Optional

float ECC; // 0..8 for PDF417, or 0..3 for QRCode
 float Height; // Height in inches
 float nCodeWordCol; // Number of codewords per barcode coloumn
 float nCodeWordRow; // Codewords per barcode row (PDF417)
 UI32 Resolution; // Resolution
 const char* Symbology; // PDF417, QRCode, or DataMatrix.
 float Version; // Version
 float Width; // Width in inches
 float XSymHeight; // Only needed for PDF417. The vertical
 // distance between two barcode modules,
 // measured in pixels. The ratio XSymHeight /
 // XSymWidth shall be an integer value. For
 // PDF417, the acceptable ratio range is from
 // 1 to 4. For QRCode and DataMatrix, this
 // ratio shall always be 1.
 float XSymWidth; // The horizontal distance, in pixels,
 // between two barcode modules.
};

The function returns the properties of a barcode field. The member StructSize must be initialized to
sizeof(TPDFBarcode) before the function can be called. The structure size is used to identify
different versions of the structure. The value of the barcode is stored in the corresponding text field.

Return values:

If the function succeeds the return value is 1 and the structure is filled with values. If the function
fails the return value is zero. Check whether the member StructSize was properly initialized in the
latter case.

Function Reference Page 385 of 854

GetBBox

Syntax:
LBOOL pdfGetBBox(
 const PPDF* IPDF, // Instance pointer
 TPageBoundary Boundary, // see below
 struct TPDFRect ADDR BBox) // Bounding box

typedef enum
{

pbArtBox, // Art box
 pbBleedBox, // Bleed box
 pbCropBox, // Crop box
 pbTrimBox, // Trim box
 pbMediaBox // Media box
}TPageBoundary;

struct TPDFRect
{
 double Left;
 double Bottom;
 double Right;
 double Top;
};

The function returns a bounding box of a PDF page. A PDF page may be prepared either for a
finished medium, such as a sheet of paper, or as part of a prepress process in which the content of
the page is placed on an intermediate medium, such as film or an imposed reproduction plate.

In the latter case, it is important to distinguish between the intermediate page and the finished page.
The intermediate page may often include additional production-related content, such as bleeds or
printer marks that falls outside the boundaries of the finished page. To handle such cases, a PDF
page can define as many as five separate boundaries to control various aspects of the imaging
process.

The function requires an open page because each page can use its own boundaries.

Return values:

If the function succeeds the return value is 1 and the structure BBox is filled with values. If the
function fails the return value is 0.

Function Reference Page 386 of 854

Bounding boxes:

The media box represents the coordinate system or physical extend of a page. The crop box crops
the media box and all other boxes. No box can be larger than the media box.

The media box represents the page format if no crop box is set, the crop box otherwise. All boxes are
measured in PDF units and one PDF unit is 1/72 inch.

GetBidiMode

Syntax:
SI32 pdfGetBidiMode(

const PPDF* IPDF) // Instance pointer

typedef enum
{

bmLeftToRight = 0, // Apply the bidi algorithm in Left to Right layout
bmRightToLeft = 1, // Apply the bidi algorithm in Right to Left layout
bmNone = 2 // Default -> do not apply the bidi algorithm

}TPDFBidiMode;

The function returns the current bidirectional mode. The possible return values are defined in the
enum TPDFBidiMode. See also SetBidiMode().

Media Box

Bleed Box Headline

Trim Box

4

3
2 1

Art Box

Crop Box

Function Reference Page 387 of 854

GetBookmark (obsolete)

Syntax:
LBOOL pdfGetBookmark(
 const PPDF* IPDF, // Instance pointer
 SI32 AHandle, // Bookmark handle
 struct TBookmark ADDR Bmk) // see below

struct TBookmark
{

UI32 Color; // Bookmark color (PDF 1.4)
 SI32 DestPage; // Destination page
 struct TPDFRect DestPos; // Destination position
 TDestType DestType; // Destination type (see SetBookmarkDest())
 LBOOL Open; // True if the bookmark appears open
 SI32 Parent; // Parent bookmark if any or -1
 TBmkStyle Style; // Text style, see below (PDF 1.4)
 const void* Title; // Pointer to text string
 UI32 TitleLen; // Title length in characters
 LBOOL Unicode; // If true, Title is a pointer to UI16*
};

typedef enum
{
 bmsNormal = 0,
 bmsItalic = 1,
 bmsBold = 2
}TBmkStyle;

This function returns the properties of a bookmark. This function is marked as obsolete. Please use
GetBookmarkEx() if possible.

GetBookmarkEx

Syntax:
LBOOL pdfGetBookmarkEx(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle, // Bookmark handle
 struct TPDFBookmark* Bmk) // Structure to be filled

struct TPDFBookmark
{
 UI32 StructSize; // Must be set to sizeof(TPDFBookmark)
 SI32 Action; // Action handle or -1 if not set.
 UI32 Color; // Optional text color. Black is the default value (0).
 SI32 DestPage; // Destination page.
 struct TPDFRect DestPos; // Destination position.
 TDestType DestType; // Destination type.
 const char* NamedDestA; // If set, DestPage, DestPos, and DestType were already taken from
 // the destination if it was found in the file.
 const UI16* NamedDestW; // Either the Unicode or Ansi string is set but never both.
 LBOOL Open; // If true, child nodes should be visible.
 SI32 Parent; // The immediate parent node or -1 for a root node.
 const void* StructElem; // Bookmarks can contain a reference to a structure element. There
 // is no API to access structure elements yet.
 TBmkStyle Style; // The font style that should be used to render this node.
 const char* TitleA; // The bookmark title.
 const UI16* TitleW; // Either the Unicode or Ansi string is set but never both.
 UI32 TitleLen; // String length in characters.
};

Function Reference Page 388 of 854

This function returns the properties of a bookmark. The parameter Bmk is required it must not be
NULL. The member Style is a bitmask, maybe more than one constant is set at time, i.e. bmsBold and
bmsItalic. The destination types are described in detail at SetBookmarkDest().

Return values:

If the function succeeds the return value is 1 and the structure Bmk is filled with values. If the
function fails the return value is 0.

GetBookmarkCount

Syntax:
SI32 pdfGetBookmarkCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of bookmarks defined in the document.

GetBorderStyle

Syntax:
SI32 pdfGetBorderStyle(
 const PPDF* IPDF) // Instance pointer
typedef enum
{

bsSolid = 0, // Solid border
 bsBevelled = 1, // Bevelled border
 bsInset = 2, // Inset border
 bsUnderline = 3, // Underline only
 bsDashed = 4, // Dashed border
 bsUserDefined = 5 // Internal, cannot occur
}TBorderStyle;

The function returns the global border style which is used for newly created Interactive Form fields.
To determine the style of a specific field use the function GetFieldBorderStyle().

GetBuffer

Syntax:
char* pdfGetBuffer(
 const PPDF* IPDF, // Instance pointer
 UI32 ADDR BufSize) // Buffer length in bytes

The function returns a pointer to the buffer of a memory based PDF file. A memory based PDF file
will be created if the parameter OutFile of the function CreateNewPDF() is an empty string or set to
NULL.

The parameter BufSize is set to the size of the buffer in bytes. The returned pointer is a pointer to the
original buffer; it must not be freed or changed. When the buffer is not longer needed call FreePDF()
to release the PDF file.

Function Reference Page 389 of 854

GetCapHeight

Synatax:
double pdfGetCapHeight(
 const PPDF* IPDF) // Instance pointer

The function returns the cap height of the active font. The cap height is a typographic value that
specifies the maximum height of a character in the active font without serifs.

GetCharacterSpacing

Syntax:
double pdfGetCharacterSpacing(
 const PPDF* IPDF) // Instance pointer

The function returns the current character spacing.
Default value = 0

Value = 0 Character
Value = 10.0 C h a r a c t e r

Function Reference Page 390 of 854

GetCheckBoxChar

Syntax:
SI32 pdfGetChecBoxChar(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 ccCheck,
 ccCircle,
 ccCross1,
 ccCross2,
 ccCross3,
 ccCross4,
 ccDiamond,
 ccSquare,
 ccStar
}TCheckBoxChar;

The function returns the character used for newly created check boxes.

Check box characters

 ccCheck

 ccCircle

 ccCross1

 ccCross2

 ccCross3

 ccCross4

 ccDiamond

 ccSquare

 ccStar

Function Reference Page 391 of 854

GetCheckBoxCharEx

Syntax:
SI32 pdfGetCheckBoxCharEx(

const PPDF* IPDF, // Instance pointer
UI32 AField) // Handle of a check box

The function returns character index of the font ZapfDingbats that is used to display the on state of
the check box. If the function fails the return value is a negative error code.

GetCheckBoxDefState

Syntax:
SI32 pdfGetCheckBoxDefState(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Handle of a check box

This function returns the default state of a check box, that is 1 == checked or 0 == unchecked. The
parameter AField must be a valid handle of a check box. The default state can differ from the current
visible state of a check box. The default state is used when a form is reset with a Reset Form Action.

Return values:

If the function succeeds the return value is either 0 or 1 depending on the default state. If the
function fails the return value is a negative error code.

GetCMap

Syntax:
LBOOL pdfGetCMap(

const PPDF* IPDF, // Instance pointer
UI32 Index, // CMap's array index
struct TPDFCMap* CMap) // Structure to be filled with properties

struct TPDFCMap
{

UI32 StructSize; // Must be set to sizeof(TPDFCMap)!
char* BaseCMap; // Required base CMap if any
UI32 CIDCount; // 0 if not set
char* CMapName; // The CMap name
UI32 CMapType; // Should be one!
float CMapVersion; // The CMap version
char* DSCBaseCMap; // DSC comment
float DSCCMapVersion; // DSC comment
char* DSCResName; // DSC comment
char* DSCTitle; // DSC comment
char* FileNameA; // Either the Ansi or Unicode file name is set
UI16* FileNameW; // Either the Ansi or Unicode file name is set
char* FilePathA; // Either the Ansi or Unicode path is set
UI16* FilePathW; // Either the Ansi or Unicode path is set
char* Ordering; // Supported Character Collection
char* Registry; // The registrant (this is usually Adobe)
UI32 Supplement; // The Supplement number of this CMap
UI32 WritingMode; // 0 == Horizontal, 1 == Vertical

};

Function Reference Page 392 of 854

The function returns the most important properties of an external CMap file. The search path of
external CMaps can be set with SetCMapDir(). The function returns the number of available CMap
files which can be accessed with GetCMap(). It is also possible to use the function GetCMapCount()
to determine the number of available CMap files.

The member StructSize of the structure TPDFCMap must be initialized with sizeof(TPDFCMap)
before calling the function (C/C++, Delphi only). The structure size is used to identify different
versions of the structure if extensions will be made in later releases.

The parameter Index represents an array index into the CMap cache. It can be in the range
0..NumCMaps -1.

The member CMapName of the structure TPDFCMap should be used to load a CMap into memory
with LoadCMap(). Note that the function LoadCMap() returns a CMap handle that cannot be used
with this function.

Values which are taken from the DSC comment section contain the prefix DSC. DSC comments are
optional and maybe not available when using CMap files from other vendors than Adobe.

Adobe provides for all character collections identity mappings; the member DSCResName is set to
Identity in this case so that such CMaps can be easily identified.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetCMapCount

Syntax:
SI32 pdfGetCMapCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of available CMap files. This value can be used to access the header
information of CMap files with GetCMap().

GetCollectionInfo

Syntax:
LBOOL pdfGetCollectionInfo(
 const PPDF* IPDF, // Instance pointer
 struct TPDFCollectionInfo* Value) // Structure to be filled

typedef enum TPDFColSplitInfo
{
 spiNone, // Do not display a splitter
 spiHorizontal, // Display a horizontal splitter
 spiVertical // Display a vertical splitter
}TPDFColSplitInfo;

Function Reference Page 393 of 854

struct TPDFCollectionInfo
{
 UI32 StructSize; // Must be set to sizeof(TPDFColectionInfo)
 SI32 InitalFile; // Possible values are -2, -1, or a valid embedded files handle.
 TColView InitalView; // Determines how embedded files should be displayed.
 const char* SortBy; // Optional name of the first field that should be used to sort the
 // list of embedded files.
 LBOOL SortDesc; // If true, the list of embedded files should be sorted in
 // descending order.
 TPDFColSplitInfo SplitInfo; // Determines whether a splitter bar should be displayed.
 float SplitPos; // Meaningful only, if SplitInfo is not spiNone. The initial
 // position of the splitter bar, specified as a percentage of the
 // available window area (0 to 100).
};

The function returns the most important properties of a PDF Collection, also called PDF Portfolio. A
PDF collection consists of a container PDF and a set of embedded files which make up the collection.

The embedded files are mostly PDF files but can be of arbitrary type.

Remarks:

Adobe has changed the way how PDF Collections are displayed in Acrobat or Reader several
times. PDF Collections were initially fully integrated in Adobes Acrobat or Reader. Beginning
with Acrobat 10 the user interface based on Flash but Flash became obsolete and was finally
fully disabled. PDF collections do no longer work with Acrobat 10 or 11 at all.

In Acrobat DC PDF collections work again but the implementation is very restricted and it is not
known whether Adobe will maintain this feature anymore.

Due to the unclear status it is not planned to add further functions in order to access all
available properties of PDF collections.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetColorSpace

Syntax:
SI32 pdfGetColorSpace(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 esDeviceRGB = 0, // Device color space
 esDeviceCMYK = 1, // Device color space
 esDeviceGray = 2, // Device color space
 esCalGray = 3, // CIE-based color space
 esCalRGB = 4, // CIE-based color space
 esLab = 5, // CIE-based color space
 esICCBased = 6, // ICC-based color space -> contains an ICC profile
 esPattern = 7, // Special color space
 esIndexed = 8, // Special color space
 esSeparation = 9, // Special color space
 esDeviceN = 10, // Special color space
 esNChannel = 11, // Special color space
 esInitSpace = -1 // Internal -> This value cannot occur.
}TExtColorSpace;

Function Reference Page 394 of 854

The function returns the active color space.

GetColorSpaceCount

Syntax:
SI32 pdfGetColorSpaceCount(

const PPDF* IPDF) // Instance pointer

The function returns the number of color space objects which are used in the current document.
Color spaces can be accessed with GetColorSpaceObj().

GetColorSpaceObj

Syntax:
LBOOL pdfGetColorSpaceObj(

const PPDF* IPDF) // Instance pointer
UI32 Handle, // Color space handle
struct TPDFColorSpaceObj* CS) // Structure to be filled

struct TPDFColorSpaceObj
{

TExtColorSpace Type;
 TExtColorSpace Alternate;// Alternate or base space of Indexed or Pattern color spaces.
 void* IAlternate; // Optional alternate color space.
 BYTE* Buffer; // ICC profile or color table of an Indexed color space.
 UI32 BufSize; // Buffer length in bytes.
 float* BlackPoint; // CIE black point. If set, the array contains exactly 3 values.
 float* WhitePoint; // CIE white point. If set, the array contains exactly 3 values.
 float* Gamma; // If set, one value per component.
 float* Range; // min/max per component or .a .b components of a Lab color space.
 float* Matrix; // XYZ matrix. If set, the array contains exactly 9 values.
 UI32 NumInComponents; // Number of input components.
 UI32 NumOutComponents; // Number of output components.
 UI32 NumColors; // HiVal + 1. Indexed color space only.
 BYTE* Colorants[32]; // Colorant names (Separation, DeviceN, and NChannel only).
 UI32 ColorantsCount; // The number of colorants in the array.
 BYTE* Metadata; // Optional XMP metadata stream -> ICCBased only.
 UI32 MetadataSize; // Metadata length in bytes.
 void* IFunction; // Pointer to function object -> Special color spaces only
 void* IAttributes; // Optional attributes of DeviceN or NChannel color spaces
 void* IColorSpaceObj; // Pointer of the corresponding color space object
 void* Reserved01;
 void* Reserved02;
 void* Reserved03;
 void* Reserved04;
 void* Reserved05;
 void* Reserved06;
 void* Reserved07;
 void* Reserved08;
 void* Reserved09;
};

The function retrieves the most important properties of a color space. The parameter handle must be
a valid handle of a color space. A color space handle is a simple array index. The number of color
spaces is returned by the function GetColorSpaceCount().Reserved fields of the structure
TPDFColorSpaceObj must be initialized with NULL.

Function Reference Page 395 of 854

The alternate color space of special color spaces can be accessed with GetColorSpaceObjEx(). The
attributes of a DeviceN or NChannel color space can be accessed with GetDeviceNAttributes().

Note that the range of a Lab color space consists only of four values because the L component has a
fixed range from 0 through 100.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetColorSpaceObjEx

Syntax:
LBOOL pdfGetColorSpaceObjEx(

const PPDF* IColorSpace, // Pointer of a color space object
struct TPDFColorSpaceObj* CS) // Structure to be filled

The function retrieves the most important properties of a color space like GetColorSpaceObj() but
accepts a pointer of a color space object instead. See also GetColorSpaceObj().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetCompressionFilter

Syntax:
SI32 pdfGetCompressionFilter(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 cfFlate = 0,
 cfJPEG = 1,
 cfJP2K = 7
}TCompressionFilter;

The function returns the standard compression filter for images. Note that 1 bit images are always
compressed with Flate.

Function Reference Page 396 of 854

GetCompressionLevel

Syntax:
SI32 pdfGetCompressionLevel(
 const PPDF* IPDF) // Instance pointer

typedef enum
{

clNone = 0,
 clDefault = 1,
 clFastest = 2,
 clMax = 3
}TCompressionLevel;

The function returns the active compression level. JPEG images are compressed with optimized
Huffmann tables if the compression level is clMax. This results in 5% to 10% better compression
ratio without losing quality. The compression level can also be used to switch the compression
mode to real or integer when using the JPEG2000 compression filter (see also InsertImage()).

GetContent

Syntax:
SI32 pdfGetContent(
 const PPDF* IPDF, // Instance pointer
 char* ADDR BufSize) // Buffer

This function returns a pointer to the content stream of the currently open page or template. The
parameter BufSize gets the buffer size in bytes; this parameter must not be set to NULL.

The page or template must be open with EditPage() or EditTemplate() beforehand.

When no further objects must be added it is possible to edit the buffer directly to improve
processing speed. However, when changing the buffer size it is highly recommended to update the
content stream with the function SetContent().

When new contents must be added, copy the buffer into a new one and replace the content stream
with SetContent() when finished. Do not change a content stream when you don't know exactly
what you are doing. If the content stream contains invalid operators after editing the PDF file will be
damaged.

Remarks:

The function returns a pointer to the original content buffer of the currently open page or template.
DynaPDF is the owner of this buffer, it must not be freed in you application.

Return values:

If the function succeeds the return value is the buffer size if bytes. If the function fails the return
value is a negative error code.

Function Reference Page 397 of 854

GetDefBitsPerPixel

Syntax:
SI32 pdfGetDefBitsPerPixel(
 const PPDF* IPDF) // Instance pointer

The function returns default color depth in bits per pixel, which determines whether images should
be down sampled. If the return value is 8 images are converted to 256 indexed color images.

At time of publication only two values are supported:

• 24 bit: No conversion

• 8 bit: Conversion to 256 indexed color image

Default value = 24

GetDescent

Syntax:
double pdfGetDescent(
 const PPDF* IPDF) // Instance pointer

The function returns the descender of the active font. The descender is a typographic value that
specifies the maximum extent to which characters in the active font descend below the baseline.

The descender is normally a negative value. However, it is always returned as a positive value to
make the usage easier.

Return values:

If the function succeeds the return value is the typographic descender of the active font as positive
double. If the function fails the return value is a negative error code.

Function Reference Page 398 of 854

GetDeviceNAttributes

Syntax:
LBOOL pdfGetDeviceNAttributes(

void* IAttributes, // Pointer to attribute object
struct TDeviceNAttributes* Attributes) // Structure to be filled

struct TDeviceNAttributes
{

void* IProcessColorSpace; // Pointer to process color space
 BYTE* ProcessColorants[8]; // Process colorant names
 UI32 ProcessColorantsCount; // Number of process colorants
 void* Separations[32]; // Pointers to separation color spaces
 UI32 SeparationsCount; // Number of separation color spaces
 void* IMixingHints; // Pointer to optional mixing hints.
 void* Reserved01;
 void* Reserved02;
 void* Reserved03;
 void* Reserved04;
};

The function retrieves attributes of a DeviceN or NChannel color space. The parameter IAttributes
must be a valid pointer of an attribute object. This pointer is available in the structure
TPDFColorSpaceObj. See GetColorSpaceObj() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetDocInfo

Syntax:
SI32 pdfGetDocInfo(
 const PPDF* IPDF, // Instance pointer
 TDocumentInfo DInfo, // Document info entry
 UI16* ADDR Value) // Value as Unicode string (null-terminated)

typedef enum
{
 diAuthor = 0,
 diCreator = 1,
 diKeywords = 2,
 diProducer = 3,
 diSubject = 4,
 diTitle = 5,
 diCompany = 6,
 diPDFX_Ver = 7, // GetInDocInfo() or GetInDocInfoEx()
 diCustom = 8, // Not supported -> Use GetDocInfoEx()
 diPDFX_Conf = 9, // GetInDocInfo() or GetInDocInfoEx()
 diCreationDate = 10, // Available after a PDF file was imported
 diModDate = 11 // GetInDocInfo() or GetInDocInfoEx()
}TDocumentInfo;

The function retrieves a document info entry as Unicode string. The parameter Value holds a pointer
to the original Unicode value, it must not be NULL. Do not change or free the value. GetDocInfo()
returns only the values of predefined document info entries. All document info entries, incl. user
defined keys can be accessed with GetDocInfoEx().

Function Reference Page 399 of 854

Return value:

The return value is the string length in characters. If the info entry is not set it returns 0 and Value is
initialized to NULL.

GetDocInfoCount

Syntax:
SI32 pdfGetDocInfoCount(

const PPDF* IPDF) // Instance pointer

The function returns the number of document info entries defined in the document. This function
can be used in combination with GetDocInfoEx() to enumerate the document info entries of the PDF
file.

GetDocInfoEx

Syntax:
SI32 pdfGetDocInfoEx(

const PPDF* IPDF, // Instance pointer
UI32 Index, // Entry index
TDocumentInfo ADDR DInfo, // Document info entry type
char* ADDR Key, // Only set for user defined keys
char* ADDR Value, // The value of the info entry
LBOOL ADDR Unicode) // Is value in Unicode format?

The function returns a document info entry. The parameter Index must be a valid index into the
array of document info entries. The number of available entries is returned by GetDocInfoCount().
The parameter Value holds a pointer to the original value, it must not be NULL. Do not change or
free the value. If the parameter Unicode is true, the value is a Unicode string. Make a type cast to
UI16* in this case. The parameter Key contains always an Ansi string if set (user defined keys only).

Return values:

If the function succeeds the return value is the string length in characters of the parameter Value.
Depending on the string format make a type cast to UI16*.

Function Reference Page 400 of 854

GetDocUsesTransparency

Syntax:
LBOOL pdfGetDocUsesTransparency(
 const PPDF* IPDF, // Instance pointer
 UI32 Flags) // No flags defined yet, the parameter is ignored

The function checks whether a PDF file uses native PDF Transparency (PDF 1.4). The file uses
transparency when it contains soft masks, blend modes other than Normal, or fill or stroke alpha
values smaller than 1.0.

The function checks all pages, templates, extended graphics states, images, annotations, and form
fields.

Return values:

If the file uses transparency the return value is 1. If it uses no transparency the return value is 0.

GetDrawDirection

Syntax:
SI32 pdfGetDrawDirection(
 const PPDF* IPDF) // Instance pointer

typedef enum
{

ddCounterClockwise = 0,
 ddClockwise = 1
}TDrawDirection;

The function returns the actual draw direction for closed vector graphics such as rectangles, circles,
ellipses and so on.

GetDynaPDFVersion

Syntax:
char* pdfGetDynaPDFVersion(void)

The function returns the version string of DynaPDF. The return value is a pointer to a null-
terminated static string. The caller must not change or free the string.

GetDynaPDFVersionInt

Syntax:
SI32 pdfGetDynaPDFVersionInt(void)

The function returns the DynaPDF version as an integer. This is a pure interface function that parses
the version string returned by GetDynaPDFVersion(). Therefore, the function is compatible with all
DynaPDF versions.

Function Reference Page 401 of 854

A DynaPDF version string consists of 4 four parts: major version, revision (unused, always zero),
minor version, and build number.

Example:

4.0.3.7 = Major = 4, revision (always zero), minor = 3, build = 7.

The same version as an integer would be calculated as follows:
Version = Major * 10000000 + Minor * 10000 + Build

The above version string would be returned as 40030007 = 4 * 10000000 + 3 * 10000 + 7.

Return values:

If the function succeeds the return value is the version number, a value greater zero. If the function
fails the return value is zero.

GetEmbeddedFile

Syntax:
BOOL pdfGetEmbeddedFile(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Handle of an embedded file
struct TPDFFileSpec* FileSpec, // See below
LBOOL Decompress) // If true, the file is decompressed

struct TPDFFileSpec
{

char* Buffer; // Buffer of an embedded file.
 UI32 BufSize; // Buffer size in bytes.
 LBOOL Compressed; // Should be false if Decompress was true.
 void* ColItem; // Pointer to user defined collection item.
 char* Name; // Name of the file specification in the name tree.
 LBOOL NameUnicode; // Is Name in Unicode format?
 char* FileName; // File name as 7 bit ASCII string.
 LBOOL IsURL; // If true, FileName contains a URL.
 char* UF; // PDF 1.7. Same as FileName but Unicode is allowed.
 LBOOL UFUnicode; // Is UF in Unicode format?
 char* Desc; // Description.
 LBOOL DescUnicode; // Is Desc in Unicode format?
 UI32 FileSize; // Decompressed stream size or zero if not known.
 char* MIMEType; // MIME media type name (RFC 2046).
 char* CreateDate; // Creation date as string.
 char* ModDate; // Modification date as string.
 char* CheckSum; // 16 byte MD5 digest if set.
};

The function retrieves the most important properties of an embedded file as well as a pointer to the
file buffer. If the parameter Decompress is set to true the embedded file stream is decompressed. Set
this parameter to true if you want to extract the embedded file. Otherwise the parameter should be
set to false. DynaPDF decompresses Flate compressed embedded file streams only. However, other
filters can occur but this is unusual. If the file buffer was successfully decompressed the member
Decompressed of the structure TPDFFileSpec is set to true.

Function Reference Page 402 of 854

Remarks:

The structure TPDFFileSpec contains pointers to the original values of the embedded file. These
values must not be changed or freed in your application.

Return values:

If the function succeeds the return value 1 and the structure TPDFFileSpec is filled with values. If
the function fails the return value is 0.

GetEmbeddedFileCount

Syntax:
SI32 pdfGetEmbeddedFileCount(

const PPDF* IPDF) // Instance pointer

The function returns the number of embedded files available in the PDF file. Note that the number
of embedded files from an external PDF file is available after the PDF file has been imported.
Depending of the used import flags embedded files can be excluded from import. See
SetImportFlags(), or ImportPDFFile() for further information.

GetEmbeddedFileNode

Syntax:
LBOOL pdfGetEmbeddedFileNode(
 const IEFN* IEF, // Pointer of an embedded file node
 struct TPDFEmbFileNode* F, // see below
 LBOOL Decompress) // If true, the file will be decompressed

struct TPDFEmbFileNode
{

UI32 StructSize; // Must be set to sizeof(TPDFEmbFileNode).
 const char* Name; // UTF-8 encoded name. This is usually an ASCII string.
 struct TPDFFileSpec EF; // Embedded file.
 IEFN* NextNode; // Next node if any.
};

struct TPDFFileSpec
{
 char* Buffer; // Buffer of an embedded file.
 UI32 BufSize; // Buffer size in bytes.
 LBOOL Compressed; // Should be false if Decompress was true.
 void* ColItem; // Pointer to user defined collection item.
 char* Name; // Name of the file specification in the name tree.
 LBOOL NameUnicode; // Is Name in Unicode format?
 char* FileName; // File name as 7 bit ASCII string.
 LBOOL IsURL; // If true, FileName contains a URL.
 char* UF; // PDF 1.7. Same as FileName but Unicode is allowed.
 LBOOL UFUnicode; // Is UF in Unicode format?
 char* Desc; // Description.
 LBOOL DescUnicode; // Is Desc in Unicode format?
 UI32 FileSize; // Decompressed stream size or zero if not known.
 char* MIMEType; // MIME media type name (RFC 2046).
 char* CreateDate; // Creation date as string.
 char* ModDate; // Modification date as string.
 char* CheckSum; // 16 byte MD5 digest if set.
};

Function Reference Page 403 of 854

The function retrieves the properties of an embedded file node. The member StructSize of the
structure TPDFEmbFileNode must be set to sizeof(TPDFEmbFileNode) before the function can be
called.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetEMFPatternDistance

Syntax:
double pdfGetEMFPatternDistance(

const PPDF* IPDF) // Instance pointer

The function returns the distance between lines of standard patterns during EMF conversion.

Default value = 4.0

GetErrLogMessage

Syntax:
LBOOL pdfGetErrLogMessage(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Array index
 struct TPDFError* Err) // see below

struct TPDFError
{

UI32 StructSize; // Must be initialized to sizeof(TPDFError)
 const char* Message; // The error message
 SI32 ObjNum; // PDF object number or -1 if not available
 SI32 Offset; // File offset or -1 if not available
 const char* SrcFile; // Source file
 UI32 SrcLine; // Source line
 SI32 ErrCode; // ErrCode and ErrType are set if the error mode was set to emUseErrLog.
 SI32 ErrType; // ErrCode and ErrType are set if the error mode was set to emUseErrLog.
};

The function returns an error object of the internal error log. The function
GetErrLogMessageCount() returns the number of available error messages.

DynaPDF uses the error log to store non-fatal errors or warnings when it is not required to break
processing or if more detailed error information should be provided than is possible with the
normal exception handling.

For example, when opening a damaged PDF file with OpenImportFile() the function tries first to
open the file in normal mode. All errors which occur in this step are written to the error log.
Depending on the kind of found errors, the function maybe falls back into repair mode and reads
the file again. If this action is successful then the function returns with success and no error message
is provided over the normal exception handling. So, you'll not notice that the file contained damages
unless you take a look into the error log.

Function Reference Page 404 of 854

The error log was introduced with DynaPDF 3.0. It is used when reading a PDF file, e.g.
OpenImportFile(), ImportPage(), ImportPDFFile(), and when parsing or rendering PDF pages, e.g.
ParseContent(), IsEmptyPage(), IsColorPage(), GetPageText(), RasterPage(), RasterPDFFile(), and so
on.

The members ErrCode and ErrType are set only if the error mode was set to emUseErrLog. See
SetErrorMode() for further information. ErrType is a bit mask that can contain the following flags:
#define E_WARNING 0x02000000
#define E_SYNTAX_ERROR 0x04000000
#define E_VALUE_ERROR 0x08000000
#define E_FONT_ERROR 0x10000000
#define E_FATAL_ERROR 0x20000000
#define E_FILE_ERROR 0x40000000

At time of publication only one flag is set at any one time. Future versions may be set multiple flags,
e.g. E_SYNTAX_ERROR and E_WARNING. Because of this, it is recommended to mask out the
error type with a bitwise and operator.

The number of possible error messages is restricted by default to 100 messages per PDF instance.
However, it is possible to adjust the maximum number of messages with SetMaxErrLogMsgCount().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0. Check
whether the member StructSize of the structure TPDFError was properly initialized in the latter case.

GetErrLogMessageCount

Syntax:
SI32 pdfGetErrLogMessageCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of error messages in the internal error log.

GetErrorMessage

Syntax:
char* pdfGetErrorMessage(
 const PPDF* IPDF) // Instance pointer

The function returns the last error message as pointer to a null-terminated static string, or NULL if
no error occurred. Use this function if an error callback function can not be used (see also
SetOnErrorProc()).

Function Reference Page 405 of 854

GetErrorMode

Syntax:
SI32 pdfGetErrorMode(
 const PPDF* IPDF) // Instance pointer

typedef SI32 TErrMode;
#define emIgnoreAll 0x00000000 // default
#define emSyntaxError 0x00000001
#define emValueError 0x00000002
#define emWarning 0x00000004
#define emFileError 0x00000008
#define emFontError 0x00000010
#define emAllErrors 0x0000FFFF
#define emNoFuncNames 0x10000000 // Do not output function names
// Special flags for CheckConformance().
// These flags add info messages to the error log. The error callback function is not invoked.
#define emLogFonts 0x00010000 // If set, CheckConformance() logs which fonts were replaced
 // with system fonts or converted to Type3.
#define emLogFontsVerbose 0x00020000 // If set, the path to the font file is added to the message too

The function returns the current error mode. The return value is a bit mask, to check whether a
specific flag is set use a bitwise and operator.

The special flag emNoFuncNames names can be used to avoid the output of the function name in
error messages. Error messages start normally always with the function name in which the error
occurred. While this information is useful during development, it is often not useful in an end user
application.

The meaning of the error mode flags is described in detail at Customized Exception handling.

GetField (obsolete)

Syntax:
LBOOL pdfGetField(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle, // Field handle
 struct TPDFField* Field) // see below

struct TPDFField
{

SI32 FieldType; // Field type (see TFieldType)
 LBOOL Deleted; // If true, the field was deleted
 struct TPDFRect BBox; // Bounding box
 SI32 Handle; // Field handle
 char* FieldName; // Field name
 UI32 FieldNameLen; // Field name length in characters
 UI32 BackCS; // Color space of background / border color
 UI32 TextCS; // Color space of text color
 UI32 BackColor; // Background color
 UI32 BorderColor; // Border color
 UI32 TextColor; // Text color
 LBOOL Checked; // Only set if the field is a check box
 SI32 Parent; // Parent field handle if any
 UI32 KidCount; // Greater zero if the field has childs
 char* Font; // Used font by the field (PostScript name)
 double FontSize; // Font size
 void* Value; // Field value (char* or UI16*)
 LBOOL UniVal; // If True, Value is a Unicode string
 UI32 ValLen; // String length in characters

Function Reference Page 406 of 854

 void* ToolTip; // Tool tip if any
 LBOOL UniToolTip; // If True, ToolTip is a Unicode string
 UI32 ToolTipLen; // String length in characters
};

The function retrieves the most important properties of a field. This function is marked as obsolete,
please use GetFieldEx() instead. The parameter AHandle must be a valid field handle. The parameter
Handle must be a valid field handle. Field handles are simple array indexes into the field array of the
global AcroForm object. To enumerate all fields of a document execute the function in a loop from 0
though GetFieldCount() -1.

Field colors are returned in the native color space of the field.

Since Acrobat 6 field names can be defined as Ansi or Unicode strings. To determine whether the
string is in Ansi or Unicode format compare the string length with the member FieldNameLen as
follows (C/C++):
TPDFField f;
if (!pdfGetField(pdf, aField, &f)) return 1;
if (f.FieldName && strlen(f.FieldName) != f.FieldNameLen)
{
 // We have an Unicode name!
 UI16* nameW = (UI16*)f.FieldName;

}

Delphi:

The Delphi interface contains a special function to convert the returned Ansi string back to Unicode:
if not pdf.GetField(aField, f) then Exit;
if f.FielNameLen > 0 and StrLen(f.FieldName) <> f.FieldNameLen then begin
 // Use the function ToUnicode of the class TPDF to convert the string
 // back to Unicode
 nameW := pdf.ToUnicode(f.FieldName, f.FieldNameLen * 2);
end;

There is no need to check the string format in Visual Basic, VB .Net or C# because a maybe required
conversion is automatically applied.

Remarks:

It is also possible to enumerate the fields on a per page basis with GetPageField(). The export values
of combo and list boxes can be accessed with GetFieldExpValueEx().

Return values:

If the function succeeds the return value 1 and the structure Field is filled with values. If the function
fails the return value is 0.

Function Reference Page 407 of 854

GetFieldBackColor

Syntax:
UI32 pdfGetFieldBackColor(
 const PPDF* IPDF, // Instance pointer

The function returns the default background color used for newly created interactive form fields.
Note that color values must be defined in the current color space. See SetColorSpace() for further
information.

If the return value is equal NO_COLOR the background is transparent.
#define NO_COLOR 0xFFFFFFF1
Default value = NO_COLOR // Transparent

GetFieldBorderColor

Syntax:
UI32 pdfGetFieldBorderColor(
 const PPDF* IPDF) // Instance pointer

The function returns the default border color used for newly created interactive form fields. Note
that color values must be defined in the current color space. See SetColorSpace() for further
information.

If the return value is equal NO_COLOR the border is transparent.
#define NO_COLOR 0xFFFFFFF1
Default value = 0 // Black

GetFieldBorderStyle

Syntax:
SI32 pdfGetBorderStyle(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

typedef enum
{
 bsSolid = 0, // Solid border
 bsBevelled = 1, // Bevelled border
 bsInset = 2, // Inset border
 bsUnderline = 3, // Underline only
 bsDashed = 4, // Dashed border
 bsUserDefined = 5 // Occurs if a field uses an undefined value
}TBorderStyle;

The function returns the border style of a specific form field. The parameter AField must be a valid
field handle. It is also possible to change the style of a specific field, see SetFieldBorderStyle() for
further information.

Function Reference Page 408 of 854

Return values:

If the function succeeds the return value is the border style, a value greater or equal zero. If the
function fails the return value is a negative error code.

GetFieldBorderWidth

Syntax:
double pdfGetFieldBorderWidth(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

The function returns the line width of the border of a field. The parameter AField must be a valid
field handle. All field types are supported by this function.

Return values:

If the function succeeds the return value is the line width of the field's border (a value greater or
equal zero). If the function fails the return value is a negative error code.

GetFieldCalcOrder

Syntax:
SI32 pdfGetFieldCalcOrder(
 const PPDF* IPDF, // Instance pointer
 UI32** Out) // Required -> address of a UI32* variable

The function retrieves the calculation order of form fields which contain an action in the OnCalc
event (see AddActionToObj() for further information). This is the order in which their values will be
recalculated when the value of any field changes. The retrieved array values are field handles.

The parameter Out must be the address of a UI32* variable. The function stores the array in an
internal Unicode buffer. To release the buffer when no longer needed call FreeUniBuf(). The buffer
is automatically released when CloseFile() or FreePDF() is called the next time.

To change the calculation order of a specific field call SetFieldCalcOrder().

Example (C++):
...
// Assume we have a form in which the fields "total" and "subtotal" are
// calculated in the wrong order. The field subtotal should be calculated
// before the field total.
SI32 fieldTotal = pdfFindField(PDF, "total");
SI32 fieldSubTotal = pdfFindField(PDF, "subtotal");
if (fieldTotal >= 0 && fieldSubTotal >= 0)
{
 UI32* calcOrder;
 SI32 i, count, found = 0, fieldTotalIndex, fieldSubTotalIndex;
 if ((count = pdfGetFieldCalcOrder(PDF, &calcOrder)) >= 0)
 {
 for (i = 0; i < count; i++)

Function Reference Page 409 of 854

 {
 if (calcOrder[i] == fieldTotal)
 {
 found |= 1;
 fieldTotalIndex = i;
 if (found == 3) break; // Both fields found?
 }else if (calcOrder[i] == fieldSubTotal)
 {
 found |= 2;
 fieldSubTotalIndex = i;
 if (found == 3) break; // Both fields found?
 }
 }
 if (found == 3)
 {
 if (fieldTotalIndex < fieldSubTotalIndex)
 pdfSetFieldCalcOrder(PDF, fieldTotalIndex, fieldSubTotalIndex);
 }
 pdfFreeUniBuf(PDF); // Optional but recommended: release the buffer
 }
}
...

Return values:

If the function succeeds the return value is greater or equal zero. If the function fails the return value
is a negative error code.

GetFieldChoiceValue

Syntax:
LBOOL pdfGetFieldChoiceValue(

const PPDF* IPDF, // Instance pointer
UI32 AField, // Field handle
UI32 ValIndex, // Value index
struct TPDFChoiceValue* Value) // See below

struct TPDFChoiceValue
{

UI32 StructSize; // Must be initialized with sizeof(TPDFChoiceValue)
char* ExpValueA; // Export value (optional)
UI16* ExpValueW; // Export value (optional)
UI32 ExpValueLen; // Export value length in characters
char* ValueA; // Value (can be an empty string or NULL)
UI16* ValueW; // Value (can be an empty string or NULL)
UI32 ValueLen; // Value length in characters
LBOOL Selected; // If true, the value is selected

};

The function retrieves a choice value of a combo or list box. The function can also be used to extract
optional export values of radio buttons. The parameter AField must be a valid handle of a combo
box, list box, or radio button. ValIndex is the array index of the choice value to be retrieved.

For list and combo boxes call GetFieldExpValCount() to determine how many choice values are
available in the combo or list box.

Function Reference Page 410 of 854

Note that choice values can be inherited from a parent group field. This is the case if the field is part
of a field group. See "Interactive Forms/What is a Field Group?" for further information.

Radio buttons can define export values for their children. Since radio buttons contain these values,
they are not returned by GetFieldEx() or GetPageFieldEx(). The export values are stored in the same
order as the Kids array of the structure TPDFFieldEx.

The member StructSize of the structure TPDFChoiceValue must be initialized with
sizeof(TPDFChoiceValue) before calling the function because this member is used to identify
different versions of the structure. All other members can be left uninitialized.

The returned string values can be in Unicode or Ansi format but only one string format is set at
time.

Return values:

If the function succeeds the return value is 1 and the parameter Value is filled with values. If the
function fails the return value is 0.

GetFieldColor

Syntax:
SI32 pdfGetFieldColor(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 TFieldColor ColorType, // Which color should be returned?
 SI32 ADDR ColorSpace, // Color space see TPDFColorSpace
 UI32 ADDR Color) // Color value

typedef enum
{

fcBackColor = 0,
 fcBorderColor = 1,
 fcTextColor = 2
}TFieldColor;

typedef enum
{
 csDeviceRGB = 0,
 csDeviceCMYK = 1,
 csDeviceGray = 2
}TPDFColorSpace;

The function retrieves a specific color of an interactive form field. The parameter AField must be a
valid field handle. The parameter ColorSpace defines the color space in which the color was defined.

Return values:

If the function succeeds the return value is 1 and the parameters ColorSpace and Color are filled with
values. If the function fails the return value is 0.

Function Reference Page 411 of 854

GetFieldCount

Syntax:
SI32 pdfGetFieldCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of fields contained in the document.

GetFieldEx

Syntax:
LBOOL pdfGetFieldEx(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Field handle
struct TPDFFieldEx* Field) // Structure to be filled

struct TPDFFieldEx
{

UI32 StructSize; // Must be set to sizeof(TPDFFieldEx)
 LBOOL Deleted; // Marked as deleted?
 struct TPDFRect BBox; // Bounding box in bottom-up coordinates
 TFieldType FieldType; // Field type
 TFieldType GroupType; // See description
 UI32 Handle; // Field handle
 UI32 BackColor; // Background color
 TExtColorSpace BackColorSP; // Color space of the background color
 UI32 BorderColor; // Border color
 TExtColorSpace BorderColorSP; // Color space of the border color
 TBorderStyle BorderStyle; // Border style
 float BorderWidth; // Border width
 float CharSpacing; // Text fields only
 LBOOL Checked; // Check boxes only

UI32 CheckBoxChar; // ZapfDingbats character index
TCheckBoxState DefState; // Check boxes only
const char* DefValueA; // Optional default value
const UI16* DefValueW; // Optional default value
const void* IEditFont; // Pointer to default editing font
const char* EditFont; // Postscript name of the editing font
UI32 ExpValCount; // Combo and list boxes only.
const char* ExpValueA; // Check boxes only
const UI16* ExpValueW; // Check boxes only
TFieldFlags FieldFlags; // Field flags
const void* IFieldFont; // Pointer to the field font.
const char* FieldFont; // Postscript name of the font
UI32 Reserved; // Reserved field
double FontSize; // Font size. 0.0 = auto font size
const char* FieldNameA; // Field name (can be NULL)
const UI16* FieldNameW; // Field name (can be NULL)
THighlightMode HighlightMode; // Highlight mode
LBOOL IsCalcField; // If true, the OnCalc event is
 // connected with a JavaScript action
const char* MapNameA; // Optional unique mapping name
const UI16* MapNameW; // Optional unique mapping name
UI32 MaxLen; // Text fields -> zero = not restricted
const void** Kids; // Array of children -> GetFieldEx2()
UI32 KidCount; // Number of fields in the array
void* Parent; // Pointer to parent field or NULL
SI32 PageNum; // Page on which the field is used or -1
SI32 Rotate; // Rotation angle in degrees
TTextAlign TextAlign; // Text fields only
UI32 TextColor; // Text color
TExtColorSpace TextColorSP; // Color space of the field's text

Function Reference Page 412 of 854

float TextScaling; // Text fields only
const char* ToolTipA; // Optional tool tip
const UI16* ToolTipW; // Optional tool tip
const char* UniqueNameA; // Optional unique name (NM key)
const UI16* UniqueNameW; // Optional unique name (NM key)
const char* ValueA; // Field value
const UI16* ValueW; // Field value
float WordSpacing; // Text fields only

 const void* IBarcode; // If present, this field is a barcode
 // field. The field type is set to

 // ftText since barcode fields are
 // extended text fields.
 // GetBarcodeDict() returns the
 // properties of the barcode.
 const void* ISignature; // Present only for imported signature
 // fields which which have a value. That
 // means the file was digitally signed.
 // GetSigDict() returns the signature
 // dictionary. Signed signature fields
 // are always marked as deleted!
 const char* ModDate; // Last modification date (optional)

 // Push buttons only. The down and roll over states are optional. If
 // not present, then all states use the up state.
 // The handles of the up, down, and roll over states are template
 // handles! The templates can be opened for editing with
 // EditTemplate2() and parsed with ParseContent().
 TBtnCaptionPos CaptionPos; // Where to position the caption
 const char* DownCaptionA; // Caption of the down state
 const UI16* DownCaptionW; // Caption of the down state
 SI32 DownImage; // Template handle of the down state
 const char* RollCaptionA; // Caption of the roll over state
 const UI16* RollCaptionW; // Caption of the roll over state
 SI32 RollImage; // Templ. handle of the roll over state
 const char* UpCaptionA; // Caption of the up state
 const UI16* UpCaptionW; // Caption of the up state
 SI32 UpImage; // Template handle of the up state
 SI32 OC; // Handle of an OCG or OCMD or -1
 SI32 Action; // Action handle or -1 if not set. This action is executed when
 // the field is activated.
 TActionType ActionType; // Meaningful only, if Action >= 0.
 IEVT* Events; // See GetObjEvent() if set.
 UI32 FmtTextColor; // Zero if not set. Usually RGB red otherwise.
 const char* FmtTextA; // Text fields only. The formatted field value if the field
 // contains an OnFormat Javascript action.
 const UI16* FmtTextW; // Note that either the Ansi or Unicode value is set.
};

typedef enum
{
 bcpCaptionOnly, // Default
 bcpImageOnly, // No caption; image only
 bcpCaptionBelow, // Caption below the image
 bcpCaptionAbove, // Caption above the image
 bcpCaptionRight, // Caption on the right of the image
 bcpCaptionLeft, // Caption on the left of the image
 bcpCaptionOver // Caption overlaid directly on the image
}TBtnCaptionPos;

The function returns the most important properties of a field. The parameter Handle must be a valid
field handle. Field handles are simple array indexes into the field array of the global AcroForm
object. To enumerate all fields of a document execute the function in a loop from 0 though
GetFieldCount() -1.

The member StructSize must be initialized to sizeof(TPDFFieldEx) before calling the function.

Function Reference Page 413 of 854

The member GroupType specifies the subtype of a field group. A field group is a set of fields which
have the same name and type. Such fields contain always the same value with exception of check
boxes. If a field group consists of check boxes the export value is also taken into account.

However, a set of fields with identical names are internally stored in a group field. The group type
specifies the field type of the group, e.g. ftText if text fields are stored in the group. A field group
cannot contain different field types. An indication whether a field is a child of a field group is an
empty field name because the field name is taken from the parent group field. Radio buttons are
identically organized, but the field type is set to ftRadioBtn in this case.

The page number is not set for group fields and radio button fields because these field types are not
directly used on a page. The children of such fields appear in a page but not the corresponding
group fields. This behaviour must be taken into account when enumerating fields with
GetPageFieldEx() since these field types do never occur when enumerating fields on a per page
basis. However, the parent handle is always set if a field is a child of another field.

Inherited attributes of a field group are automatically set to the children of the group. So, there is no
need to merge the values of the parent group field with the ones of its children.

The background and border color can be set to the special value NO_COLOR which means the
background or border is transparent. The color space is set to DeviceRGB in this case.

String values can be either in Unicode or Ansi format but only one format is set at time.

The parent field and the children of a field (member Kids) can be accessed with GetFieldEx2().

Radio Buttons

Radio buttons can define export values for their check boxes. Because the radio button holds these
values, they are not returned when calling GetFieldEx() for a check box of a radio button. These
export values can be accessed with GetFieldChoiceValue(). The export values are stored in the same
order as the Kids array. This makes it easy to access the values, just call GetFieldChoiceValue() right
after GetFieldEx2() for every child. The parameter AField must be set to the handle of the radio
button and Index to the array index.

If a radio button contains no export values, GetFieldChoiceValue() returns just the export value of
the check box. So, there is no need to further validate the result of the function.

Formatted Text Field Value

The member FmtTextColor, FmtTextA or FmtTextW are set for text fields only. If set, this value
represents the formatted text that was created by a Javascript action in the field's OnFormat event.

At time of publication the Javascript functions AFNumber_Format() and AFSpecial_Format() are
supported only.

Function Reference Page 414 of 854

The value of a text field that uses a number format should contain a pure number without any
formatting characters, e.g. "256.87". The decimal separator, if necessary, should be a period (.) and
no comma.

Because all variants of number and date formats are applied via Javascript actions, there is no easy
way to determine what kind of values a text field accepts.

Optional Content

Form fields can be part of an Optional Content Group (OCG) or Optional Content Membership
Dictionary (OCMD). If OC is greater -1 an OCG or OCMD handle was set. To determine whether an
OCG handle was set, check whether the value is smaller 0x40000000:
bool IsOCG(SI32 Handle)
{
 return (Handle > -1 && Handle < 0x40000000);
}

Return vlues:

If the function succeeds the return value is 1 and the structure Field is filled with values. If the
function fails the return value is 0.

GetFieldEx2

Syntax:
LBOOL pdfGetFieldEx2(

const PPDF* IField, // Pointer of a field object
struct TPDFFieldEx* Field) // Structure to be filled

The function returns the most important properties of a field like GetFieldEx() but it accepts a field
pointer as input. The parameter IField must be a valid pointer of a field object that was returned by
GetFieldEx(). See also GetFieldEx(). This function can be used to access the parent field or children
of a field (member Kids).

Remarks:

The function assumes that the parameters IField and Field are valid. Passing a null pointer to the
function causes an access violation!

Return values:

If the function succeeds the return value is 1 and the structure Field is filled with values. If the
function fails the return value is 0. The only reason why this function can fail is if the member
StructSize was initialized to an invalid value.

Function Reference Page 415 of 854

GetFieldExpValCount

Syntax:
SI32 pdfGetFieldExpValCount(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

The function returns the number of values/export values which are defined for a field. Supported
field types are combo boxes, list boxes, radio buttons, and check boxes. If the field is a radio button,
the function returns the number of check boxes which are connected with the radio button. This
number can be used to access the check boxes of the radio button either with GetFieldExpValueEx()
or SetFieldExpValue(). If the field is a check box, the return value is always 1 because check boxes
do not support multiple export values. However, this function is normally used to determine the
number of available choice values within a combo box or list box because only these field types
support multiple choice values. See also GetFieldExpValueEx().

Return values:

If the function succeeds the return value is the number of values/export values which are defined for
a field. If the function fails the return value is a negative error code.

GetFieldExpValue

Syntax:
SI32 pdfGetFieldExpValue(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 char* ADDR Value) // Field's export value

This function retrieves the export value(s) of a check box, list box, or combo box. The parameter
AField must be a valid field handle of a check box, list box or combo box. The parameter Value holds
a pointer to the original export value. The retrieved string value must not be changed or freed in
your application.

The export value of a check box can be either "Off" if the check box is not selected or an arbitrary
string when the check box is selected.

The export value of a combo box or list box can be NULL when no value is selected.

Since Acrobat 5, list boxes support multiple selected values. In this case the export values are
delimited by a null-character (0); the last value is terminated with two null-characters. Note that the
returned string length is the length without the last two null-terminators.

The export values of a list box that has three selected values are returned as follows:

"Value1\0Value2\0Value3\0\0"

The returned string length would be 20 characters in this example.

To extract the values proceed as follows:

Function Reference Page 416 of 854

...
SI32 valLen;
char* src, *value = NULL;
// aField must be a handle of list box in this example
valLen = pdfGetFieldExpValue(pdf, aField, value);
SI32 len = strlen(value); // Get the string length
if (valLen > 0 && len < valLen)
{
 src = value;
 do
 {
 fwrite(src, 1, len, f);
 fwrite("\r\n", 1, 2, f);
 src += (len +1); // Skip over the null-terminator
 // This can not cause a buffer overrun because of the two
 // null-terminators at the end of the string.
 len = strlen(src);
 }while(len);
}

...

If the string length that was returned by the standard C function strlen() is shorter than the length
that was returned by GetFieldExpValue(), multiple values are selected in the list box.

The code above writes the values to a file and adds an EOL after each value. This is just an example
to see how the string can be parsed.

Notice:

The export values of check boxes and combo boxes are not terminated with two null-terminators.
Try to parse the export value only if the field is a list box. The field type can be determined with the
functions GetFieldType(), GetFieldEx() or GetPageFieldEx().

Return values:

If the function succeeds the return value is the string length excluding the last null-terminator(s). If
the function fails the return value is a negative error code.

GetFieldExpValueEx

Syntax:
SI32 pdfGetFieldExpValueEx(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 UI32 ValIndex, // Value index
 char* ADDR Value, // Index value
 char* ADDR ExpValue, // Index export value
 LBOOL ADDR Selected) // Is the value selected?

Function Reference Page 417 of 854

This function can be used to enumerate the choice values of a combo box, list box, or radio button. If
the field is a check box, the parameter ValIndex will be ignored and the export value and selected
state are returned. The parameters Value and ExpValue hold pointers to the original null-terminated
string values. These values must not be changed or freed in your application. Note that either the
parameter Value or ExpValue can be set to NULL depending on the field type.

To enumerate the choice values of a combo box or list box call GetFieldExpValCount() to determine
the number of available values. The parameter ValIndex can then be used to access each value /
export value pair within the array.

Beginning with PDF 1.5 choice values of combo and list boxes can be in Unicode format. Because
Unicode strings are not supported by this function the function GetFieldChoiceValue() should be
used to enumerate choice values of these field types.

Example (C++):
...
// aField is a handle of a combo box in this example; we want to
// deselect the currently selected value, that's all.
char* value, *expValue;
LBOOL selected;
SI32 valCount = pdfGetFieldExpValCount(pdf, aField);
for (SI32 i = 0; i < valCount; i++)
{
 if (pdfGetFieldExpValueEx(pdf, aField, i, value, expValue, selected))
 {
 if (selected)
 {
 pdfSetFieldExpValue(pdf, aField, i, value, expValue, false);
 break;
 }
 }
}
...

Remarks:

The parameters Value, ExpValue, and Selected require variables so that the values can be set by the
function. To change a choice value of a combo box or list box call the function SetFieldExpValue().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 418 of 854

GetFieldFlags

Syntax:
SI32 pdfGetFieldFlags(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

typedef UI32 TFieldFlags;
// Basic flags supported by all field types except group fields and
// radio button fields.
#define ffReadOnly 0x00000001
#define ffRequired 0x00000002
#define ffNoExport 0x00000004
#define ffInvisible 0x00000008
#define ffHidden 0x00000010
#define ffPrint 0x00000020
#define ffNoZoom 0x00000040
#define ffNoRotate 0x00000080
#define ffNoView 0x00000100
// Special flags supported by specific fields only
#define ffMultiline 0x00001000
#define ffPassword 0x00002000
#define ffNoToggleToOff 0x00004000
#define ffRadioIsUnion 0x04000000
#define ffCommitOnSelCh 0x08000000
#define ffEdit 0x00040000
#define ffSorted 0x00080000
#define ffFileSelect 0x00100000
#define ffMultiSelect 0x00200000
#define ffDoNotSpellCheck 0x00400000
#define ffDoNotScroll 0x00800000
#define ffComb 0x01000000

The function returns the flags of a specific interactive form field. The parameter AField must be a
valid handle of an interactive form field.

Interactive form fields and annotations support the same basic set of field flags because both object
types are in fact annotations. When we talk about form fields then we talk about an extended
version of annotations because form fields are annotations. However, to make the handling easier,
form fields and annotations are handled separately by DynaPDF.

The flags are described in detail on the next page.

Return values:

If the function succeeds the return value is a number greater or equal zero representing the flags
used by the field (this is a bit mask, to check whether a specific flag is set, use the bitwise and
operator). If the function fails the return value is a negative error code.

Function Reference Page 419 of 854

Flag Description

ffInvisible If set, do not display the field if it does not belong to one of the standard
field types and no field handler is available.

ffHidden
(PDF 1.2) If set, do not display or print the field or allow it to interact
with the user, regardless of its field type or whether an field handler is
available.

ffPrint
(PDF 1.2) If set, print the field when the page is printed. If clear, never
print the field, regardless of whether it is displayed on the screen. This
can be useful, for example, for fields representing interactive
pushbuttons, which would serve no meaningful purpose on the printed
page.

ffNoZoom (PDF 1.3) If set, do not scale the field’s appearance to match the
magnification of the page. The location of the field on the page (defined
by the upper-left corner of its field rectangle) remains fixed, regardless of
the page magnification.

ffNoRotate
(PDF 1.3) If set, do not rotate the field’s appearance to match the rotation
of the page. The upper-left corner of the field rectangle remains in a fixed
location on the page, regardless of the page rotation.

ffNoView
(PDF 1.3) If set, do not display the field on the screen or allow it to
interact with the user. The field may be printed (depending on the setting
of the ffPrint flag), but should be considered hidden for purposes of on-
screen display and user interaction.

ffReadOnly (PDF 1.3) If set, do not allow the field to interact with the user. The field
may be displayed or printed (depending on the settings of the afNoView
and ffPrint flags), but should not respond to mouse clicks or change its
appearance in response to mouse motions.

ffRequired If set, the field must have a value at the time it is exported by a submit-
form action (see CreateSubmitAction() for further information).
Supported by all fields except group fields.

Function Reference Page 420 of 854

Flag Description

ffNoExport If set, the field must not be exported by a submit-form action (see
CtreateSubmitAction() for further information). Supported by all fields
except group fields.

ffMultiline If set, the field may contain multiple lines of text; if clear, the field’s text
is restricted to a single line. Supported by button fields, text fields.

ffPassword If set, the field is intended for entering a secure password that should not
be echoed visibly to the screen. Characters typed from the keyboard
should instead be echoed in some unreadable form, such as asterisks or
bullet characters. To protect password confidentiality, the value of the
text field is not stored in the PDF file if this flag is set. Supported by text
fields only.

ffNoToggleToOff If set, exactly one radio button must be selected at all times; clicking the
currently selected button has no effect. If clear, clicking the selected
button deselects it, leaving no button selected. Supported by radio button
fields only.

ffEdit If set, the combo box includes an editable text box as well as a drop list; if
clear, it includes only a drop list. Supported by combo boxes only.

ffSorted If set, the field values are sorted in ascending order. Supported by combo
boxes and list boxes only.

ffFileSelect (PDF 1.4) If set, the text entered in the field represents the pathname of a
file whose contents are to be submitted as the value of the field.
Supported by text fields only.

ffMultiSelect (PDF 1.4) If set, more than one of the field ’s option items may be selected
simultaneously; if clear, no more than one item at a time may be selected.
This flag is supported by list boxes only.

ffDoNotSpellCheck (PDF 1.4) If set, the text entered to the field will not be spell-checked.
Supported by text fields, combo boxes. If the field type is combo box, this
flag is meaningful only if the flag ffEdit is also set.

Function Reference Page 421 of 854

Flag Description

ffDoNotScroll (PDF 1.4) If set, the field will not scroll (horizontally for single-line fields,
vertically for multiple-line fields) to accommodate more text than will fit
within its field rectangle. Once the field is full, no further text will be
accepted. Supported by text fields only.

ffComb (PDF 1.5) Meaningful only if MaxLen is set (see CreateTextField()) and if
the ffMultiline, ffPassword, and ffFileSelect flags are clear. If set, the field
is automatically divided up into as many equally spaced positions, or
combs, as the value of MaxLen, and the text is laid out into those combs.
Supported by text fields only.

ffCommitOnSelCh (PDF 1.5) If set, the new value is committed as soon as a selection is made
with the pointing device. This allows applications to perform an action
once a selection is made, without requiring the user to exit the field. If
clear, the new value is not committed until the user exits the field.
Supported by combo boxes and list boxes only.

ffRadioIsUnion (PDF 1.5) If set, a group of radio buttons within a radio button field that
use the same export value for the on state will turn on and off in unison;
that is if one is checked, they are all checked. This flag requires Acrobat 6
or higher. Supported by check boxes only.

GetFieldGroupType

Syntax:
SI32 pdfGetFieldGroupType(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

typedef enum
{

ftButton = 0,
 ftCheckBox = 1,
 ftRadioBtn = 2,
 ftComboBox = 3,
 ftListBox = 4,
 ftText = 5,
 ftSignature = 6,
 ftGroup = 7
}TFieldType;

The function returns the base type of a field group. A field group is a set of fields which have all the
same name. Such fields contain always the same value with exception of checkboxes. If a field group
consists of checkboxes the export value is also taken into account.

Function Reference Page 422 of 854

However, a set of fields with identical names are internally stored in a group field. The group type
specifies the field type of the group, e.g. ftText if text fields are stored in the group. A field group
cannot contain different field types. An indication whether a field is a child of a field group is an
empty field name because the field name is taken from the parent group field in this case. Radio
buttons are identically organized, but the field type is ftRadioBtn in this case.

Return values:

If the function succeeds the return value is the field group type that is a value greater or equal zero.
Make a type cast to TFieldType in this case. If the function fails the return value is a negative error
code.

GetFieldHighlightMode

Syntax:
SI32 pdfGetFieldHighlightMode(
 const PPDF* IPDF, // Instance pointer

UI32 AField) // Field handle

typedef enum
{

hmNone = 0,
 hmInvert = 1,
 hmOutline = 2,
 hmPush = 3,
 hmPushUpd = 4 // Update appearance stream on changes
}THighlightMode;

The function returns the highlight mode of buttons, checkboxes, and signature fields. All other field
types have no property highlight mode, the function returns hmNone in this case.

Return values:

If the function succeeds the return value is the highlight mode, a value greater or equal zero. Make a
type cast to THighlightMode in this case. If the function fails the return value is a negative error
code.

GetFieldIndex

Syntax:
SI32 pdfGetFieldIndex(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

The function returns the page index or tab order of the field. The index of newly created fields starts
at 1000. This makes it easier to set a field to another position inside the tab order. The field index can
be changed with the function SetFieldIndex(). Note that fields must be sorted by index with the
function SortFieldsByIndex(). Fields must be sorted for each page separately.

Function Reference Page 423 of 854

Return values:

If the function succeeds the return value is the field index, a value greater or equal zero. If the
function fails the return value is a negative error code.

GetFieldMapName

Syntax:
SI32 pdfGetFieldMapName(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 void* ADDR Value, // Pointer to mapping name (null-terminated)
 LBOOL ADDR Unicode) // If true, Value is an Unicode string

The function retrieves the mapping name of a specific form field if set. The parameter AField must
be a valid field handle. The parameter Value gets a pointer to the original string value, it must not be
NULL. Do not change the or free the value. Depending on whether Unicode is true, Value is pointer
to a null-terminated Unicode string.

The mapping name is used when interactive form field data is exported from the document.

Return values:

If the function succeeds the return value is the string length in characters and the parameters Value
and Unicode are filled with values. If the function fails the return value is a negative error code.

GetFieldName

Syntax:
SI32 pdfGetFieldName(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 char* ADDR Name) // Pointer to field name (null-terminated)

The function retrieves the name of a specific interactive form field. The parameter AField must be a
valid field handle. Note that the check boxes of a radio button field do not have a name.

The parameter Name gets a pointer to the original field name, it must not be NULL. The field name
must not be changed or freed by the application.

Since Acrobat 6 field names can be defined as Ansi or Unicode strings. To determine whether the
string is in Ansi or Unicode format compare the string length with the return value as follows
(C/C++):
char* fieldName = NULL;
SI32 fieldNameLen = pdfGetFieldName(pdf, field, fieldName);
if (fieldNameLen > 0 strlen(fieldName) != fieldNameLen)
{
 // We have an Unicode name!
 UI16* nameW = (UI16*)fieldName;
}

Function Reference Page 424 of 854

Delphi:
nameLen := pdf.GetFieldName(myField, name);
if nameLen > 0 then begin
 if Length(name) <> nameLen then begin
 // Use the function ToUnicode to convert the string back to Unicode
 nameW := pdf.ToUnicode(name);
 ...
 end else begin
 ...
 end;
end;

There is no need to check the string format in Visual Basic, VB .Net or C# because a maybe required
conversion is automatically applied.

Return values:

If the function succeeds the return value is the string length of the name in characters excluding the
null-terminator. If the function fails the return value is a negative error code.

GetFieldOrientation

Syntax:
SI32 pdfGetFieldOrientation(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

The function returns the orientation of a field. The orientation is measured in degrees; it is always a
multiple of 90 or 0.

Return values:

If the function succeeds the return value is the field orientation in degrees. If the function fails the
return value is a negative error code, a value smaller -270.

GetFieldTextAlign

Syntax:
SI32 pdfGetFieldTextAlign(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Text field or button field handle

typedef enum
{
 taLeft,
 taCenter,
 taRight,
 taJustify
}TTextAlign;

The function returns the text alignment of a text field or button field.

Function Reference Page 425 of 854

Return values:

If the function the function succeeds the return value is the text alignment used by the field. If the
function fails the return value is a negative error code.

GetFieldTextColor

Syntax:
UI32 pdfGetFieldTextColor(
 const PPDF* IPDF) // Instance pointer

The function returns the default text color used for newly created fields.

GetFieldToolTip

Syntax:
SI32 pdfGetFieldToolTip(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 void* ADDR Value, // Pointer to value (null-terminated string)
 LBOOL ADDR Unicode) // If true, Value is an Unicode string

The function retrieves a pointer to the tool tip string of a specific interactive form field. The
parameter AField must be a valid field handle. The parameter Value gets a pointer to the original
string value, it must not be NULL. Do not change the or free the value. Depending on whether
Unicode is true, Value is pointer to a null-terminated Unicode string.

Return values:

If the function succeeds the return value is 1 and the parameters Value and Unicode are filled with
values. If the function fails the return value is 0.

GetFieldType

Syntax:
SI32 pdfGetFieldType(
 const PPDF* IPDF, // Instance pointer
 UI32 AField) // Field handle

typedef enum
{

ftButton = 0,
 ftCheckBox = 1,
 ftRadioBtn = 2,
 ftComboBox = 3,
 ftListBox = 4,
 ftText = 5,
 ftSignature = 6,
 ftGroup = 7
}TFieldType;

The function returns the field type. The parameter AField must be a valid field handle.

Function Reference Page 426 of 854

Return values:

If the function succeeds the return value is the field type (make a typecast to TFieldType to
determine the field type). If the function fails the return value is a negative error code.

GetFileSpec

Syntax:
LBOOL pdfGetFileSpec(
 const IFSR* IFS, // Pointer of a file specification
 struct TPDFFileSpecEx* F) // see below

struct TPDFFileSpecEx
{
 UI32 StructSize; // Must be set to sizeof(TPDFFileSpecEx).
 const char* AFRelationship; // PDF 2.0
 const void* ColItem; // If != NULL the embedded file contains a collection item
 // with user defined data. This entry can
 // occur in PDF Collections only (PDF 1.7). See chapter
 // "PDF Collections" for further information.
 const char* DescriptionA; // Optional description string.
 const UI16* DescriptionW; // Optional description string.
 const char* DOS; // Optional DOS file name.
 IEFN* EmbFileNode; // -> GetEmbeddedFileNode().
 const char* FileName; // File name as 7 bit ASCII string.
 LBOOL FileNameIsURL; // If true, FileName contains a URL.
 const BYTE* ID1; // Optional file ID. Meaningful only if FileName points to
 // a PDF file. This is a binary string.
 UI32 ID1Len; // String length in bytes.
 const BYTE* ID2; // The file was modified if ID1 and ID2 are different.
 UI32 ID2Len; // String length in bytes.
 LBOOL IsVolatile; // If true, the file changes frequently with time.
 const char* Mac; // Optional Mac file name.
 const char* Unix; // Optional Unix file name.
 IRFN* RelFileNode; // Optional related files array. -> GetRelFileNode().
 PIMG* Thumb; // Optional thumb nail image. -> GetImageObjEx().
 const char* UFileNameA; // PDF 1.7. Same as FileName but Unicode is allowed.
 const UI16* UFileNameW; // Either the Ansi or Unicode string is set but never both.
};

The function retrieves the properties of a file specification. The member StructSize must be set to
sizeof(TPDFFileSpecEx) before the function can be executed.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetFillColor

Syntax:
UI32 pdfGetFillColor(
 const PPDF* IPDF) // Instance pointer

The function returns the current color used for fillings. The returned color value is not converted to
the active color space. For example, if the color space will be changed with SetColorSpace(), the
color value is still the same. Colors must be correctly defined in the current color space.
Default value = 0 (black)

Function Reference Page 427 of 854

GetFont (obsolete)

Syntax:
LBOOL fntGetFont(

const void* IFont, // Pointer of a font object
struct TPDFFontObj* F) // Structure to be filled

struct TPDFFontObj
{

float Ascent; // Ascent
 char* BaseFont; // PostScript Name or Family Name
 float CapHeight; // Cap height
 float Descent; // Descent
 UI16* Encoding; // Unicode mapping 0..255 if set
 UI32 FirstChar; // First char
 UI32 Flags; // Font flags -> font descriptor
 char* FontFamily; // Optional Font Family (Family Name)
 LBOOL FontFamilyUni; // Is FontFamily in Unicode format?
 char* FontName; // Font name -> font descriptor
 TFontType FontType; // If ftType0 the font is a CID font.
 float ItalicAngle; // Italic angle
 UI32 LastChar; // Last char
 float SpaceWidth; // Space width in font units or default value.
 float* Widths; // Glyph widths 0..WidthsCount -1
 UI32 WidthsCount; // Number of widths in the array
 float XHeight; // x-height
 float DefWidth; // Default character widths
 char* FontFile; // File buffer (if imported & embedded) or file path.
 UI32 Length1; // Clear text portion of Type1 font, or full length.
 UI32 Length2; // Encrypted portion of a Type1 font program.
 UI32 Length3; // Length of the fixed-content portion or zero.
 TFontFileSubtype FontFileType; // See below;

typedef enum
{

ftMMType1 = 0, // Multiple Master
ftTrueType = 1, // TrueType font
ftType0 = 2, // CID font
ftType1 = 3, // Type1 font
ftType3 = 4 // Type3 font

}TFontType;

typedef enum
{

ffsType1C = 0, // CFF based Type1 font
ffsCIDFontType0C = 1, // CFF based Type1 CID font
ffsOpenType = 2, // TrueType based OpenType font
ffsOpenTypeC = 3, // CFF based OpenType font
ffsCIDFontType2 = 4, // TrueType based CID Font
ffsNoSubtype = 9 // The font file is in the format of FontType

}TFontFileSubtype;

This function is marked as obsolete since an extended version is available now. Please use
GetFontInfo() if possible.

The function returns the most important properties of a font. The parameter IFont must be a valid
pointer to a font object. Such a pointer is returned by GetPageText(), EnumDocFonts(), or by the
content parser (see ParseContent()). The parameter F must be a valid pointer to a TPDFFontObj
structure.

The font metrics such as Ascent, Descent, Widths, and so on are returned in font units. The values
must be scaled to the given font size as follows:

Function Reference Page 428 of 854

double scale = FontSize / 1000.0;
double ascent = font.Ascent * scale;
double descent = font.Descent * scale;

The font’s encoding consists of exactly 256 Unicode values if set. The encoding is not set if a CID
font is selected.

The font flags describe certain properties of the font. The most important flags are the following:

• 0x1 // Fixed pitch font

• 0x2 // Serif style

• 0x4 // Symbol font

• 0x8 // Script style

• 0x20 // Non-symbolic font

• 0x40 // Italic style

• 0x40000 // Force Bold (Type1 fonts only)

The full set of available flags can be found in the PDF Reference.

The member FontFile provides a pointer to the font file buffer if the font is embedded and if it was
imported from an external PDF file. In this case and if the font type is not ftType1 the member
Length1 specifies the length of the font buffer.

Type1 fonts consist of three portions. Length1 specifies the length of the clear text portion, Length2
specifies the length of the eexec encrypted binary portion, and Length3 specifies the length of the
fixed content portion (512 zeros plus cleartomark). The latter portion is optional and mostly not set
in PDF fonts. The buffer length is the sum of the three lengths.

If the font was loaded from the system the parameter FontFile contains the file path to the font file.
The member Length1 is set to zero in this case.

Since DynaPDF 3.0.8.16 the default string format for font file paths on Windows was changed to
UTF-16. You can make a type cast to UI16* on Windows, as long as the Ansi version of
AddFontSearchPath() will not be used.

Remarks:

The function does not use the exception handling of DynaPDF. No error message is set if the
function fails. However, the only possible error is out of memory if the parameters are valid.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 429 of 854

GetFontCount

Syntax:
SI32 pdfGetFontCount(

const PPDF* IPDF) // Instance pointer

The function returns the number of fonts which are used in the document. The properties of a font
can be accessed with GetFontEx().

GetFontEx (obsolete)

Syntax:
LBOOL pdfGetFontEx(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Font handle
struct TPDFFontObj* F) // Structure to be filled

This function is marked as obsolete since an extended version is available now. Please use
GetFontInfoEx() if possible.

The function retrieves the most important properties of a font like GetFont() but accepts a font
handle instead. A font handle is a simple array index. To enumerate all fonts of a document execute
the function in a loop from zero to GetFontCount() - 1. See also GetFont().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetFontInfo

Syntax:
LBOOL fntGetFontInfo(
 const void* IFont, // Pointer of a font object
 struct TPDFFontInfo* F) // Structure to be filled

typedef enum
{
 beWinAnsi = 0, // This represents the Windows code page 1252.
 beMacRoman = 1, // Mac Roman encoding.
 beMacExpert = 2, // Mac Expert encoding.
 beStandard = 3 // Standard encoding is a special encoding for Type1 fonts.
}TBaseEncoding;

typedef enum
{

ftMMType1 = 0, // Multiple Master
ftTrueType = 1, // TrueType font
ftType0 = 2, // CID font
ftType1 = 3, // Type1 font
ftType3 = 4 // Type3 font

}TFontType;

typedef enum
{

ffsType1C = 0, // CFF based Type1 font
ffsCIDFontType0C = 1, // CFF based Type1 CID font

Function Reference Page 430 of 854

ffsOpenType = 2, // TrueType based OpenType font
ffsOpenTypeC = 3, // CFF based OpenType font
ffsCIDFontType2 = 4, // TrueType based CID Font
ffsNoSubtype = 9 // The font file is in the format of FontType

}TFontFileSubtype;

struct TCIDMetric
{
 float Width; // Vertical displacment for text selection.
 float x; // Positioning vector
 float y; // Positioning vector
};

struct TPDFFontInfo
{
 UI32 StructSize; // Must be set to sizeof(TPDFFontInfo).
 float Ascent; // Ascent (optional).
 float AvgWidth; // Average character width (optional).
 TBaseEncoding BaseEncoding; // Valid only if HaveEncoding is true.
 char* BaseFont; // PostScript Name or Family Name.
 float CapHeight; // Cap height (optional).
 char* CharSet; // The charset describes which glyphs are present in the font.
 UI32 CharSetSize; // Length of the CharSet in bytes.
 char* CIDOrdering; // SystemInfo -> Character collection.
 char* CIDRegistry; // SystemInfo -> Issuer of the character collection.
 BYTE* CIDSet; // CID fonts only. This is a table of bits indexed by CIDs.
 UI32 CIDSetSize; // Length of the CIDSet in bytes.
 UI32 CIDSupplement; // CIDSystemInfo -> Supplement number.
 BYTE* CIDToGIDMap; // Allowed for embedded TrueType based CID fonts only.
 UI32 CIDToGIDMapSize; // Length of the stream in bytes.
 BYTE* CMapBuf; // Only available if the CMap was embedded.
 UI32 CMapBufSize; // Buffer size in bytes.
 char* CMapName; // CID fonts only external CMap name or encoding.
 float Descent; // Descent (optional).
 UI16* Encoding; // Unicode mapping 0..255 -> not available for CID fonts.
 UI32 FirstChar; // First char (simple fonts only).
 UI32 Flags; // See description below.
 TBBox FontBBox; // This is the size of the largest glyph in this font.
 BYTE* FontBuffer; // Available if the font was embedded or loaded from a buffer.
 UI32 FontBufSize; // Font file size in bytes.
 char* FontFamilyA; // Optional Font Family (Family Name).
 UI16* FontFamilyW; // Optional Font Family (Family Name).
 char* FontFilePathA; // Only available for system fonts.
 UI16* FontFilePathW; // Either the Ansi or Unicode path is set, but never both.
 TFontFileSubtype FontFileType; // See description below.
 char* FontName; // Font name (should be the same as BaseFont).
 char* FontStretch; // Optional -> Condensed, and so on.
 TFontType FontType; // If ftType0 the font is a CID font.
 float FontWeight; // Font weight (optional).
 char* FullNameA; // System fonts only.
 UI16* FullNameW; // System fonts only.
 LBOOL HaveEncoding; // If true, BaseEncoding was set from the font's encoding.
 float* HorzWidths; // Horizontal glyph widths -> 0..HorzWidthsCount -1.
 UI32 HorzWidthsCount; // Number of horizontal widths in the array.
 LBOOL Imported; // If true, the font was imported from an external PDF file.
 float ItalicAngle; // Italic angle.
 char* Lang; // Optional language code defined by BCP 47.
 UI32 LastChar; // Last char (simple fonts only).
 float Leading; // Leading (optional).
 UI32 Length1; // Length of the clear text portion of a Type1 font.
 UI32 Length2; // Length of the encrypted portion of a Type1 font program.
 UI32 Length3; // Length of the fixed-content portion of a Type1 font rogram.
 float MaxWidth; // Maximum glyph width (optional).
 BYTE* Metadata; // Optional XMP metadata stream about the font file.
 UI32 MetadataSize; // Buffer size in bytes.
 float MisWidth; // Missing width (default = 0.0).
 BYTE* Panose; // CID fonts only -> Optional 12 bytes long Panose string.
 char* PostScriptNameA; // System fonts only.
 UI16* PostscriptNameW; // System fonts only.

Function Reference Page 431 of 854

 float SpaceWidth; // Space width in font units. A default value is set if the
 // font contains no space character.
 float StemH; // The thickness of horizontal stems.
 float StemV; // The thickness of vertical stems.
 BYTE* ToUnicode; // ToUnicode CMap. Only available for imported fonts.
 UI32 ToUnicodeSize; // Buffer size in bytes.
 TFltPoint VertDefPos; // Default vertical displacement vector.
 TCIDMetric* VertWidths; // Vertical glyph widths -> 0..VertWidthsCount -1.
 UI32 VertWidthsCount; // Number of vertical widths in the array.
 UI32 WMode; // Writing Mode -> 0 == Horizontal, 1 == Vertical.
 float XHeight; // The height of lowercase letters measured from the baseline.
};

The function returns the most important properties of a font. The parameter IFont must be a valid
pointer to a font object. Such a pointer is returned by GetPageText(), EnumDocFonts(), or by the
content parser (see ParseContent()). The parameter F must be a valid pointer to a TPDFFontInfo
structure.

The font metrics such as Ascent, Descent, HorzWidths, VertWidths, and so on are returned in font
units. The values must be scaled to the given font size as follows:
double scale = FontSize / 1000.0;
double ascent = font.Ascent * scale;
double descent = font.Descent * scale;

The font’s encoding consists of exactly 256 Unicode values if set. The encoding is not set if a CID
font is selected.

The font flags describe certain properties of the font. The most important flags are the following:

• 0x1 // Fixed pitch font

• 0x2 // Serif style

• 0x4 // Symbol font

• 0x8 // Script style

• 0x20 // Non-symbolic font

• 0x40 // Italic style

• 0x40000 // Force Bold (Type1 fonts only)

The full set of available flags can be found in the PDF Reference.

The members Length1, Length2, and Length3 are already validated. The sum of the lengths cannot
exceed the buffer size.

The member CIDToGIDMap is a buffer of the original CIDToGIDMap stream if available. The
buffer must be converted to an array of unsigned short. The values are stored in big endian format,
high order byte first.

Remarks:

The function does not use the exception handling of DynaPDF. No error message is set if the
function fails. However, the only possible error is out of memory if the function parameters are
valid.

Function Reference Page 432 of 854

Note that the function was mainly designed to return the properties of fonts which were imported
from external PDF files. Many properties of system fonts, like CharSet, CIDSet, ToUnicode CMap
and so on cannot be returned since these objects will be created when the PDF file in memory is
closed.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetFontInfoEx

Syntax:
LBOOL pdfGetFontInfoEx(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Font handle
 struct TPDFFontInfo* F) // Structure to be filled

The function retrieves the most important properties of a font like GetFontInfo() but accepts a font
handle instead. A font handle is a simple array index. To enumerate all fonts of a document execute
the function in a loop from zero to GetFontCount() - 1. See also GetFontInfo().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetFontOrigin

Syntax:
SI32 pdfGetFontOrigin(
 const PPDF* IPDF) // Instance pointer

typedef enum
{

orDownLeft = 0, // Baseline
 orTopLeft = 1 // Upper left corner of the font's bounding box
}TOrigin;

The function returns the current font origin. The font origin is automatically set to orTopLeft or
orDownLeft if the coordinate system will be changed. The origin can be changed at runtime with the
function SetFontOrigin().
Default value = orDownLeft

Font origin:

0 0

 The origin is top left

Function Reference Page 433 of 854

GetFontMetrics

Syntax:
LBOOL pdfGetFontMetrics(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Font handle
 struct TPDFFontMetrics* Metrics) // see below

struct TPDFFontMetrics
{

UI32 StructSize; // Must be set to sizeof(TPDFFontMetrics)
 float Ascent; // Ascent (usWinAscent)
 float AvgWidth; // Average character width
 float CapHeight; // Cap height
 float DefWidth; // Default width
 float Descent; // Descent
 UI32 FirstChar; // First char
 float FixedWidth; // Width of all glyphs in a fixed pitch font
 TFStyle FontStyle; // Font style with which the font was loaded
 struct TBBox FontBBox; // Font's bounding box
 LBOOL IsFixedPitch; // Is this a fixed pitch font?
 LBOOL IsSymbolFont; // Is this is a symbolic font?
 LBOOL IsStdFont; // Is this is a standard font?
 float ItalicAngle; // Italic angle of italic fonts
 UI32 LastChar; // Last char
 float LineGap; // sTypoLineGap of the OS/2 table of TrueType and OpenType fonts
 UI32 MacStyle; // macOS style flags
 TFStyle RealStyle; // This is the real style of the font
 float StemV; // Width of vertical stems
 float StrikeoutPos; // Strikeout position
 float StrikeoutWidth; // Width of the strikeout line
 float UnderlinePos; // Underline position
 float UnderlineWidth; // Width of the underline
 UI32 UnicodeRange1; // Bitset -> TUnicodeRange1
 UI32 UnicodeRange2; // Bitset -> TUnicodeRange2
 UI32 UnicodeRange3; // Bitset -> TUnicodeRange3
 UI32 UnicodeRange4; // Bitset -> TUnicodeRange4
 UI32 Weight; // Font weight
 UI32 WidthClass; // Width class of the font
 float WinDescent; // usWinDescent of the OS/2 table of TrueType and OpenType fonts
 UI32 WinStyle; // fsSelection of the OS/2 table of TrueType and OpenType fonts
 float XHeight; // X-height
 float TypoAscender; // sTypoAscender of the OS/2 table of TrueType and OpenType fonts
 float TypoLeading; // Typographic leading or line height of the font. This is
 // TypoAscender - Descent + LineGap. If typographic metrics are
 // not available then TypoAscender is set to Ascent.
};

The function retrieves the most important metrics of a font. The parameter Handle must be a valid
font handle that was returned by SetFont(), SetFontEx(), or SetCIDFont().

The member StructSize must be initialized to sizeof(TPDFFontMetrics) before the function can be
called. The values are scaled to a normalized font size of 1000 units. In order to scale the values to an
arbitrary font size multiply the values with (fontSize / 1000.0).

Example:
m.Ascent *= 12.0f / 1000.0f;

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 434 of 854

GetFontSearchOrder

Syntax:
void pdfGetFontSearchOrder(

const PPDF* IPDF, // Instance pointer
TFontBaseType Order[4]) // Array to which the order can be copied

The function copies the current font search order to the parameter Order. Note that the function does
not perform any validity check.

GetFontSelMode

Syntax:
SI32 pdfGetFontSelMode(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 smFamilyName = 0,
 smPostScriptName = 1,
 smFullName = 2
}TFontSelMode;

The function returns the current font selection mode. The font selection mode describes what kind
of font name must be passed to SetFont(). Note that a font cannot be found if the wrong mode is set.
Default value = smFamilyName

GetFontSize

Syntax:
double pdfGetFontSize(
 const PPDF* IPDF) // Instance pointer

The function returns the font size of the active font.

Return values:

The function returns the font size, a value greater zero on success, or a negative error code on
failure.

GetFontWeight

Syntax:
SI32 pdfGetFontWeight(
 const PPDF* IPDF) // Instance pointer

The function returns the weight that will be used to emulate a bold font style. See SetFontWeight()
for further information.

Function Reference Page 435 of 854

Font weights:

• 100 - 300 // Ultra light, Light

• 400 - 500 // Standard

• 600 - 1000 // Bold, Extra bold

GetFTextHeight

Syntax:
double pdfGetFTextHeight(
 const PPDF* IPDF, // Instance pointer
 TTextAlign Align, // Base text alignment
 const char* AText) // Formatted text

typedef enum
{
 taLeft,
 taCenter,
 taRight,
 taJustify
}TTextAlign;

The function measures the height of a formatted text block. Before calling this function a font (see
SetFont()) and the output rectangle must be set with the function SetTextRect(). The parameter
Height of SetTextRect() should be set to -1 to avoid page breaks. Otherwise the height of the first text
block is returned that fits into the given height of the rectangle.

The parameter AText must contain the same text (incl. format tags if any) as which should be
printed later with WriteFText().

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is the height of the formatted text block. If the function fails
the return value is a negative error code.

GetFTextHeightEx

Syntax:
double pdfGetFTextHeightEx(
 const PPDF* IPDF, // Instance pointer
 double Width, // Width of output rectangle
 TTextAlign Align, // Base text alignment
 const char* AText) // Formatted text

The function measures the height of a formatted text block. The function works in the same way as
GetFTextHeight() but the output rectangle must not be set manually beforehand.

The height of the output rectangle is set to -1 to avoid a page break during measuring.

Function Reference Page 436 of 854

The parameter AText must contain the same text (incl. format tags if any) as which should be
printed later with WriteFText().

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is the height of the formatted text block. If the function fails
the return value is a negative error code.

GetFullyQualifiedFieldName
SI32 pdfGetFullyQualifiedFieldName(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Field handle
 UI16* ADDR Value) // Address of a UI16* variable

The function returns the fully qualified name of a field. Note that children of a radio button, for
example, have no name by its own. The export value must be compared to distinguish the children
fields in this case.

Return values:

If the function succeeds the return value is the name length in characters. If the function fails, the
return value is a negative error code.

GetGlyphIndex

Syntax:
SI32 pdfGetGlyphIndex(
 const PPDF* IPDF, // Instance pointer
 UI32 Index) // Code page, Unicode, or CJK index

The function returns the glyph index of the given code page or Unicode index. How Index must be
defined depends on the code page with which the font was loaded. For example, if the font was
loaded with a 8 bit code page, then indexes below 256 are treated as index into the code page table.
Higher indexes are treated as Unicode value in this case. Note that all Unicode encoded glyphs of
the font are accessible in this case, also if the font was loaded with a 8 bit code page!

At time of publication the function does not support CJK code pages which require a conversion to
Unicode, e.g. cpCJK_Big5_Uni, cpCJK_EUC_JP_Uni, and so on.

Return values:

If the function succeeds the return value is greater or equal zero. If the function fails the return value
is a negative error code.

Function Reference Page 437 of 854

GetGlyphOutline

Syntax:
SI32 pdfGetGlyphOutline(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Glyph index
 struct TPDFGlyphOutline* Outline) // see below

struct TFRect
{
 SI16 MinX;
 SI16 MinY;
 SI16 MaxX;
 SI16 MaxY;
};

struct TI32Point
{
 SI32 x;
 SI32 y;
};

struct TPDFGlyphOutline
{
 float AdvanceX; // Glyph width in horizontal writing mode.
 float AdvanceY; // Glyph height in vertical writing mode.
 float OriginX; // Placement vector (vertical writing mode only).
 float OriginY; // Placement vector (vertical writing mode only).
 SI16 Lsb; // Left side bearing (already applied, info only).
 SI16 Tsb; // Top side bearing (already applied, info only).
 LBOOL HaveBBox; // If true, BBox was computed.
 struct TFRect BBox; // Bounding box of the glyph outline.
 struct TI32Point* Outline; // Encoded outline. See description.
 UI32 Size; // Number of points.
};

The function returns the outline of a glyph of the active font. The usage is slightly different
depending on the used programming language:

C, C++, Delphi

The function must be called twice, the first time with the parameter Outline set to NULL or nil to
determine the size of the glyph outline (the function returns the number of points in this case). The
member Outline of the TPDFGlyphOutline structure can now be allocated and the function can be
called again. See example below the function description for further information.

C#, VB 6, VB .Net, PHP

The function returns the outline already in the first function call.

Note that not all glyphs have an outline. A space character, for example, has no outline and
therefore the size can be zero. The function returns normalized outlines scaled to a font size of 1000
units.

Function Reference Page 438 of 854

Outline format

The member Outline of the TPDFGlyphOutline structure contains coodinates encoded as 24.6 bit
fixed integer values. The remaining 2 bits contain the type of point or corresponding command that
was returned:
TI32Point &p = glyph.Outline[i];
UI32 cmd = ((p.y & 3) << 2) | (p.x & 3); // Extract the command
SI32 x = p.x >> 2; // Remove the command. Result = 24.6 bit fixed point value!
SI32 y = p.y >> 2; // Remove the command. Result = 24.6 bit fixed point value!

double fx = x / 64.0; // Conversion to PDF units
double fy = y / 64.0; // Conversion to PDF units

cmd == 1 // MoveTo
cmd == 2 // LineTo
cmd == 3 // Bezier_2_3 // One more point follows
cmd == 4 // Bezier_1_2_3 // Two more points follow

Other values as listed above cannot occur and must be treated as an error.

Return values:

If the function succeeds the return value is the size of the outline in points. If the function fails the
return value is a negative error code.

Example (C++):
void DrawGlyph(const PPDF* PDF, double PosX, double PosY, double FontSize, TPDFGlyphOutline &Outline)
{
 SI32 i, idx = 0, cmd, size = Outline.Size;
 double x, y, x1=0.0, y1=0.0, x2=0.0, y2=0.0;

 if (!size) return;

 double fs = FontSize / 1000.0;
 double s = fs / 64.0;

 for (i = 0; i < size; i++)
 {
 TI32Point &p = Outline.Outline[i];
 cmd = ((p.y & 3) << 2) | (p.x & 3);
 x = PosX + (p.x >> 2) * s;
 y = PosY - (p.y >> 2) * s; // Variant for top down coordinates (+ otherwise).
 switch(cmd)
 {
 case 1: pdfMoveTo(PDF, x, y); break;
 case 2: pdfLineTo(PDF, x, y); break;
 case 3:
 switch(++idx)
 {
 case 1: x1 = x; y1 = y; break;
 case 2:
 idx = 0;
 pdfBezier_2_3(PDF, x1, y1, x, y);
 break;
 }
 break;
 case 4:
 switch(++idx)
 {
 case 1: x1 = x; y1 = y; break;
 case 2: x2 = x; y2 = y; break;
 case 3:
 idx = 0;

Function Reference Page 439 of 854

 pdfBezier_1_2_3(PDF, x1, y1, x2, y2, x, y);
 break;
 }
 break;
 default: throw "Unknown error!";
 }
 }
 pdfClosePath(PDF, fmFill);
}

void DrawTextOutline(const PPDF* PDF, const BYTE* Text, SI32 Len)
{
 SI32 i, idx, size;
 TPDFGlyphOutline glyph;
 double x, y, scale, fontSize;

 pdfCreateNewPDF(PDF, "test.pdf");

 pdfSetPageCoords(PDF, pcTopDown);

 pdfAppend(PDF);

 memset(&glyph, 0, sizeof(glyph));

 // The font size is NOT considered by GetGlyphOutline()!
 pdfSetFont(PDF, "Arial", fsRegular, 10.0, false, cp1252);

 x = y = 50.0;
 fontSize = 40.0f;
 scale = fontSize / 1000.0;

 for (i = 0; i < Len; i++)
 {
 idx = pdfGetGlyphIndex(PDF, Text[i]);
 if ((size = pdfGetGlyphOutline(PDF, idx, NULL)) >= 0)
 {
 glyph.Size = size;
 // Note that size can be zero!
 if (size > 0)
 glyph.Outline = (TI32Point*)malloc(size * sizeof(TI32Point));
 pdfGetGlyphOutline(PDF, idx, &glyph);
 // See definition above
 DrawGlyph(PDF, x, y + fontSize, fontSize, glyph);
 x += glyph.AdvanceX * scale;

 if (size > 0) free(glyph.Outline);
 }
 }
 pdfEndPage(PDF);

 pdfCloseFile(PDF);
}

GetGoToAction
LBOOL pdfGetGoToAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFGoToAction* Action) // see below

struct TPDFGoToAction
{

UI32 StructSize; // Must be set to sizeof(TPDFGoToAction).
 SI32 DestPage; // Destination page (the first page is denoted by 1).
 float* DestPos; // Array of 4 floating point values if set.
 TDestType DestType; // Destination type.

Function Reference Page 440 of 854

 // GoToR (Go To Remote) actions only:
 IFSR* DestFile; // see GetFileSpec().
 const char* DestNameA; // Optional named destination that shall be loaded when
 // opening the file.
 const UI16* DestNameW; // Either the Ansi or Unicode string is set but never both.
 SI32 NewWindow; // Meaningful only if DestFile points to a PDF file.
 // -1 = viewer default, 0 = false, 1 = true.
 SI32 NextAction; // -1 or next action handle to be executed if any.
 TActionType NextActionType; // Only set if NextAction is >= 0.
};

The function retrieves the properties of a GoTo or GoTo Remote action. The member StructSize
must be set to sizeof(TPDFGoToAction) before the function can be called. The members DestPos and
DestType are not meaningful for GoTo Remote actions.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 441 of 854

GetGoToRAction

Syntax:
LBOOL pdfGetGoToRAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFGoToAction* Action) // see below

The functions GetGoToAction() and GetGoToRAction() are identically. Both functions can be called
for GoTo and GoTo Remote actions. See GetGoToAction() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetGStateFlags

Syntax:
UI32 pdfGetGStateFlags(

const PPDF* IPDF) // Instance pointer

The returns the current graphics state flags. The available flags are described at SetGStateFlags().

GetHideAction
LBOOL pdfGetHideAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFHideAction* Action) // see below

struct TPDFHideAction
{

UI32 StructSize; // Must be set to sizeof(TPDFHideAction).
 const IFLD** Fields; // Array of field pointers -> GetFieldEx2().
 UI32 FieldsCount; // Number of fields in the array.
 LBOOL Hide; // Hide or show the fields in the array?
 SI32 NextAction; // -1 or next action handle to be executed if any.
 TActionType NextActionType; // Only set if NextAction is >= 0.
};

The function retrieves the properties of a Hide action. The member StructSize must be set to
sizeof(TPDFHideAction) before the function can be called.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 442 of 854

GetIconColor

Syntax:
UI32 pdfGetIconColor(
 const PPDF* IPDF) // Instance pointer

The function returns the icon color used for newly created text annotations. The color value must
always be defined in DeviceRGB because normal annotations do not support the color spaces
DeviceGray or DeviceCMYK. See also SetIconColor().

GetImageBuffer

Syntax:
char* pdfGetImageBuffer(

const PPDF* IPDF, // Instance pointer
UI32 ADDR BufSize) // Variable to get the buffer size in bytes

The function returns the buffer of an image that was created in memory by CreateImage(). The
buffer size is set to the parameter BufSize. The returned pointer is a pointer to the original buffer; it
must not be freed or changed. When the image buffer is no longer needed it must be released with
FreeImageBuffer().

GetImageCount

Syntax:
SI32 pdfGetImageCount(
 const PPDF* IPDF, // Instance pointer
 const char* FileName) // Image file

The function returns the number of images contained in a multi-page image. At time of publication
TIFF images are supported only.

Return values:

If the function succeeds the return value is the number of images inside the image file. If the
function fails the return value is a negative error code.

GetImageCountEx

Syntax:
SI32 pdfGetImageCountEx(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // Pointer to file buffer
 UI32 BufSize) // Buffer size

The function determines the number of images in a multi-page image in the same way as
GetImageCount(), but accepts a file buffer as input. At time of publication TIFF images are
supported only.

Function Reference Page 443 of 854

GetImageHeight

Syntax:
SI32 pdfGetImageHeight(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle) // Image handle

The function returns the height of an image in pixel. This value is may be smaller than the height of
the original image, if it was downscaled by DynaPDF.

Return values:

If the function succeeds the return value is the height of the image in pixel. If the function fails the
return value is a negative error code.

GetImageObj

Syntax:
LBOOL pdfGetImageObj(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Image handle
 TParseFlags Flags, // See below
 TPDFImage* Image) // Structure to be filled with data

typedef UI32 TParseFlags;
#define pfNone 0x00000000 // Default
#define pfDecomprAllImages 0x00000002 // Decompress all image types
#define pfNoJPXDecode 0x00000004 // Do not decompress JPEG2000 images
#define pfDitherImagesToBW 0x00000008 // Floyd-Steinberg dithering.
#define pfConvImagesToGray 0x00000010 // Convert the image to DeviceGray
#define pfConvImagesToRGB 0x00000020 // Convert the image to DeviceRGB
#define pfConvImagesToCMYK 0x00000040 // Convert the image to DeviceCMYK
#define pfImageInfoOnly 0x00000080 // Return only the image properties

The function retrieves the properties of an image as well as the decompressed image buffer if
needed. By default all images are returned decompressed, with exception of image types which are
already stored in a valid file format like JPEG and JPEG 2000 images.

If all image types should be decompressed set the flag pfDecompressAllImages.

This function allocates memory that should be released with FreeImageObj() when finish.

Image handles are simple array indexes. The number of image objects can be determined with
GetImageObjCount(). Note that this array does not include inline images which are stored in
content streams. Such images can only be accessed with ParseContent().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 444 of 854

GetImageObjCount

Syntax:
SI32 pdfGetImageObjCount(
 const PPDF* IPDF) // PDF Instance

The function returns the number of image objects which were loaded with DynaPDF functions or
imported from external PDF files. The images can be accessed with GetImageObj().

Return values:

The return value is the number of image objects. This function cannot fail.

GetImageObjEx

Syntax:
LBOOL pdfGetImageObjEx(
 const PPDF* IPDF, // Instance pointer
 const void* ImagePtr, // Image pointer
 TParseFlags Flags, // See description at GetImageObj()
 struct TPDFImage* Image) // Structure to be filled with data

The function can be used to decompress an image mask or soft mask that is associated with a base
image that was returned by ParseContent() or GetImageObj().

The function allocates memory that should be released with FreeImageObjEx() when finish.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetImageWidth

Syntax:
SI32 pdfGetImageWidth(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle) // Image handle

The function returns the width of an image in pixel. This value is may be smaller than the width of
the original image, if it was downscaled by DynaPDF.

Return values:

If the function succeeds the return value is the width of the image in pixel. If the function fails the
return value is a negative error code.

Function Reference Page 445 of 854

GetImportDataAction

Syntax:
LBOOL pdfGetImportDataAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFImportDataAction* Action) // see below

struct TPDFImportDataAction
{

UI32 StructSize; // Must be set to sizeof(TPDFImportDataAction).
 struct TPDFFileSpecEx Data; // The data or file to be loaded.
 SI32 NextAction; // -1 or next action handle to be executed if any
 TActionType NextActionType; // Only set if NextAction is >= 0.
};

The function retrieves the properties of an Import Data Action. The member StructSize must be set to
sizeof(TPDFImportDataAction) before the function can be called. The struture TPDFFileSpecEx is
described in detail at GetFileSpec(). It is not required to initialize the member StructSize of this
struture too.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetImportFlags

Syntax:
UI32 pdfGetImportFlags(
 const PPDF* IPDF) // Instance pointer

The function returns the current import flags used to import PDF files. The flags are described in
detail at SetImportFlags().

GetImportFlags2

Syntax:
UI32 pdfGetImportFlags2(
 const PPDF* IPDF) // Instance pointer

The function returns the current import flags used to import PDF files. The flags are described in
detail at SetImportFlags2().

GetInBBox

Syntax:
SI32 pdfGetInBBox(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum, // Page number of external PDF file
 TPageBoundary Boundary, // Type of bounding box to be returned
 struct TPDFRect ADDR BBox) // Bounding box

Function Reference Page 446 of 854

typedef enum
{

pbArtBox, // Art box
 pbBleedBox, // Bleed box
 pbCropBox, // Crop box
 pbTrimBox, // Trim box
 pbMediaBox // Media box
}TPageBoundary;

struct TPDFRect
{
 double Left;
 double Bottom;
 double Right;
 double Top;
};

The function retrieves a bounding box of an external PDF page. The external PDF file must be
opened with the function OpenImportFile() or OpenImporBuffer() beforehand.

The bounding boxes are described in detail under SetBBox().

Return values:

If the function succeeds the return value is 1 and the parameter BBox is filled with values. If the
function fails the return value is 0.

GetInDocInfo

Syntax:
SI32 pdfGetInDocInfo(
 const PPDF* IPDF, // Instance pointer
 TDocumentInfo DInfo, // Document info entry
 UI16* ADDR Value) // Value as Unicode string (null-terminated)

typedef enum
{
 diAuthor = 0,
 diCreator = 1,
 diKeywords = 2,
 diProducer = 3,
 diSubject = 4,
 diTitle = 5,
 diCompany = 6,
 diPDFX_Ver = 7, // GetInDocInfo() or GetInDocInfoEx()
 diCustom = 8, // Not supported -> Use GetInDocInfoEx()
 diPDFX_Conf = 9, // GetInDocInfo() or GetInDocInfoEx()
 diCreationDate = 10, // Available after a PDF file was imported
 diModDate = 11 // GetInDocInfo() or GetInDocInfoEx()
}TDocumentInfo;

The function retrieves a document info entry from an external PDF file as Unicode string. The
external PDF file must be opened with the function OpenImportFile() or OpenImporBuffer()
beforehand. The parameter Value holds a pointer to the original Unicode value, it must not be
NULL. Do not change or free the value. This function support predefined document info entries
only. User defined entries, as well as predefined entries can be enumerated with GetDocInfoEx().

Function Reference Page 447 of 854

Return value:

The return value is the string length in characters. If the info entry is not set it returns 0 and Value is
initialized to NULL. If the function fails the return value is a negative error code.

GetInDocInfoCount

Syntax:
SI32 pdfGetDocInfoCount(

const PPDF* IPDF) // Instance pointer

The function returns the number of available document info entries of the currently opened import
file or a negative error code on failure. The document info entries can be enumerated with
GetInDocInfoEx().

GetInDocInfoEx

Syntax:
SI32 pdfGetDocInfoEx(

const PPDF* IPDF, // Instance pointer
UI32 Index, // Entry index
TDocumentInfo ADDR DInfo, // Document info entry type
char* ADDR Key, // Only set for user defined keys
char* ADDR Value, // The value of the info entry
LBOOL ADDR Unicode) // Is value in Unicode format?

The function returns a document info entry from the currently opened import file. The parameter
Index must be a valid index into the array of document info entries. The number of available entries
is returned by GetInDocInfoCount(). The parameter Value holds a pointer to the original value, it
must not be NULL. Do not change or free the value. If the parameter Unicode is true, the value is a
Unicode string. Make a type cast to UI16* in this case. The parameter Key contains always an Ansi
string if set (user defined keys only).

Return values:

If the function succeeds the return value is the string length in characters of the parameter Value.
Depending on the string format make a type cast to UI16*.

Function Reference Page 448 of 854

GetInEncryptionFlags

Syntax:
SI32 pdfGetInEncryptionFlags(

const PPDF* IPDF) // Instance pointer

The function returns the encryption flags of the currently opened import file. If no flag is set the
return value is zero. To determine whether a PDF file is encrypted call the function
GetInIsEncrypted().

GetInFieldCount

Syntax:
SI32 pdfGetInFieldCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of top level fields included in the currently opened import file. The
number of top level fields may not match the number of fields in the PDF file. For example,
interactive forms created by Adobe's Designer contain usually one top level group field that
contains all other fields of the document. The return value would be 1 in this case because the
children of group fields are not taken into account.

Return values:

If the function succeeds the return value is the number of top level fields, a value greater or equal
zero. If the function fails the return value is a negative error code.

GetInIsCollection

Syntax:
SI32 pdfGetInIsCollection(

const PPDF* IPDF) // Instance pointer

The function checks whether the currently opened import file is a portable collection. See
CreateCollection() for further information.

Return values:

If the function succeeds the return value is either 0 or 1 depending on whether the opened PDF file
is a portable collection. If the function fails the return value is a negative error code.

GetInIsEncrypted

Syntax:
SI32 pdfGetInIsEncrypted(

const PPDF* IPDF) // Instance pointer

The function checks whether the currently opened import file is encrypted.

Function Reference Page 449 of 854

Return values:

If the function succeeds the return value is either 0 or 1 depending on whether the opened PDF file
is encrypted. If the function fails the return value is a negative error code.

GetInIsSigned

Syntax:
SI32 pdfGetInIsSigned(
 const PPDF* IPDF) // Instance pointer

This function can be used to determine whether a PDF file contains a digital signature. The PDF file
must be opened with OpenImportFile() or OpenImportBuffer() beforehand.

The function checks only whether the signature flag is set in the global AcorForm object. Since not
all PDF libraries set the signature flag, it is not guaranteed that the file contains no signature if the
return value is false.

The only safe way to check for signatures is to import the file and search for deleted signature fields
with GetFieldEx(). If the member ISignature is set and if the member Contents of the TPDFSigDict
structure is non-NULL then the file contains a signature. See GetFieldEx() and GetSigDict() for
further information.

Return values:

If the PDF file contains a digital signature the return value is 1. If the file was not digitally signed the
function returns 0. A negative error code is returned on failure.

GetInIsTaggedPDF

Syntax:
SI32 pdfGetInIsTaggedPDF(
 const PPDF* IPDF) // Instance pointer

typedef enum TPDFMarkInfo
{
 miNotTagged = 0, // This is no Tagged PDF file.
 miTagged = 1, // This is a Tagged PDF file.
 miSuspects = 2, // The file contains suspect contents that whose ordering does not ordered
 // meet the requirements of the Tagged PDF specifications.
 miUserProperties = 4 // A flag indicating that at least one structure element contains user
 // properties. User properties are stored in User Property dictionaries.
}TPDFMarkInfo;

The function can be used to check whether the currently open import file is a Tagged PDF file. The
PDF file must be opened beforehand with OpenImportFile() or OpenImportBuffer().

The return value is a set flags indicating the tagging status of the file, see TPDFMarkInfo above.

Return values:

If the function succeeds, the return value is greater or equal zero. If the function fails, the return
value is a negative error code.

Function Reference Page 450 of 854

GetInIsTrapped

Syntax:
SI32 pdfGetInIsTrapped(
 const PPDF* IPDF) // Instance pointer

This function returns the value of the Trapped key in the current open import file. The PDF file must
be opened with OpenImportFile() or OpenImportBuffer() beforehand. If the key is not set the return
value is false.

Return values:

If the function succeeds it returns 0 or 1 depending on the value of the Trapped key. A negative
error code is returned on failure.

GetInIsXFAForm

Syntax:
SI32 pdfGetInIsXFAForm(

const PPDF* IPDF) // Instance pointer

The function returns true if the current open import file contains an XFA form. If the form is a
hybrid form the XFA part can be deleted and the remaining PDF form fields can be edited as usual.

XFA streams can be accessed with GetXFAStream() / GetXFAStreamCount().

The PDF file must be opened with OpenImportFile() or OpenImportBuffer() before this function can
be called.

Return values:

If the function succeeds it returns 0 or 1 depending on whether the file contains an XFA form. If the
function fails the return value is a negative error code.

GetInkList

Syntax:
LBOOL pdfGetInkList(
 const ILST* List, // List pointer returned by GetAnnotEx()
 float** Points, // Address of a float* variable
 UI32* Count) // Address of a UI32 variable

The function returns a path or ink list of an Ink annotation. The array contains x/y coordinate pairs
(measured in bottom up coordinate system). The array length should be even but odd values can
occur if the annotation was imported from a malformed document.

The points of an ink list are usually drawn with bezier curves to achieve a smooth transition
between points.

Function Reference Page 451 of 854

Example (C++):
...
float* points = NULL;
TPDFAnnotationEx annot;
UI32 i, j, numAnnots, count = 0;

pdfEditPage(pdf, 1);
numAnnots = pdfGetPageAnnotCount(pdf);
for (i = 0; i < numAnnots; i++)
{
 if (pdfGetPageAnnotEx(pdf, i, annot))
 {
 if (annot.Type == atInk)
 {
 for (j = 0; j < annot.InkListCount; j++)
 {
 if (pdfGetInkList(annot.InkList[j], &points, &count))
 {
 // Do something with the path
 }
 }
 }
 }
}
pdfEndPage(pdf);
...

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetInMetadata

Syntax:
LBOOL pdfGetInMetadata(
 const PPDF* IPDF, // Instance pointer
 SI32 PageNum, // Page number or -1 to access the global XMP stream
 BYTE** Buffer, // Address of a BYTE* pointer
 UI32* BufSize) // Address of an unsigned integer variable

The function can be used to access the optional metadata streams of pages or the global metadata
stream of the current open import file. Metadata streams are in XMP format that is a superset of
XML. The PDF file must be opened with OpenImportImportFile() or OpenImportBuffer()
beforehand.

Although the global XMP stream does usually exist in todays PDF files, metadata streams are
optional and maybe not present. The function returns true if no error occurs, also if no metadata
stream is present. The caller must also check whether the parameter BufSize was set to a value
greater zero to determine whether stream data was returned.

The parameter Buffer is assigned to the original stream buffer, if any. DynaPDF is the owner of this
data. Do not modify or free the returned memory block.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 452 of 854

Usage (C++):
...
pdfOpenImportFile(pdf, "c:/test.pdf", ptOpen, NULL);
BYTE* buffer = NULL;
UI32 bufSize = 0;
if (pdfGetInMetadata(pdf, -1, &buffer, &bufSize))
{
 if (bufSize > 0)
 {
 // Do something with the data
 }
}

GetInNamedDest (obsolete)

Syntax:
LBOOL pdfGetInNamedDest(

const PPDF* IPDF, // Instance pointer
UI32 Index, // Array index
struct TPDFNamedDest* Dest) // Structure to be filled

This function is no longer supported. Please use the new function GetNamedDest() instead.

GetInNamedDestCount (obsolete)

Syntax:
SI32 pdfGetInNamedDestCount(

const PPDF* IPDF) // Instance pointer

This function is no longer supported. The function returns always zero also if the file contains
named destinations. Please use the new function GetNamedDestCount() instead.

GetInOrientation

Syntax:
SI32 pdfGetInOrientation(
 const PPDF* IPDF, // Instance pointer
 SI32 PageNum) // Page number

The function returns the orientation of a specific page within the currently open import file (see also
OpenImportFile()).

Return values:

If the function succeeds the return value is the orientation of the page in degrees. Possible values are
0, 90, 180, 270, or the same values as negative numbers. If the function fails the return value is a
negative error code, a value smaller than -360.

Function Reference Page 453 of 854

GetInPageCount

Syntax:
SI32 pdfGetInPageCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of pages contained in an external PDF file. The external PDF file
must be opened with the function OpenImportFile() or OpenImporBuffer() beforehand.

Return values:

If the function succeeds the return value is the number of pages. If the function fails the return value
is a negative error code.

GetInPDFVersion

Syntax:
SI32 pdfGetInPDFVersion(
 const PPDF* IPDF) // Instance pointer

The function returns the PDF version number of an external PDF file. Values below 10 are the minor
version: 3 for PDF 1.3, 4 for PDF 1.4 and so on.

If the major version is higher than 1, e.g. PDF 2.0, the function returns the version as follows:
MajorVersion * 10 + MinorVersion

For PDF 2.1 the result would be 21.

The PDF file must be opened with OpenImportFile() or OpenImporBuffer() beforehand.

Return values:

If the function succeeds the return value is the minor version number. If the function fails the return
value is a negative error code.

GetInPDFVersionEx

Syntax:
SI32 pdfGetInPDFVersionEx(
 const PPDF* IPDF, // Instance pointer
 struct TPDFVersionInfo* Value) // Version structure or NULL

The function retrieves the version information of the currently open import file. The function can be
called with or without the structure TPDFVersionInfo. If value is set to NULL, the function returns
the version constant as defined in the enum TPDFVersion or -1 if the version is not supported by
DynaPDF.

A return value smaller than -1 indicates that an error occurred.

The version constants are described in detail at GetPDFVersionEx().

Function Reference Page 454 of 854

GetInPrintSettings

Syntax:
LBOOL pdfGetInPrintSettings(

const PPDF* IPDF,
struct TPDFPrintSettings* Settings)

struct TPDFPrintSettings
{

TDuplexMode DuplexMode; // See below
SI32 NumCopies; // -1 means not set. The maximum value is 5
SI32 PickTrayByPDFSize; // -1 means not set. 0 == false, 1 == true
// If set, the array contains PrintRangesCount * 2 values. Each pair
// consists of the first and last page of the sub-range. The first page in
// the PDF file is denoted by 0.
UI32* PrintRanges;
UI32 PrintRangesCount; // Number of ranges
TPrintScaling PrintScaling; // psNone means not set
/* 9 reserved fields follow*/

};

typedef enum
{
 dpmNone, // Use the default value of the viewer
 dpmSimplex,
 dpmFlipShortEdge,
 dpmFlipLongEdge
}TDuplexMode;

The function retrieves the print settings of the current open import file. The PDF file must be opened
with OpenImportFile() or OpenImporBuffer() before the function can be used. The print settings are
used to initialize the print dialog in a viewer application. See also SetPrintSettings().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetInRepairMode

Syntax:
LBOOL pdfGetInRepairMode(
 const PPDF* IPDF) // Instance pointer

This function can be used to determine whether the current open import file was opened in repair or
normal mode. When a PDF file was loaded in normal mode and if it contains damages which were
not recognized when opening the file, e.g. if it is not possible to load one or more pages of it, then it
is possible to load the file explicitely in repair mode to repair the damages. Not all damages can be
repaired but DynaPDF contains a very robust and powerful PDF parser that is able to repair many
damages in a PDF file.

See also OpenImportFile().

Function Reference Page 455 of 854

Return values:

If the current open import file was already opened in repair mode then the return value is 1. If it was
loaded in normal mode then the return value is 0. If no import file is in memory the return value is a
negative error code.

GetIsFixedPich

Syntax:
LBOOL pdfGetIsFixedPitch(
 const PPDF* IPDF) // Instance pointer

The function returns 1 if the active font is a fixed pitch font or 0 if the font is a variable pitch font.
You must set a font before this function can be used (see SetFont() for further information).

Return values:

If the function succeeds the return value 0 or 1 depending on whether the font is a fixed pitch font. If
the function fails the return value is a negative error code.

GetIsTaggingEnabled

Syntax:
LBOOL pdfGetIsTaggingEnabled(
 const PPDF* IPDF) // Instance pointer

This function can be used to determine whether tagging is enabled. If the function is called within
an open page then it checks whether tagging is enabled for this page. EditPage() does not fully
disable tagging when the structure information of a specific page is damaged.

When the function is called outside of an open page then it checks whether tagging for the entire
document is enabled. Tagging can be disabled when a page of a PDF file with tagging information
was imported while a structure tree was already in memory.

Return values:

If tagging is enabled the return value is 1. If tagging is disabled the return value is 0.

GetItalicAngle

Syntax:
double pdfGetItalicAngle(
 const PPDF* IPDF) // Instance pointer

The function returns the italic angle in degrees that will be used to emulate italic font styles. This
value is only used if an italic version of the wished font could not be found. See SetItalicAngle() for
further information.
Default value = 14.0

Function Reference Page 456 of 854

GetJavaScript

Syntax:
char* pdfGetJavaScript(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle, // Handle of global JavaScript
 UI32 ADDR Len, // String length in characters
 LBOOL ADDR Unicode) // If true, the return value is a Unicode string

The function returns a global JavaScript as string. The parameter AHandle must be a valid handle of
a global JavaScript. The parameter Len holds the string length in characters without null-terminator.
If Unicode is true, the return value is a Unicode string. Make a typecast to UI16* in the latter case.
The parameters Len and Unicode must both not be NULL.

The returned string is a pointer to the original value. Do not change or free the string.

To enumerate all JavaScripts of a document use the function GetJavaScriptCount() and use this
value in a simple for statement:
...
LBOOL unicode;
UI32 len;
char* scriptA;
UI16* scriptW;
SI32 count = pdfGetJavaScriptCount();
for (i = 0; i < count; i++)
{
 scriptA = pdfGetJavaScript(i, len, unicode);
 if (scriptA)
 {
 if (unicode)
 {
 scriptW = (UI16*)scriptA; // String is in Unicode format
 ...
 }else
 {
 ...
 }
 }
}

Remarks:

To get a global JavaScript by using the script's name use the function GetJavaScriptEx().

Return value:

If the function succeeds the return value is the JavaScript as Ansi or Unicode string. If the function
fails the return value is NULL.

Function Reference Page 457 of 854

GetJavaScriptAction (obsolete)

Syntax:
char* pdfGetJavaScriptAction(
 const PPDF* IPDF, // Instance pointer
 UI32 AHandle, // Handle of a JavaScript action
 UI32 ADDR Len, // String length in characters
 LBOOL ADDR Unicode) // If true, the return value is a Unicode string

The function returns the script of a JavaScript Action as string. The parameter AHandle must be a
valid handle of a JavaScript Action. The parameter Len holds the string length in characters without
null-terminator. If Unicode is true, the return value is a Unicode string. Make a typecast to UI16* in
the latter case. The returned string is a pointer to the original value. Do not change or free the string.

This function is obsolete. Please use GetJavaScriptActionEx() instead.

Return value:

If the function succeeds the return value is the JavaScript as Ansi or Unicode string. If the function
fails the return value is NULL.

GetJavaScriptAction2 (obsolete)

Syntax:
char* pdfGetJavaScriptAction2(

const PPDF* IPDF, // Instance pointer
TObjType ObjType, // Object to which the object handle corresponds
UI32 ObjHandle, // Handle of the object that contain the action
UI32 ActIndex, // Action index that should be accessed
UI32 ADDR Len, // Variable to which the length can be set
LBOOL ADDR Unicode, // If true, the script is defined in Unicode
TObjEvent ADDR Event) // The event in which the action is executed

typedef enum
{

oeNoEvent, // Internal -> cannot occur
 oeOnOpen, // Catalog, Pages
 oeOnClose, // Pages only
 oeOnMouseUp, // All fields, page link annotations, bookmarks
 oeOnMouseEnter, // Form fields only
 oeOnMouseExit, // Form fields only
 oeOnMouseDown, // Form fields only
 oeOnFocus, // Form fields only
 oeOnBlur, // Form fields only
 oeOnKeyStroke, // Text fields only
 oeOnFormat, // Text fields only
 oeOnCalc, // Text fields, combo boxes, list boxes
 oeOnValidate, // All form fields, except buttons
 oeOnPageVisible, // PDF 1.5 -> Form fields only
 oeOnPageInVisible, // PDF 1.5 -> Form fields only
 oeOnPageOpen, // PDF 1.5 -> Form fields only
 oeOnPageClose, // PDF 1.5 -> Form fields only
 oeOnBeforeClosing, // PDF 1.4 -> Catalog only
 oeOnBeforeSaving, // PDF 1.4 -> Catalog only
 oeOnAfterSaving, // PDF 1.4 -> Catalog only
 oeOnBeforePrinting, // PDF 1.4 -> Catalog only

Function Reference Page 458 of 854

 oeOnAfterPrinting // PDF 1.4 -> Catalog only
}TObjEvent;

typedef enum
{
 otAction,
 otAnnotation,
 otBookmark,
 otCatalog, // PDF 1.4
 otField,
 otPage,
 otPageLink
}TObjType;

The function returns the script of a JavaScript Action. The return value is a pointer to the original
string buffer. This value must not be changed or freed.

The value of the parameter ObjHandle depends on the object type. If the object type is a page, the
page number must be used as object handle. The number of actions which are assigned to a specific
object is returned by the function GetObjActionCount(). The parameter ActIndex represents is array
index of the action that should be accessed. The first action in the array has the index 0.

The parameter Event is set to the event that causes the execution of the script. If the script is defined
in Unicode the parameter Len is set to the length in characters. Make a typecast to UI16* in this case
because Unicode scripts use 16 bit per character.

This function is obsolete. Please use GetObjActions() / GetJavaScriptActionEx() instead.

Return values:

If the function succeeds the return value is a pointer to the original script buffer. If the function fails
or if the action contains an empty script the return value is NULL. However, the function produces
an error on failure. If no error callback function is set, call GetErrorMessage() to determine whether
an error occurred.

GetJavaScriptActionEx
LBOOL pdfGetJavaScriptActionEx(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFJavaScriptAction* Action) // see below

struct TPDFJavaScriptAction
{

UI32 StructSize; // Must be set to sizeof(TPDFJavaScriptAction).
 const char* ScriptA; // The script.
 const UI16* ScriptW; // Either the Ansi or Unicode string is set but never both.
 UI32 ScriptLen; // Script length in characters, not bytes!
 SI32 NextAction; // -1 or next action handle to be executed if any.
 TActionType NextActionType; // Only set if NextAction is >= 0.
};

The function retrieves the script of a JavaScript action. The member StructSize must be initialized to
sizeof(TPDFJavaScriptAction) before calling the function. NextAction is the handle of the next action
that must be executed, if any.

Function Reference Page 459 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetJavaScriptCount

Syntax:
SI32 pdfGetJavaScriptCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of global JavaScripts contained in a document.

GetJavaScriptEx

Syntax:
char* pdfGetJavaScriptEx(
 const PPDF* IPDF, // Instance pointer
 const char* Name, // Name of the global JavaScript
 UI32 ADDR Len, // String length in characters
 LBOOL ADDR Unicode) // If true, return value is a Unicode string

The function returns a global JavaScript as string by using the script's name instead of a handle to
identify the script. Each global JavaScript has a unique name that identifies the script; this name
must be passed to the parameter Name. See also AddJavaScript().

The parameter Len holds the string length in characters without null-terminator. If Unicode is true,
the return value is a Unicode string. Make a typecast to UI16* in the latter case. The parameters Len
and Unicode must both not be NULL.

The returned string is a pointer to the original value. Do not change or free the string.

To enumerate all JavaScripts of a document use the function GetJavaScriptCount() and use this
value in a simple for statement (see GetJavaScript() for further information).

Return values:

If the function succeeds the return value is the JavaScript as Ansi or Unicode string. If the function
fails the return value is NULL.

Function Reference Page 460 of 854

GetJavaScriptName

Syntax:
char* pdfGetJavaScriptName(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Handle of global JavaScript
UI32 ADDR Len, // Name length in characters
LBOOL ADDR Unicode) // If true, the name is in Unicode format

The function returns the name of a global JavaScript. The parameter Handle must be a valid handle
of a global JavaScript. If the parameter Unicode is true the returned string is in Unicode format. Make
a typecast to UI16* in this case. The parameter Len holds the string length in characters.

Use the function GetJavaScriptCount() to determine the number of available scripts. The handles of
global JavaScripts are simple array indexes.

Return value:

If the function succeeds the return value is the JavaScript as Ansi or Unicode string. If the function
fails the return value is NULL.

GetJPEGQuality

Syntax:
SI32 pdfGetJPEGQuality(
 const PPDF* IPDF) // Instance pointer

The function returns the current JPEG compression quality which is used when compressing images
with the JPEG or JPEG2000 compression filter. The return value can be negative indicating that the
pass-through mode is disabled. The absolute value represents the wished image quality in percent if
the JPEG compression filter is used.

If the JPEG2000 compression filter is used the value represents a divisor of the uncompressed image
size to the wished compressed image size. The absolute value ranges from 0 to 1000. If the value is 0
or 1000 then the loss-less variant of JPEG2000 compression is used (see also SetJPEGQuality()).

GetLanguage

Syntax:
char* pdfGetLanguage(
 const PPDF* IPDF) // Instance pointer

The function returns the language identifier of the document as an ISO 3166 language tag or IANA
tag, or NULL if not set. Language tags are defined as normal Ansi string values. The function
returns a pointer to the original string, do not change, or free the value.

The Language identifiers are described in detail under SetLanguage().

Function Reference Page 461 of 854

GetLastTextPosX, GetLastTextPosY

Syntax:
double pdfGetLastTextPosX/Y(
 const PPDF* IPDF) // Instance pointer

The functions return the end position of the last drawn text. The returned y-coordinate is the
position of the text's baseline measured in bottom-up coordinates.

Return values:

If the function succeeds the return value is the x- or y-coordinate. This value can be negative
depending on the coordinate where the string was placed. If the function fails the return value is a
negative error code. An error code is smaller than -33554531.0.

Example 1 (Top Down Coordinates):
...
pdfSetPageCoords(PDF, pcTopDown);

pdfAppend(PDF);
double fontSize = 20.0;
pdfSetFont(PDF, "Times", fsItalic, fontSize, true, cp1252);
/*
 Because we use top down coordinates in this example we must transform

the returned y-coordinate to top down coordinates. To achieve this we
must subtract the value from the page height.
The coordinate origin of the text in top down coordinates is normally
the upper left corner. So, we must also subtract the font size because
the provided y-coordinate lies on the text’s baseline.

*/
pdfWriteFTextEx(PDF, 50, 50.0, 200.0, -1.0, taLeft, "Some text that "
 "ends on an unknown position...");
pdfSetFillColor(PDF, PDF_RED);
pdfWriteText(PDF,

pdfGetLastTextPosX(PDF),
pdfGetPageHeight(PDF)-pdfGetLastTextPosY(PDF)-fontSize,
"We are behind the last text line");

pdfEndPage(PDF);
...

Example 2 (Rotated text):
...
pdfSetPageCoords(PDF, pcTopDown);

pdfAppend(PDF);
pdfSetFont(PDF, "Times", fsItalic, 20.0, true, cp1252);
/*
 The coordinate origin that is passed to RotateCoords() is measured in

top down coordinates in this example. However, after the function was
called bottom-up coordinates are active. Because the calculated end
point is measured in bottom-up coordinates too we can directly use the
coordinates to place some text behind the previous string. This works
of course only if the rotated coordinate system is still active.

*/
pdfSaveGraphicState(PDF);
pdfRotateCoords(PDF, 30.0, 150.0, 350.0);
// Note that buttom-up coordinates are now active
pdfWriteFTextEx(PDF, 50, 50.0, 200.0, -1.0, taLeft, "Some rotated text "
 "that ends on an unknown position...");

Function Reference Page 462 of 854

pdfSetFillColor(PDF, PDF_RED);
pdfWriteText(PDF,

pdfGetLastTextPosX(PDF),
pdfGetLastTextPosY(PDF),
"We are behind the last text line");

pdfRestoreGraphicState(PDF);
pdfEndPage(PDF);
...

Example 3 (WriteAngleText()):
...
pdfSetPageCoords(PDF, pcTopDown);

pdfAppend(PDF);
pdfSetFont(PDF, "Times", fsItalic, 20.0, true, cp1252);
/*
 WriteAngleText() calculates the absolute end point measured in bottom-

up coordinates. Note that the font origin is taken into account. As
long as no further coordinate transformations are applied the
coordinates are directly usable with exception that we must transform
the y-coordinate to top down coordinates in this example.

*/
pdfWriteAngleText(PDF, "Some text...,", 10.0, 150.0, 150.0, 0.0, 0.0);

pdfSetFillColor(PDF, PDF_RED);
pdfWriteText(PDF,

pdfGetLastTextPosX(PDF),
pdfGetPageHeight(PDF)-pdfGetLastTextPosY(PDF),
"We are behind the last text line");

pdfEndPage(PDF);
...

GetLaunchAction

Syntax:
LBOOL pdfGetLaunchAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFLaunchAction* Action) // see below

struct TPDFLaunchAction
{

UI32 StructSize; // Must be set to sizeof(TPDFLaunchAction).
 const char* AppName; // Optional. The name of the app that should be launched.
 const char* DefDir; // Optional default directory.
 IFSR* File; // see GetFileSpec().
 SI32 NewWindow; // -1 = viewer default, 0 = false, 1 = true.
 SI32 NextAction; // -1 or next action handle to be executed if any.
 TActionType NextActionType; // Only set if NextAction is >= 0.
 const char* Operation; // Optional. The operation to perform (open or print).
 const char* Parameter; // Optional parameter that shall be passed to the app.
};

The function retrieves the properties of a launch action. The member StructSize must be set to
sizeof(TPDFLaunchAction) before the function can be called.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 463 of 854

GetLayerConfig

Syntax:
LBOOL pdfGetLayerConfig(
 const PPDF* IPDF, // Instance pointer
 SI32 Index, // Index or -1 for the default config
 struct TPDFOCLayerConfig* Out) // Required. See below

struct TPDFOCLayerConfig
{
 UI32 StructSize; // Must be set to sizeof(TOCLayerConfig)
 TOCGIntent Intent; // Possible values oiDesign, oiView, or oiAll.
 LBOOL IsDefault; // If true, this is the default configuration.
 const char* NameA; // Optional configuration name. The default config has
 // usually no name but all others should have one.
 const UI16* NameW; // Either the Ansi or Unicode string is set at time.
 UI32 NameLen; // Length in characters.
};

The function retrieves the most important properties of a layer configuration. A PDF file can contain
one or more layer configurations so that different layers can be initially shown or hidden.

A PDF file that contains layers (Optional Content Groups in PDF syntax) contains usually at least a
default configuration dictionary. This configuration is loaded by default when the visibility state of
a layer or optional content group must be determined, e.g. when rendering a page.

To determine the number of available configurations call GetLayerConfigCount(). The first index is
denoted by 0.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetLayerConfigCount

Syntax:
SI32 pdfGetLayerConfigCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of available layer configurations. Note that it is possible that a
document contains layers but no layer configuration. To determine whether a document contains
layers or optional content groups use GetOCGCount().

To load a specific layer configuration call LoadLayerConfig().

Function Reference Page 464 of 854

GetLeading

Syntax:
double pdfGetLeading(
 const PPDF* IPDF) // Instance pointer

The function returns the current leading. The leading is the distance between two text lines. The
default leading in PDF is the font size. The property is used by the function AddContinueText() and
WriteFText(). A value of 0 determines that the font size should be used as leading, this is the default
behaviour.
Default value = 0

GetLineCapStyle

Syntax:
SI32 pdfGetLineCapStyle(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 csButtCap = 0,
 csRoundCap = 1,
 csSquareCap = 2
}TLineCapStyle;

The function returns the current line cap style used for vector graphics. The meaning of the values
are described in detail under SetLineCapStyle().
Default value = csButtCap

GetLineJoinStyle

Syntax:
SI32 pdfGetLineJoinStyle(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 jsMiterJoin = 0,
 jsRoundJoin = 1,
 jsBevelJoin = 2
}TLineJoinStyle;

The function returns the current line join style used for vector graphics. The meaning of the values
are described in detail under SetLineJoinStyle().
Default value = jsMiterJoin

Function Reference Page 465 of 854

GetLineWidth

Syntax:
double pdfGetLineWidth(
 const PPDF* IPDF) // Instance pointer

The function returns the current line width used for stroked vector graphics and the border of
interactive objects.

GetLinkHighlightMode

Syntax:
SI32 pdfGetLinkHighlightMode(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 hmNone, // Default
 hmInvert, // Invert the contents of the annotation's bounding box
 hmOutline, // Invert the annotations border
 hmPush, // Simulate a push button effect
 hmPushUpd // Update appearance stream on changes
}THighlightMode;

The function returns the current highlight mode used for newly created annotations.

GetLogMetafileSize

Syntax:
SI32 pdfGetLogMetafileSize(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to EMF file
 struct TRectL* R) // out -> Bounding rectangle

struct TRectL
{

SI32 Left;
 SI32 Top;
 SI32 Right;
 SI32 Bottom;
};

The function retrieves the logical bounding box of an enhanced or Windows metafile. The
parameter FileName must be the file path to the EMF or WMF file. The parameter R gets the
unscaled logical bounding box of the metafile. This bounding box is required to calculate a user
defined cutting area or viewport (see the example below the description of the function).

Remarks:

Two WMF formats are available, the old non-portable WMF format and the newer portable WMF
format. Both formats must be converted to EMF with the GDI function SetWinMetaFileBits() before
the logical bounding box can be calculated (the conversion is done automatically). However, non-
portable WMF files are device-dependent, they contain no size information. To get correct results,
the default size must be set with the function SetWMFDefExtent() beforehand. The parameters

Function Reference Page 466 of 854

Width and Height are passed to the member xExt, yExt of the structure METAFILEPICT which is
required to convert WMF files to EMF. The default size is 0, 0, that means the GDI calculates the size
automatically but mostly incorrect.

Because the GDI function SetWinMeatFileBits() is used to convert WMF files to EMF, WMF files are
not supported under Linux or UNIX.

Return Values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (Delphi):
// In this example, we have a paintbox (TPaintBox) on the form
// into which we paint an EMF file. The user can draw a rectangle when
// pressing the left mouse button, this rectangle is our cutting area.
// FView is a private variable of the type TRectL. Note that this
// rectangle must also be drawn in the OnPaint event of the paintbox.
procedure TForm1.PaintBoxMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y:
Integer);
var dc: HDC;
begin
 dc := PaintBox.Canvas.Handle;
 SetROP2(dc, R2_NOT);
 SelectObject(dc, GetStockObject(NULL_BRUSH));
 Rectangle(dc, FView.Left, FView.Top, FView.Right, FView.Bottom);
 FView.Left := X;
 FView.Top := Y;
 FView.Right := X;
 FView.Bottom := Y;
end;

procedure TForm1.PaintBoxMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
var dc: HDC;
begin
 // The rectangle must be drawn twice, one time to delete the
 // previous one, and the next time to draw the rectangle with the
 // new size. There is no need to redraw the paintbox.
 if (ssLeft in Shift) then begin
 dc := PaintBox.Canvas.Handle;
 SetROP2(dc, R2_NOT);
 SelectObject(dc, GetStockObject(NULL_BRUSH));
 Rectangle(dc, FView.Left, FView.Top, FView.Right, FView.Bottom);
 FView.Right := X;
 FView.Bottom := Y;
 Rectangle(dc, FView.Left, FView.Top, FView.Right, FView.Bottom);
 end;
end;
// ViewRect holds the current size of the graphic on screen.
procedure TForm1.CreatePDF(const EMF: String; const ViewRect: TRectL)
var pdf: TPDF; r: TRectL; sx, sy: Double; tmp: Integer;
begin
 pdf := nil;
 try
 pdf := pdf.Create;
 pdf.CreateNewPDFA('c:\dout.pdf');
 pdf.SetDocInfo(diSubject, 'EMF-Files');
 pdf.SetDocInfo(diTitle, 'Metafiles');
 pdf.SetDocInfo(diCreator, 'Delphi Test Application');
 pdf.Append;
 pdf.SetPageCoords(pcTopDown);
 pdf.GetLogMetafileSize(EMF, r);
 // Make sure that the rectangle contains correct values
 if (FView.Left > FView.Right) then begin
 tmp := FView.Left;

Function Reference Page 467 of 854

 FView.Left := FView.Right;
 FView.Right := tmp;
 end;
 if (FView.Top > FView.Bottom) then begin
 tmp := FView.Top;
 FView.Top := FView.Bottom;
 FView.Bottom := tmp;
 end;
 // ViewRect is the current size of the EMF graphic in pixel.
 sx := (r.Right - r.Left) / (ViewRect.Right - ViewRect.Left);
 sy := (r.Bottom - r.Top) / (ViewRect.Bottom - ViewRect.Top);
 // See how the rectangle must be calculated:
 tmp := r.Left;
 r.Left := Round(r.Left + FView.Left * sx);
 r.Right := Round(tmp + FView.Right * sx);
 tmp := r.Top;
 r.Top := Round(r.Top + FView.Top * sy);
 r.Bottom := Round(tmp + FView.Bottom * sy);
 // Now we have the unscaled cutting area. We want to output the
 // EMF file onto the entire page with a border of 20 units so
 // that we must only check whether the width or the height can be
 // calculated by DynaPDF to preserve the aspect ratio.
 sx := (r.Right - r.Left) / pdf.GetPageWidth;
 sy := (r.Bottom - r.Top) / pdf.GetPageHeight;
 pdf.SetMetaConvFlags(mfClipView); // we clip the viewport
 if (sx > sy) then
 pdf.InsertMetafileExt(EMF,
 r, 20, 20, pdf.GetPageWidth - 40, 0)
 else
 pdf.InsertMetafileExt(EMF,
 r, 20, 20, 0, pdf.GetPageHeight - 40);
 pdf.EndPage;
 pdf.CloseFile;
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOK], 0);
 end;
 if pdf <> nil then pdf.Free;
end;

GetLogMetafileSizeEx

Syntax:
SI32 pdfGetLogMetafileSizeEx(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // EMF buffer
 UI32 BufSize, // Buffer size in bytes
 struct TRectL* R) // out -> Bounding rectangle

The function retrieves the logical bounding box of an enhanced or Windows metafile. The
parameter Buffer must be a file buffer of an EMF or WMF file.

Because the GDI function SetWinMeatFileBits() is used to convert WMF files to EMF, WMF files are
not supported under Linux or UNIX.

The original size of a metafile must be known to compute a user defined cutting area or viewport.
See GetLogMetafileSize() for an example application.

Return Values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 468 of 854

GetMatrix

Syntax:
LBOOL pdfGetMatrix(

const PPDF* IPDF, // Instance pointer
struct TCTM* M) // Structure which holds the transformation matrix

struct TCTM
{

double a;
double b;
double c;
double d;
double x;
double y;

};

The function retrieves the current transformation matrix. Affine transformations are used to scale,
translate, shear, or reflect the coordinate system. Functions which change the coordinate system
change always the current transformation matrix, e.g. RotateCoords(), TranslateCoords(), and so on.
The transformation matrix can also be changed directly with SetMatrix().

GetMaxFieldLen

Syntax:
SI32 pdfGetMaxFieldLen(
 const PPDF* IPDF, // Instance pointer
 UI32 TxtField) // Text field handle

The function returns the allowed maximum string length of a text field, or zero if the length is not
restricted. The parameter TxtField must be a valid handle of a text field.

Return values:

If the function succeeds the return value is the allowed maximum string length of the text field. If
the function fails the return value is a negative error code.

GetMeasureObj

Syntax:
LBOOL pdfGetMeasureObj(
 const IMSR* Measure, // Pointer of a measure object
 struct TPDFMeasure* Value) // See below

struct TPDFMeasure
{

UI32 StructSize; // Must be set to sizeof(TPDFMeasure)
 LBOOL IsRectilinear; // If true, the members of the rectilinear measure dictionary are set.
 /* --- Rectilinear measure dictionary --- */
 INFM** Angles; // Number format array to measure angles -> GetNumberFormatObj()
 UI32 AnglesCount; // Number of objects in the array.
 INFM** Area; // Number format array to measure areas -> GetNumberFormatObj()
 UI32 AreaCount; // Number of objects in the array.
 float CXY; // Optional, meaningful only when Y is present.
 INFM** Distance; // Number format array to measure distances -> GetNumberFormatObj()

Function Reference Page 469 of 854

 UI32 DistanceCount; // Number of objects in the array.
 float OriginX; // X-Origin of the measurement coordinate system.
 float OriginY; // Y-Origin of the measurement coordinate system.
 const char* RA; // A text string expressing the scale ratio of the drawing.
 const UI16* RW; // A text string expressing the scale ratio of the drawing.
 INFM** Slope; // Number format array to measure the slope -> GetNumberFormatObj()
 UI32 SlopeCount; // Number of objects in the array.
 INFM** X; // Number format array for measurement of change along the x-axis and,
 // if Y is not present, along the y-axis as well.
 UI32 XCount; // Number of objects in the array.
 INFM** Y; // Number format array for measurement of change along the y-axis.
 UI32 YCount; // Number of objects in the array.

 /* --- Geospatial measure dictionary --- */
 double* Bounds; // Array of numbers taken pairwise to describe the bounds for which
 // geospatial transforms are valid.
 UI32 BoundCount; // Number of values in the array. Should be a multiple of two.

 // The DCS coordinate system is optional.
 LBOOL DCS_IsSet; // If true, the DCS members are set.
 LBOOL DCS_Projected; // If true, the DCS values contains a pojected coordinate system.
 SI32 DCS_EPSG; // Optional, either EPSG or WKT is set.
 const char* DCS_WKT; // Optional ASCII string.

 // The GCS coordinate system is required and should be present.
 LBOOL GCS_Projected; // If true, the GCS values contains a pojected coordinate system.
 SI32 GCS_EPSG; // Optional, either EPSG or WKT is set.
 const char* GCS_WKT; // Optional ASCII string.

 double* GPTS; // Required, an array of numbers that shall be taken pairwise,
 // defining points in geographic space as degrees of latitude and
 // longitude, respectively.
 UI32 GPTSCount; // Number of values in the array.
 double* LPTS; // Optional, an array of numbers that shall be taken pairwise to
 // define points in a 2D unit square.
 UI32 LPTSCount; // Number of values in the array.

 const char* PDU1; // Optional preferred linear display units.
 const char* PDU2; // Optional preferred area display units.
 const char* PDU3; // Optional preferred angular display units.
};

The function retrieves the properties of a measure dictionary. The parameter Measure must be a
valid pointer of a measure dictionary. Such a pointer can be returned by GetImageObj(),
GetViewport(), ParseContent(), and other functions. The member StructSize must be set to
sizeof(TPDFMeasure).

Two different types of measure dictionaries are available: one for rectilinear coordinate systems and
one for geospatial coordinate systems.

The member IsRectilinear specifies which type was returned. Depending on the type different
members of the structure are set. Take a look at the comments in the structure definition to
determine which values will be present.

The function returns pointers of the original values. Do not modify or free any value!

A rectilinear measure dictionary contains one or more arrays of Number Format dictionaries. These
objects can be accessed with GetNumberFormatObj().

To determine how measure information can be used please have a look into the PDF Reference 2.0,
ISO/DIS 32000-2, Section Measurement properties.

Function Reference Page 470 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetMetaConvFlags

Syntax:
UI32 pdfGetMetaConvFlags(
 const PPDF* IPDF) // Instance pointer

typedef UI32 TMetaFlags;
#define mfDefault 0x00000 // No flags
#define mfDebug 0x00001 // Insert debug comments
#define mfShowBounds 0x00002 // Show the bounding boxes of text
#define mfNoTextScaling 0x00004 // Do not scale text records
#define mfClipView 0x00008 // Clip the output rectangle
#define mfUseRclBounds 0x00010 // Use the raw bounding box rclBounds
#define mfNoClippingRgn 0x00040 // Ignore clipping regions
#define mfNoFontEmbedding 0x00080 // Don't embed fonts used by the EMF
#define mfNoImages 0x00100 // Ignore image records
#define mfNoStdPatterns 0x00200 // Ignore standard hatch patterns
#define mfNoBmpPatterns 0x00400 // Ignore bitmap patterns
#define mfNoText 0x00800 // Ignore text records
#define mfUseUnicode 0x01000 // Use always Unicode to print text
#define mfUseTextScaling 0x04000 // Scale text (see description)
#define mfNoUnicode 0x08000 // Avoid the usage of Unicode fonts
#define mfFullScale 0x10000 // Scale coordinates to Windows size
#define mfUseRclFrame 0x20000 // See description
#define mfDefBkModeTransp 0x40000 // Initial backg. mode is transparent
#define mfApplyBidiAlgo 0x80000 // Apply the bidirectional algorithm
// Obsolete flags -> These flags are ignored, do not longer use them!
#define mfUseSpacingArray 0x0020 // Enabled by default
#define mfIntersectClipRect 0x2000 // Enabled by default

The function returns the conversion flags used to convert enhanced metafiles to PDF. The return
value is a bit-mask. Use a bitwise and operator to determine whether a specific flag is set. The
conversion flags are described in detail under SetMetaConvFlags().

GetMetadata

Syntax:
LBOOL pdfGetMetadata(
 const PPDF* IPDF, // Instance pointer
 TMetadataObj ObjType, // see below
 SI32 Handle, // Object handle or -1 for the catalog object
 BYTE** Buffer, // Address of a BYTE* pointer
 UI32* BufSize) // Address of an unsigned integer variable

typedef enum
{
 mdoCatalog, // The global XMP stream of the document (no handle needed)
 mdoFont, // Parameter Handle must be a font handle
 mdoImage, // Parameter Handle must be an image handle
 mdoPage, // Parameter Handle must be a page number
 mdoTemplate // Parameter Handle must be a template handle
}TMetadataObj;

Function Reference Page 471 of 854

The function can be used to access the optional metadata streams of pages, fonts, images, pages,
templates, as well as the global metadata stream that is associated with the Catalog object. Metadata
streams are in XMP format that is a superset of XML.

The global metadata stream will be created when this function is called. The returned stream is a
preview of the XMP stream that will be stored in the file when CloseFile() or CloseFileEx() is called.
Note that the creation and modification date will be updated when the file is closed (except if the
stream will be modified or replaced with SetMetadata()).

The original global XMP stream of external PDF files can be accessed with GetInMetadata().

Metadata streams are optional and maybe not present. The function returns true if no error occurs,
also if no metadata stream is present. The caller must also check whether the parameter BufSize was
set to a value greater zero to determine whether stream data was returned.

The parameter Buffer is assigned to the original stream buffer, if any. DynaPDF is the owner of this
data. Do not modify or free the returned memory block.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Usage (C++):
...
BYTE* buffer = NULL;
UI32 bufSize = 0;
// Get a preview of the global XMP stream
if (pdfGetMetadata(pdf, mdoCatalog, -1, &buffer, &bufSize))
{
 if (bufSize > 0)
 {
 // Do something with the data
 }
}

GetMissingGlyphs

Syntax:
UI32* pdfGetMissingGlyphs(

const PPDF* IPDF, // Instance pointer
UI32 ADDR Count) // Variable that holds the number of missing glyphs

The function returns the character codes that could not be found in the active font. If all characters
were found the return value is NULL.

Each character code is encoded as a 32 bit unsigned integer. The character codes which are stored in
this array correspond to the source string that was used in the function that outputs the text. For
example, if the active font was loaded with a 8 bit code page and if the Ansi version of WriteText()

Function Reference Page 472 of 854

was used, the array contains the 8 bit codes which could not be found. If the wide string version was
used the missing 16 bit codes will be returned.

If the active font is a CID font that uses an external CMap, a missing character code was maybe
constructed from a sequence of bytes or from two 16 bit codes (if a wide string function was used).

However, the 32 bit code can be easily converted back to the original code sequence. If the Ansi
version of a string function was used the algorithm looks as follows (C++):
...
UI32 i, p, value, count;
UI32* missingGlyphs = pdfGetMissingGlyphs(pdf, count);
// More than 4 bytes cannot be encoded in a 32 bit integer
BYTE sequence[4];
for (i = 0; i < count; i++)
{

value = missingGlyphs[i];
p = 0;
while (value)
{

sequence[p] = (BYTE)value;
 value >>= 8;
 ++p; // This is the string length when the loop returns

}
// You can now process the sequence...

}

Because the wide string versions use 16 bits per character, the conversion looks as follows:
UI32 i, p, value;
// More than two 16 bit values cannot be encoded in a 32 bit integer
UI16 sequence[2];
for (i = 0; i < count; i++)
{

value = missingGlyphs[i];
p = 0;
shift = 0;
while (value)
{

sequence[p] = (UI16)value;
 value >>= 16;
 ++p; // This is the string length when the loop returns

}
}

All string functions report the warning for a missing glyph only once. For example, if you call
GetTextWidth() with a text like "This is an €uro" and if the Euro character is not available in the font
then a warning is produced. However, if you output the same or another text again that contains the
missing Euro character too then no further warning is produced.

Function Reference Page 473 of 854

GetMiterLimit

Syntax:
double pdfGetMiterLimit(
 const PPDF* IPDF) // Instance pointer

The function returns the current miter limit used to draw stroked vector graphics. The graphics state
parameter miter limit is described in detail under SetMiterLimit(). The initial miter limit to convert
EMF files is 2.0.
Default value: 10.0

GetMovieAction

Syntax:
LBOOL pdfGetMovieAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFMovieAction* Action) // see below

struct TPDFMovieAction
{

UI32 StructSize; // Must be set to sizeof(TPDFMovieAction).
 SI32 Annot; // Optional. The movie annotation handle identifying the
 // movie that shall be played.
 float FWPosition[2]; // FWPosition.
 UI32 FWScale[2]; // FWScale.
 const char* Mode; // Mode.
 SI32 NextAction; // -1 or next action handle to be executed if any.
 TActionType NextActionType; // Only set if NextAction is >= 0.
 const char* Operation; // Operation.
 float Rate; // Rate.
 LBOOL ShowControls; // ShowControls.
 LBOOL Synchronous; // Synchronous.
 const char* TitleA; // The title of a movie annotation that shall be played.
 // Either Annot or Title should be set, but not both.
 const UI16* TitleW; // Either the Ansi or Unicode string is set at time.
 float Volume; // Volume.
};

The function retrieves the properties of a Movie action. The member StructSize must be set to
sizeof(TPDFMovieAction) before the function can be called.

The member FWScale is in the format numerator / denominator.

Return Values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 474 of 854

GetNamedAction
LBOOL pdfGetNamedAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFNamedAction* Action) // see below

struct TPDFNamedAction
{

UI32 StructSize; // Must be set to sizeof(TPDFNamedAction).
 const char* Name; // Only set if Type == naUserDefined.
 SI32 NewWindow; // -1 = viewer default, 0 = false, 1 = true.
 SI32 NextAction; // -1 or next action handle to be executed if any.
 TActionType NextActionType; // Only set if NextAction is >= 0.
 TNamedAction Type; // Known pre-defined actions.
};

typedef enum
{
 naFirstPage, // PDF 1.2 Go to the first page of the document
 naLastPage, // PDF 1.2 Go to the last page of the document
 naNextPage, // PDF 1.2 Go to the next page
 naPrevPage, // PDF 1.2 Go to the previous page
 naGoBack, // Go back to last page and position
 naOpenDlg, // Display the file open dialog
 naPrintDlg, // Display the print dialog
 naGeneralInfo, // Display the general info tab
 naFontsInfo, // Display the fonts info tab
 naSaveAs, // Display the save as dialog (requires Acrobat)
 naSecurityInfo, // Display the security settings
 naFitPage, // Fit the page into the window
 naDeletePages, // Delete one or more pages
 naQuit, // Quit the application
 naUserDefined // Internal value to store unknown imported values
}TNamedAction;

The function retrieves the properties of a Named action. The member StructSize must be set to
sizeof(TPDFNamedAction) before the function can be called.

If the application does not recognize the name, it shall take no action. Only the first four names are
defined in the PDF specs. All other pre-defined names were seen in PDF files created by Adobe's
Acrobat or Distiller.

Return Values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 475 of 854

GetNamedDest

Syntax:
LBOOL pdfGetNamedDest(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Array index
 struct TPDFNamedDest* Dest) // see below

struct TPDFNamedDest
{
 UI32 StructSize; // Must be set to sizeof(TPDFNamedDest)
 const char* NameA; // The destination name
 const UI16* NameW; // The destination name
 UI32 NameLen; // Length in characters
 const char* DestFileA; // If set, the destination is located in
 const UI16* DestFileW; // this file
 UI32 DestFileLen; // Length in characters
 SI32 DestPage; // Destination page number
 struct TPDFRect DestPos; // Destination position
 TDestType DestType; // Destination type
};

The function returns the properties of a named destination. The member StructSize must be
initialized to sizeof(TPDFNamedDest) before the function can be called. The structure size is used to
identify different versions of the structure.

The interpretion of the member DestPos depends on the destination type. The different destination
types are described in detail at SetBookmarkDest(). If DestFileA or DestFileW is set then the
destination is located in this PDF file. Only one string format is set at time.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetNamedDestCount

Syntax:
SI32 pdfGetNamedDestCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of named destinations in the PDF file. The named destinations of
an external PDF file are available after the PDF file was imported.

GetNeedAppearance

Syntax:
LBOOL pdfGetNeedAppearance(

const PPDF* IPDF) // Instance pointer

The function returns true if the global NeedAppearance flag of the AcroForm is set. See
SetNeedAppearance() for further information.

Function Reference Page 476 of 854

GetNumberFormatObj

Syntax:
LBOOL pdfGetNumberFormatObj(
 const INFM* NumberFmt, // Pointer of a Number Format dictionary
 struct TPDFNumberFormat* Value) // See below

struct TPDFNumberFormat
{

UI32 StructSize; // Must be set to sizeof(TPDFNumberFormat)
 float C; // The conversion factor used to multiply a value in partial units.
 SI32 D; // A positive integer that shall specify the precision or denominator of a
 // fractional amount.
 TMeasureNumFormat F; // See below
 LBOOL FD; // If true, a fractional value formatted according to the D entry may not
 // have its denominator reduced or low-order zeros truncated.
 TMeasureLblPos O; // See below
 const char* PSA; // Text to be concatenated to the left of the label specified by U.
 const UI16* PSW; // Text to be concatenated to the left of the label specified by U.
 const char* RDA; // Text for the decimal position in displaying numerical values.
 const UI16* RDW; // Text for the decimal position in displaying numerical values.
 const char* RTA; // Text to be used between orders of thousands of numerical values.
 const UI16* RTW; // Text to be used between orders of thousands of numerical values.
 const char* SSA; // Text that shall be concatenated after the label specified by U.
 const UI16* SSW; // Text that shall be concatenated after the label specified by U.
 const char* UA; // Label -> should be a universally recognized abbreviation.
 const UI16* UW; // Label -> should be a universally recognized abbreviation.
};

typedef enum
{
 mnfDecimal,
 mnfFractional,
 mnfRound,
 mnfTruncate
}TMeasureNumFormat;

typedef enum
{
 mlpSuffix,
 mlpPrefix
}TMeasureLblPos;

The function retrieves the properties of a Number Format dictionary. The member StructSize must
be set to sizeof(TPDFNumberFormat) before the function can be called.

The structure members are named as specified in the PDF Reference 2.0. To determine how the
values must be used please have a look into the PDF Reference 2.0, ISO/DIS 32000-2, Section
Measurement properties.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 477 of 854

GetObjActionCount (obsolete)

Syntax:
SI32 pdfGetObjActionCount(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // Object type
 UI32 ObjHandle) // Object handle

typedef enum
{
 otAction,
 otAnnotation,
 otBookmark,
 otCatalog,
 otField,
 otPage,
 otPageLink
}TObjType;

The function returns the number of actions used by an object. If the object type is a page, then use
the page number as handle.

The number of actions used by an object can be used to remove a specific action from an object. See
also DeleteActionFromObj(), GetActionTypeEx().

This function is marked as obsolete. Please use GetObjActions() instead.

Return values:

If the function succeeds the return value is the number of actions used by an object. If the function
fails the return value is a negative error code.

GetObjActions

Syntax:
SI32 pdfGetObjActions(
 const PPDF* IPDF, // Instance pointer
 TObjType ObjType, // see below
 UI32 ObjHandle, // Object handle
 struct TPDFObjActions* Actions) // see below

typedef enum
{
 otAction,
 otAnnotation,
 otBookmark,
 otCatalog,
 otField,
 otPage,
 otPageLink
}TObjType;

struct TPDFObjActions
{

UI32 StructSize; // Must be set to sizeof(TPDFObjActions).
 SI32 Action; // Action handle or -1 if not set.
 TActionType ActionType; // The type of the action if Action >= 0.
 const IEVT* Events; // Additional events if any. -> GetObjEvent().
};

Function Reference Page 478 of 854

The function retrieves the first action and additional trigger events that should be executed when a
specific event occurs. The member StructSize must be set to sizeof(TPDFObjActions) before the
function can be called. If the object type is a page, then use the page number as handle.

Trigger events are supported by the global Catalog object (this is the document root), Pages, and
Form Fields. All other objects do not support trigger events.

Actions are defined as a single linked list. That means one action can execute another action (if
NextAction of that action is >= 0).

Note that an action can reference itself! The application must check whether an action is already in
the execution list before it will be executed.

Return values:

• < 0: An error occurred, e.g. due to an invalid handle.

• 0: The object contains no action or trigger event.

• 1: The object contains an action.

• 2: The object contains a trigger event.

• 3: The object contains an action and a trigger event.

GetObjEvent

Syntax:
LBOOL pdfGetObjEvent(
 const IEVT* IEvent, // Pointer of an event object
 struct TPDFObjEvent* Event) // see below

struct TPDFObjEvent
{

SI32 Action; // Action to be executed.
 TActionType ActionType; // The type of the action.
 TObjEvent Event; // The event when the action should be executed.
 IEVT* Next; // Pointer to the next event if any.
};

The function retrieves the properties of a trigger event that is defined for a specific object. The action
of this event must only be executed if the specified event occurs, e.g. OnMouseUp and so on.

Trigger events are defined as a single linked list. Note that an object event can reference itself! The
application must check whether an event is already in the list before the next event will be loaded.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 479 of 854

GetOCG

Syntax:
LBOOL pdfGetOCG(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG handle or array index
 struct TPDFOCG* Out) // See below

struct TPDFOCG
{

UI32 StructSize; // Must be set to sizeof(TPDFOCG)
 UI32 Handle; // Handle or array index
 UI32 Intent; // Bitmask -> TOCGIntent -> Intent and visibility state
 const char* NameA; // Layer name
 const UI16* NameW; // Layer name
 LBOOL HaveContUsage; // If true, the layer contains a Content Usage dictionary.
 // -> GetOCGContUsage().
 // The following two members can only be set if HaveContUsage is true.
 UI32 AppEvents; // Bitmask -> see TOCAppEvent. If non-zero, the layer is included in
 // one or more app events which control the layer state.
 UI32 Categories; // Bitmask -> see TOCGUsageCategory. The Usage Categories which
 // control the layer state.
};

typedef enum
{
 aeExport = 1,
 aePrint = 2,
 aeView = 4
}TOCAppEvent;

typedef enum
{
 oucNone = 0,
 oucExport = 1,
 oucLanguage = 2,
 oucPrint = 4,
 oucUser = 8,
 oucView = 16,
 oucZoom = 32
}TOCGUsageCategory;

typedef enum
{
 oiDesign = 2,
 oiView = 4,
 oiAll = 8,
 oiEmpty = 16,
 oiVisible = 32 // If set, the layer is visible
}TOCGIntent;

The function returns the properties of an OCG, also called layer. An OCG handle is a simple array
index. You can loop over all available OCGs from 0 to GetOCGCount() - 1.

The visibility state is encoded in the member Intent. The layer is visible if the the flag oiVisible is set.

If the member HaveContUsage is true, the OCG contains a Content Usage dictionary. The contents of
this dictionary can be accessed with the function GetOCGContUsage(). A Content Usage dictionary
contains additional information about a layer or OCG.

Function Reference Page 480 of 854

If the OCG is also included in an application event, this is the case if AppEvent is non-zero, then the
Content Usage dictionary is used to control the visibility state of the layer. The member Categories
specifies which categories control the visibility state.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetOCGContUsage

Syntax:
LBOOL pdfGetOCGContUsage(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG handle or array index
 struct TPDFOCGContUsage* Out) // See below

struct TPDFOCGContUsage
{

UI32 StructSize; // Must be set to sizeof(TPDFOCGContUsage)
 UI32 ExportState; // 0 = Off, 1 = On, PDF_MAX_INT = not set
 const char* InfoCreatorA; // CreatorInfo -> The application that created the group
 const UI16* InfoCreatorW; // CreatorInfo -> The application that created the group
 const char* InfoSubtype; // CreatorInfo -> A name defining the type of content, e.g.
 // Artwork, Technical etc.
 const char* LanguageA; // A language code as described at SetLanguage()
 UI16* LanguageW; // A language code as described at SetLanguage()
 UI32 LangPreferred; // 0 = Off, 1 = On, PDF_MAX_INT = not set. The preffered state if
 // there is a partial but no exact match of the lang id
 TOCPageElement PageElement; // If the group contains a pagination artefact
 UI32 PrintState; // 0 = Off, 1 = On, PDF_MAX_INT = not set
 const char* PrintSubtype; // The type of content that is controlled by the OCG, e.g.
 // Trapping, PrintersMarks or Watermark.
 UI32 UserNamesCount; // The user names can be accessed with GetOCGUsageUserName()
 TOCUserType UserType; // The user for whom the OCG is primarily intendet
 UI32 ViewState; // 0 = Off, 1 = On, PDF_MAX_INT = not set
 float ZoomMin; // Minimum zoom factor at which the OCG should be On. -1 = not set
 float ZoomMax; // Maximum zoom factor at which the OCG should be On. -1 = not set
};

typedef enum
{
 utIndividual,
 utOrganization,
 utTitle,
 utNotSet
}TOCUserType;

The function returns the properties of the Content Usage dictionary that is associated with an OCG
or layer. If the OCG is not included in an application event, then the contents in this dictionary
serves as pure information.

If the OCG is included in one or more application events, then these settings control also the
visibility state of the OCG. The function GetOCG() returns the events and categories which control
the layer visibility.

If UserNamesCount is greater zero, the dictionary contains also user names. The user names can be
accessed with GetOCGUsageUserName().

Function Reference Page 481 of 854

Rerturn values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetOCGCount

Syntax:
SI32 pdfGetOCGCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of OCGs or layers which are available in document.

Return values:

This function cannot fail, the return value is always greater or equal zero.

GetOCGUsageUserName

Syntax:
LBOOL pdfGetOCGUsageUserName(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG handle
 UI32 Index, // Array index of the name
 char* ADDR NameA, // Address of a char* variable
 UI16* ADDR NameW) // Address of a UI16* variable

The function returns a user name of a Content Usage dictionary that is associated with an OCG or
layer. The functions a pointer of the original string that is stored in the PDF file. Either the Ansi or
Unicode string is returned but never both. DynaPDF is the owner of the string. You must not
modify or free the string.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetOCHandle

Syntax:
SI32 pdfGetOCHandle(
 const IOCG* OC) // Pointer of an OCG or OCMD

The function returns the handle of an OCG or OCMD. A pointer of an OCG (Optional Content
Group) or OCMD (Optional Content Membership Dictionary) is provided in functions like
GetImageObj(), or ParseContent().

Return values:

If OC points to an OCMD the return value is an OCMD handle, a value greater or equal 0x40000000.
If OC points to an OCG the return value is an OCG handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 482 of 854

GetOCUINode

Syntax:
IOCN* pdfGetOCUINode(
 const PPDF* IPDF, // Instance pointer
 const IOCN* Node, // Node pointer or NULL to get the root
 struct TPDFOCUINode* OutNode) // See below

struct TPDFOCUINode
{
 UI32 StructSize; // Must be set to sizeof(TOCUINode)
 const char* LabelA; // Optional label.
 const UI16* LabelW; // Either the Ansi or Unicode string is set at time but never both.
 UI32 LabelLength; // Length in characters without the null-terminator.
 IOCN* NextChild; // If set, the next child node that must be loaded.
 LBOOL NewNode; // If true, a new child node must be created.
 SI32 OCG; // Optional OCG handle. -1 if not set -> GetOCG().
};

The function retrieves the most important properties of an Optional Content UI node (UI stands for
User Interface).

Notice:

If the PDF file was not already imported with ImportPDFFile() the function
ImportOCProperties() must be called to import the global Optional Content Properties.

UI nodes are part of a layer configuration. Therefore, a layer configuration must be loaded with
LoadLayerConfig() before the function can be called.

Optional Content Groups (OCGs) which are returned by this function should be visible in the user
interface of a viewer application. All other OCGs should not be shown by default.

UI nodes are stored in a single linked list. To get the pointer of the root node set the parameter Node
to NULL. The parameter OutNode will be ignored in this case but it is required otherwise.

The next node of the root is the return value of this function. If no further node is available the
return value will be NULL.

Every node can contain one or more child nodes, an optional label, or a reference to an OCG.

To achieve the same nesting as in Adobe's Acrobat or Reader the nodes must be added to a custom
tree control as shown in the following simplified algorithm (Delphi):
function GetString(const ValueA: PAnsiChar; const ValueW: PWideChar): String;
begin
// Make never a direct typecast from PAnsiChar to String because this causes a buffer overrun!
if ValueA <> nil then
 Result := String(AnsiString(ValueA))
else
 Result := String(WideString(ValueW));
end;

Function Reference Page 483 of 854

// This algorithm is a bit simplified. In a real world application we must store the OCG handles in
// the tree node so that the layer state can be changed. The Delphi tree control supports the user
// defined pointer Data which can be used for this purpose. However, Data is a pointer and therefore
// we must store the OCG handles in a list before we can set the pointer. In addition, a standard
// tree control does not support the features we need to show or hide layers.
// We assume that the PDF file was already opened.
procedure TForm1.LoadLayerTreeNodes(Parent: TTreeNode; Next: IOCN; Level: Integer);
var node: TOCUINode; ocg: TPDFOCG; lbl: String; prnt, saved: TTreeNode;
begin
 if Level > 32 then Exit; // A maximum recursion depth of 32 should be more than enough.
 node.StructSize := sizeof(node);
 ocg.StructSize := sizeof(ocg);
 saved := Parent;
 while Next <> nil do begin
 node.NextChild := nil;
 node.OCG := -1;
 Next := FPDF.GetOCUINode(Next, @node);
 if node.OCG < 0 then begin
 lbl := GetString(node.LabelA, node.LabelW);
 if node.NewNode then
 prnt := LayerTree.Items.AddNode(nil, Parent, lbl, nil, naAddChild)
 else
 prnt := Parent;
 LoadLayerTreeNodes(prnt, node.NextChild, Level +1);
 Parent := saved; // Important! Restore the parent tree node.
 end else begin
 if FPDF.GetOCG(node.OCG, ocg) then begin
 lbl := GetString(ocg.NameA, ocg.NameW);
 if node.NewNode then begin
 saved := Parent; // Important! Save the parent tree node.
 Parent := LayerTree.Items.AddNode(nil, Parent, lbl, nil, naAddChild)
 end else
 LayerTree.Items.AddNode(nil, Parent, lbl, nil, naAddChild);
 end;
 end;
 end;
end;

procedure TForm1.LoadLayerTree;
var next: IOCN;
begin
 FPDF.ImportOCProperties; // Import the global Optional Content Properties
 FPDF.LoadLayerConfig(-1); // Load the default layer configuration
 next := FPDF.GetOCUINode(nil, nil); // Get the root node
 LoadLayerTreeNodes(nil, next, 0); // Load the children of the root
end;

Although the syntax is slightly different among different programming languages, the general
algorithm stays the same.

Function Reference Page 484 of 854

GetOpacity

Syntax:
double pdfGetOpacity(
 const PPDF* IPDF) // Instance pointer

The function returns the opacity value used to draw the visible appearance of an annotation
(requires Acrobat 5 or higher). A value of 1 determines that the annotation is completely opaque. If
the value is zero, newly created annotations will be invisible. The opacity flag is not supported by
all annotation types.

At time of publication the opacity property is used for annotations only. Later versions of DynaPDF
use this property may be for other PDF objects too.

GetOrientation

Syntax:
SI32 pdfGetOrientation(
 const PPDF* IPDF) // Instance pointer

The function returns the orientation of the current open page if an open page was detected or the
default orientation for newly created pages if no open page was detected.

The orientation is measured in degrees; it is also always a multiple of 90 or 0.
Default value = 0 (Portrait)

GetOutputIntent

Syntax:
LBOOL pdfGetOutputIntent(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Array index
 struct TPDFOutputIntent* Intent) // See below

struct TPDFOutputIntent
{
 UI32 StructSize; // Must be set to sizeof(TPDFOutputIntent)
 BYTE* Buffer; // ICC profile buffer (optional)
 UI32 BufSize; // Buffer size in bytes
 char* InfoA; // Info string or name of the ICC profile
 UI16* InfoW; // Info string or name of the ICC profile
 UI32 NumComponents; // Number of components
 char* OutputConditionA; // Describtion of the output device
 UI16* OutputConditionW; // Describtion of the output device
 char* OutputConditionIDA; // Describtion of the output device
 UI16* OutputConditionIDW; // Describtion of the output device
 char* RegistryNameA; // The registry in which OutputConditionID is
 UI16* RegistryNameW; // defined.
 char* SubType; // GTS_PDFX, GTS_PDFA1, or ISO_PDFE1
};

Function Reference Page 485 of 854

The function returns an output intent as well as the properties of it. An output intent is an ICC
profile that describes the characteristics of the output device. The profile is mostly embedded but
certain standards like PDF/X 4p, for example, allow also the usage of non-embedded profiles.

All strings in the structure TPDFOutputIntent can be defined as Unicode or Ansi string (Windows
code page 1252) but only one format is present at time.

The parameter Index is the array index of the output intent. To determine the number of available
intents call GetOutputIntentCount().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetOutputIntentCount

Syntax:
SI32 pdfGetOutputIntentCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of available output intents. This function cannot fail.

GetPageAnnot (obsolete)

Syntax:

LBOOL pdfGetPageAnnot(
const PPDF* IPDF, // Instance pointer
UI32 Index, // Array index in the page
struct TPDFAnnotation ADDR Annot) // Structure to be filled

The function retrieves the most important properties of an annotation like GetAnnot(). This function
is marked as obsolete and should no longer be used. If possible use GetPageAnnotEx() instead. The
parameter Index must be the array index of the page in which the annotation is used. To enumerate
the annotations of a page execute the function in a loop from 0 to GetPageAnnotCount() - 1.

Return Values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 486 of 854

GetPageAnnotEx

Syntax:

LBOOL pdfGetPageAnnotEx(
const PPDF* IPDF, // Instance pointer
UI32 Index, // Array index in the page
struct TPDFAnnotationEx ADDR Annot) // Structure to be filled

The function retrieves the most important properties of an annotation like GetAnnotEx(). The
parameter Index must be the array index of the page in which the annotation is used. To enumerate
the annotations of a page execute the function in a loop from 0 to GetPageAnnotCount() - 1. See
GetAnnotEx() for further information.

Return Values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetPageAnnotCount

Syntax:

SI32 pdfGetPageAnnotCount(
const PPDF* IPDF) // Instance pointer

The function returns the number of annotations which are used by a page. The page must be opened
with EditPage() before the function can be used. The annotations of the page can be accessed with
GetPageAnnotEx().

Return values:

If the function succeeds the return value is the number of annotations which are used by a page. If
the function fails the return value is a negative error code.

GetPageBBox (Rendering Engine)

Syntax:

LBOOL pdfGetPageBBox(
 IPGE* PagePtr, // Pointer of a page object
 TPageBoundary Type, // The bounding box that should be returned
 struct TFltRect* BBox) // Out -> The bounding box

The function returns a bounding box of a page. The parameter PagePtr must be a valid page pointer
that was returned by GetPageObject(). The function accesses the page object without any overhead,
and hence, is very fast.

Function Reference Page 487 of 854

Note that all bounding boxes with exception of the media box are optional and maybe not available.
When the bounding box is not available the function initializes the parameter BBox with zero and
returns false.

Remarks:

The functions of the rendering engine should be fast as possible and use less error checking than
normal DynaPDF functions. For example, the function does not check whether valid pointers or
NULL were passed to the function.

Return values:

When the bounding box is available the return value is 1. When the bounding box is not available
the functions 0.

GetPageCoords

Syntax:
SI32 pdfGetPageCoords(
 const PPDF* IPDF) // Instance pointer

typedef enum
{
 pcBottomUp = 0,
 pcTopDown = 1
}TPageCoord;

The native coordinate system of the Portable Document Format is bottom-up. However, DynaPDF
supports also top-down coordinates to make the usage of the library easier. See also
SetPageCoords().
Default value = pcBottomUp

GetPageCount

Syntax:
SI32 pdfGetPageCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of pages of the current PDF file if any.

GetPageField (obsolete)

Syntax:
SI32 pdfGetPageField(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Field index
 struct TPDFField* Field) // Structure to be filled

Function Reference Page 488 of 854

The function returns the most important properties of a field. This function is marked as obsolete,
please use GetPageFieldEx() instead. The parameter Index must be a valid index to the page's field
array. To enumerate the fields of a page execute the function in a loop from 0 to
GetPageFieldCount() - 1.

See also GetField().

Return values:

If the function succeeds the return value 1 and the structure Field is filled with values. If the function
fails the return value is 0.

GetPageFieldCount

Syntax:
SI32 pdfGetPageFieldCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of fields used by a page. The page must be opened beforehand
with the function EditPage().

Return values:

If the function succeeds the return value is number of fields used by the page. If the function fails
the return value is a negative error code.

GetPageFieldEx

Syntax:
LBOOL pdfGetPageFieldEx(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Field index
 struct TPDFFieldEx* Field) // Structure to be filled

#define PDF_ANNOT_INDEX 0x40000000 // Special flag to indicate that an
 // annotation index was passed to the
 // function.

The function returns the most important properties of a field.

Notice:

The internal organization of fields and annotations were changed in DynaPDF 3.0. Prior
versions stored fields and annotations in separate arrays so that the parameter Index refered
directly into the field array. Due to new features in PDF and to preserve the z-order of
overlapping fields and annotations, fields and annotations are now stored in the same array
because forms fields are in fact Widget annotations.

To achieve optimal processing speed the fields of a page should now be enumerated as follows:
...
 SI32 i, count;

Function Reference Page 489 of 854

 TPDFFieldEx f;
 pdfEditPage(PDF, 1);
 // Initialize the structure size
 f.StructSize = sizeof(f);
 // GetPageAnnotCount() returns the number of all annotations, incl.
 // form fields!
 count = pdfGetPageAnnotCount(PDF);
 for (i = 0; i < count; i++)
 {
 // GetPageFieldEx() simply returns false if a non-widget annotation
 // is stored at an array index. The function does also not raise an
 // exception in this case if the flag PDF_ANNOT_INDEX is set.
 // So, there is no need to check the annotation type beforehand.
 if (pdfGetPageFieldEx(i | PDF_ANNOT_INDEX, &f))
 {
 // do something with the data
 }
 }
 pdfEndPage(PDF);
...

The old way to enumerate the fields from 0 to GetPageFieldCount() -1 does still work but it is slower
because the function must find every field in the array.

See also GetFieldEx().

Return values:

If the function succeeds the return value 1 and the structure Field is filled with values. If the function
fails the return value is 0.

GetPageHeight

Syntax:
double pdfGetPageHeight(
 const PPDF* IPDF) // Instance pointer

The function returns the height of the currently open page. If no open page can be detected the
return value is the default height which will be used for newly created pages. The page height refers
to the media box of a page. The real size is maybe smaller if a crop box is present. The crop takes
precedence because it crops the media box.

If SetUseVisibleCoords() was set to true, the function checks whether a cop box is present and
returns the size of this box if set. A PDF unit represents 1/72 inch. See also GetBBox().

Function Reference Page 490 of 854

GetPageLabel

Syntax:
LBOOL pdfGetPageLabel(

const PPDF* IPDF, // Instance pointer
UI32 Index, // Page label handle or array index
struct TPDFPageLabel* Label) // Page label structure

struct TPDFPageLabel
{

UI32 StartRange; // Number of the first page in the range. If no further label
 // follows, the last page in the range is pdfGetPageCount().
 // The first page is denoted by 1.
TPageLabelFormat Format; // Number format to be used.
SI32 FirstPageNum; // First page number to be displayed in the page label.
 // Subsequent pages are numbered sequentially from this value.
char* Prefix; // Optional prefix
UI32 PrefixLen; // Length of the prefix in characters
LBOOL PrefixUni; // Prefix is a Unicode string?

};

typedef enum
{
 plfDecimalArabic, // 1,2,3,4...
 plfUppercaseRoman, // I,II,III,IV...
 plfLowercaseRoman, // i,ii,iii,iv...
 plfUppercaseLetters, // A,B,C,D...
 plfLowercaseLetters, // a,b,c,d...
 plfNone
}TPageLabelFormat;

The function retrieves the properties of a page label. The parameter Index must be the array index of
the page label. The number of available page labels can be determned with the function
GetPageLabelCount().

A page label is used to construct a format string. The start range identifies the first page to which
this label applies. If no further page labels follow, the label is applied to all susequent pages through
GetPageCount(). The member FirstPageNum represents the numeric portion of the first page label in
the range. Subsequent pages are numbered sequentially from this value.

Return values:

In the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 491 of 854

GetPageLabelCount

Syntax:
SI32 pdfGetPageLabelCount(

const PPDF* IPDF) // Instance pointer

The function returns the number of page labels defined in the document.

GetPageLayout

Syntax:
SI32 pdfGetPageLayout(
 const PPDF* IPDF) // Instance pointer

typedef enum
{

plSinglePage = 0, // Show one page at time
 plOneColumn = 1, // Show the pages continuous
 plTwoColumnLeft = 2, // Two columns, start with left column
 plTwoColumnRight = 3 // Two columns, start with right column
}TPageLayout;

The function returns the page layout that is used when opening the document with Adobe's
Acrobat.
Default value = plOneColumn

GetPageMode

Syntax:
SI32 pdfGetPageMode(
 const PPDF* IPDF) // Instance pointer

typedef enum
{

pmUseNone = 0, // No page mode is applied
 pmUseOutlines = 1, // Show outline tree
 pmUseThumbs = 2, // Show thumbnails
 pmFullScreen = 3 // Open the document in full screen mode
}TPageMode;

The function returns the page mode that is used when opening the document with Adobe's Acrobat.

GetPageNum

Syntax:
SI32 pdfGetPageNum(
 const PPDF* IPDF) // Instance pointer

The function returns the page number of the currently open page. If no open page can be detected
the return value is a negative error code.

Function Reference Page 492 of 854

GetPageObject (Rendering Engine)

Syntax:
IPGE* pdfGetPageObject(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum) // Page number

The function returns the pointer of a page object to enable fast access to certain properties of it, e.g.
the bounding boxes or the page orientation. This function is mostly used during rendering because
it provides fast access to page properties without any unnecessary overhead.

The live time of a page pointer ends when the PDF file in memory will be released, e.g. when
CloseFile() or FreePDF() was called.

Return values:

If the function succeeds the return value is a pointer of the page object. If the function fails the
return value is NULL. The function can only fail when an invalid page number was passed to the
function.

GetPageOrientation (Rendering Engine)

Syntax:
SI32 pdfGetPageOrientation(
 IPGE* PagePtr) // Pointer of a page object

The function return the orientation of the page in degrees. The function accesses the page object
without any overhead, and hence, is very fast.

Remarks:

The functions of the rendering engine should be fast as possible and use less error checking than
normal DynaPDF functions. For example, the function does not check whether a valid page pointer
or NULL was passed to the function.

GetPageText

Syntax:
LBOOL pdfGetPageText(
 const PPDF* IPDF, // Instance pointer
 struct TPDFStack* Stack) // Operation stack, see below

struct TTextRecordA
{
 float Advance; // Negative values move the cursor to the right
 BYTE* Text; // Raw text
 UI32 Length; // Raw text length in bytes
};

struct TTextRecordW
{
 float Advance; // Negative values move the cursor to the right
 UI16* Text; // Translated Unicode string (not null-terminated!)

Function Reference Page 493 of 854

 UI32 Length; // Length in characters
 float Width; // String width measured in text space
};

struct TPDFStack
{

struct TCTM ctm; // Pre-multiplied global transf. matrix
struct TCTM tm; // Pre-multiplied text transf. matrix
double x; // Unused -> always 0.0
double y; // Unused -> always 0.0
double FontSize; // Font size measured in text space!
double CharSP; // Current character spacing
double WordSP; // Current word spacing
double HScale; // Current horizontal scaling
double TextRise; // Always 0.0 -> already included in tm
double Leading; // Current leading
double LineWidth; // Current line width
TDrawMode DrawMode; // Text draw mode (see SetDrawMode())
TPDFColorSpace FillCS; // Color space of fill color
TPDFColorSpace StrokeCS; // Color space of stroke color
UI32 FillColor; // Current fill color (text color)
UI32 StrokeColor; // Current stroke color
void* BaseObject; // Internal
LBOOL CIDFont; // See description
char* Text; // Pointer to raw binary text buffer
UI32 TextLen; // Text length in bytes

 struct TTextRecordA* RawKern; // Raw kerning array
 struct TTextRecordW* Kerning; // Translated Unicode kerning array

UI32 KerningCount; // Number of kerning records
float TextWidth; // Text width incl. kerning space
void* IFont; // Font object used to print the string
LBOOL Embedded; // If true, the font is embedded
float SpaceWidth; // Measured in text space
LBOOL ConvColors; // See description
TPDFColorSpace DestSpace; // See description
UI32 DeleteKerningAt; // See description
UI32 FontFlags; // PDF font flags
// -------------------- 12 Reserved fields --------------------

 SI32 Reserved1..12;
 ...
};

This function can be used to extract the text of a page or template, or to find a specific text that
should be replaced or deleted with the function ReplacePageText() or ReplacePageTextEx().

The structure TPDFStack must be initialized with InitStack() before calling the function the first
time. All members of this structure are read only with the exception of the variables in red color.
These values can be changed after the structure has been initialized with InitStack(). Do not change
the value of another member; otherwise the function causes maybe an access violation!

Structure TPDFStack:

Member Description

ctm The matrix represents the current coordinate system (user space). The
matrix is already pre-multiplied because the function returns only when a
text showing operator was found.

tm This matrix represents the text coordinate system in which all text
properties are calculated. We call this coordinate system text space. To

Function Reference Page 494 of 854

enable the calculation of the text position the matrix must be multiplied
with the matrix ctm.

x, y These members are no longer used. All positioning operators are already
included in the text transformation matrix tm.

FontSize The font size measured in text space used to display the text. The value
must be transformed to user space to determine the visible font size (see
descption below).

FillCS This is the current color space in which the color value of FillColor is
defined. If ConvColor is set to true (default) the value is always equal to
DestSpace. If ConvColor is set to false the fill color is still returned in a
device color space but the color space can be changed arbitrary often.

Colors of complex color spaces, such as Separation or DeviceN, are always
converted into the alternate color space. If the original or alternate color
space is an ICC based color space the color value is returned as is and the
color space is set depending on the number of components. The ICC
profile is not invoked to calculate the color value in the device color space.
Future versions of DynaPDF maybe use the ICC profile to convert the
color into device color space.

StrokeCS This is the current color space in which the color value of StrokeColor is
defined. The color space is set in an identical manner like FillCS.

FillColor The fill color represents the text color if the text draw mode is dmNormal.
Depending on the draw mode the fill and stroke color can be invoked to
render the text.

StrokeColor The stroke color can be ignored if the text draw mode is not dmStroke,
dmFillStroke, dmStrokeClip or dmFillStrokeClip since it is then not used
to render the text.

CIDFont If true, a CID font is used to render the text. It is not possible to replace a
text with ReplacePageText() in this case. However, it is still possible to delete
the text. If the text should be replaced use either ReplacePageTextEx() or
WriteTextMatrixEx().

DrawMode The draw mode used to render the text. See SetTextDrawMode() for further
information.

Leading The leading is already included in the text transformation matrix tm. The

Function Reference Page 495 of 854

value of leading must not be considered to calculate the text position.

TextRise The text rise is already included in the text transformation matrix tm. The
value is always 0.0.

WordSP Current word spacing, info only.

CharSP Current character spacing, info only.

HScale Current horizontal scaling, info only.

LineWidth The current line width; it can be ignored if the text is not stroked.

Text The raw text line that was found in the content stream. This is a non-null-
terminated binary string; it can contain single or multi-byte characters.
This member should no longer be used to extract or replace text. Use the
member Kerning instead.

TextLen The string length in bytes, not characters! If TextLen is zero no text was
found or an error occurred.

RawKern The raw kerning array. The text in this array points directly into the
source text buffer. The strings are not null-terminated.

Kerning Already translated UTF-16 Unicode kerning array. A kerning record
consists of the members Advance, Text (UTF-16), Length, and Width. The
member Advance represents the amount in which the text is moved on the
x-axis. Negative values move the cursor to the right, positive to the left.
Normal kerning between characters is usually always less than the half
space width which can be taken from the structure TPDFStack. This makes
it easy to determine whether a space character is emulated with kerning
space. Note that negative values move the cursor to right! A positive value
of Advance cannot emulate a space character because the cursor is moved
to the wrong direction. The parameter Text contains the Unicode text that
is not null-terminated. Length is the text length in characters. The text
width and advance are calculated in text space.

Note that it is not always possible to translate a text to Unicode. The
translation will fail if a CID font depends on an external CMap file that is
not available. External CMaps should always be loaded with
SetCMapDir() before GetPageText() is executed the first time.

It is also possible that a PDF file contains an invalid encoding or
ToUnicode CMap. Because the encoding or ToUnicode CMap is only used

Function Reference Page 496 of 854

for Copy & Paste operations you cannot assume that the conversion to
Unicode is always possible.

KerningCount The number of kerning records. RawKern and Kerning contain always the
same number of records.

TextWidth The text width measured in text space. This is the width of the entire
kerning array incl. kerning space.

IFont A pointer to the font object used to print the text. The most important
properties of the font can be returned with GetFont().

Embedded If true, the font is embedded. This information is very important if the text
should be replaced. The function ReplacePageText() can be used if the font
is not embedded and if the member CIDFont is false. Otherwise, the
function ReplacePageTextEx() or WriteTextMatrixEx() must be used to
replace the text, see the examples on the following pages for further
information.

SpaceWidth The space width can be used to determine whether a space character is
emulated at a given position. A default space width is set if the font does not
contain a space character. Note that many documents emulate spaces with
kerning space. Such documents contain usually no space character. It is
usually best to use the half space width to determine whether a space
character is emulated. This is especially important if a document uses
condensed fonts which contain no space character.

ConvColor If true (default), all colors are converted to the destination color space
DestSpace. The default color space is DeviceRGB. This variable can be
changed after the structure has been initialized with InitStack(). If set to false,
colors of complex color spaces are still converted into the alternate color
space but the color space can then be changed arbitrary often. See also the
description of FillCS.

DestSpace The destination color space in which all colors should be converted. If
ConvColor is set to false, the value of this member is ignored. If the
destination color space should be DeviceCMYK initialize the members
FillColor and StrokeColor with PDF_CMYK(0,0,0,255); which represents
black.

DeleteKerningAt This member can be used in combination with ReplacePageText().
ReplacePageText() deletes or replaces normally always a complete text
record but this is often not required especially if a text must be deleted or

Function Reference Page 497 of 854

replaced in the middle or end of a kerning array. To make text replacement
easier it is possible to preserve an arbitrary number of kerning records from
deletion. The value of DeleteKerningAt represents the first array index
which should be deleted. All kerning records above this index will be
deleted too. Take a look into the demo examples/edit_text which is delivered
with DynaPDF to determine how this member can be used.

FontFlags The font flags describe important characteristics of the current font:
• 0x00001 // Fixed pitch font
• 0x00002 // Serif style
• 0x00004 // Symbol font
• 0x00008 // Script style
• 0x00020 // Non-symbolic font
• 0x00040 // Italic style
• 0x40000 // Force Bold (Type1 fonts only)

External CMaps

A widely used technique to reduce the amount of data that must be stored in a PDF file is the usage
of non-embedded CID fonts. CID fonts, whether embedded or not, can depend on external CMaps
which must be available at runtime.

To process strings of such fonts correctly DynaPDF must be able to load required CMap files if
necessary. Therefore, DynaPDF is delivered with the most important CMap files which are provided
by Adobe Systems. These CMaps can be found in the DynaPDF installation directory at
/Resource/CMap/. Applications which extract text from PDF files should include these CMaps so
that they can be loaded at runtime.

The search path to external CMaps must be set with SetCMapDir() before executing GetPageText()
the first time. The function creates a CMap cache that is hold in memory until the PDF instance will
be deleted. The search path(s) to external CMap files should be set only one time per PDF instance
and one PDF instance should be used to process so many PDF files as possible. This can significantly
improve processing speed.

Order of Text records

GetPageText() returns always when a text showing operator was found. That means the returned
text represents not a text line. It can be a single character up to a complete text line depending on
how the text is stored in the PDF file.

The order in which text is returned is essentially arbitrary. It depends on the file creator whether
text is stored in the logical reading order. For example, most PDF drivers convert headers and
footers first. Such strings appear then at the beginning of the content stream. All other strings are in
turn not necessarily ordered and one text line can be stored in several different text objects.

A text search or text replacement algorithm must correctly handle cases in which a word or sentence
is separated into different text objects. In the worst case GetPageText() returns always only a single

Function Reference Page 498 of 854

character. As long as the text is not rotated it is relatively easy to determine whether a text record
lies on the same y-axis, but finding an arbitrary rotated text that is also stored in several different
text objects requires further math.

The position of a text object is calculated from the two transformation matrices ctm and tm. The
global transformation matrix ctm represents the current coordinate system when a text showing
operator was found. The matrix ctm is already pre-multiplied because GetPageText() does not return
when a new transformation matrix is applied.

The text transformation matrix tm represents the text coordinate system in which text properties
such as text width, font size, character spacing, word spacing, or the space width are calculated. All
text positioning operators are already included in this matrix.

The combination of both matrices represents the final user space in which the text is rendered. Both
matrices must be combined to enable the calculation of the text position and orientation (see the
examples on the following pages to determine how the matrices must be combined).

Organization of content streams and pages

A PDF page consists of a content stream and a resource array which contains the resources such as
fonts, images, and so on which can be used by the page. The content stream contains the PDF
operators which paint the contents of a PDF page.

The PDF format supports two object types which support vector graphics and images: ordinary
pages and the so called "Form XObjects" which act as a template (we call this object type template
here). A template consists in turn of a content stream and a resource array like a page object and it is
possible to convert a page to a template. A page object can display an arbitrary number of templates
and a template can in turn display arbitrary other templates. It is important to understand that the
content of a template is physically stored in another content stream because the function InitStack()
prepares only the currently open content stream of the page or template for editing.

Only this content stream can be parsed and edited. Templates which occur in a page or other
template must be parsed separately. Because templates can contain other templates it is usually best
to parse templates recursively.

However, if texts must be deleted or replaced you must make sure that a template is not edited
twice if it occurs in another page or template. Such a duplicate check is strongly required and it
must be applied every time a template should be processed.

Whether a page or template contains templates can be determined with GetTemplCount(). Such
subsequent templates can then be opened for editing with EditTemplate(). When finish, the template
must be closed with EndTemplate().

Organization of text objects

A text object consists of a transformation matrix and the text. Several other properties are taken from
the current graphics state such as the font, font size, character spacing, word spacing and so on.

Function Reference Page 499 of 854

Text objects use a separate coordinate system which is represented by the text transformation matrix
tm. We call this coordinate system text space. All text properties such as font size, text width and so
on are calculated in text space. The PDF format supports also several text positioning operators to
decrease the size of a text object. To make the usage of the function easier DynaPDF includes all text
positioning operators already in the text transformation tm.

The text coordinate system must be transformed to user space by multiplying the text matrix with
the current transformation matrix cm to enable the calculation of the text position. The combined
matrix must be recalculated each time GetPageText() returns a new text object.

As mentioned earlier a content stream is not organized into text lines and the order in which text
objects occur is essentially arbitrary. A text record can occur in two different formats: as an array or
as one coherent text string. The array form enables the definition of kerning between characters in a
compact format since PDF viewers ignore any available kerning information in a font resource. The
strings in a kerning array lie always on the same text line.

The kerning array is also often used to emulate space characters because word spacing does not
work with CID fonts. Most PDF drivers use the same algorithm to format text of single and multi-
byte fonts; that is the reason why space characters are very often emulated with kerning space.
However, it is quite easy to determine whether a space character is emulated at given position: if the
displacement is larger than the half space width we can assume that a space character was emulated
at this position. The half space width should be used because the fonts of documents which emulate
space characters with kerning space contain often no space character. DynaPDF sets a default space
width in this case which can be too large if a condensed font is used.

However, the array form is just one possible format to enable kerning between characters. Due to
several reasons the array form is sometimes not used. Many PDF drivers update the text position
with text positioning operators instead. This technique produces not only much greater content
streams it splits text records also into separate ones. This complicates the identification of word
boundaries a lot because each record is returned in a separate GetPageText() call. We need now the
coordinates to determine whether the text must be assigned to the same line. If the text is not rotated
this is not a big deal but if the coordinate system is rotated or if it contains other transformations
some further math is required to determine whether a text record must be assigned to the current
line.

We want now take a look into a PDF content stream to determine how an arbitrary text can be
stored in a PDF file. The following text can be stored in many different ways and it is important to
understand that many variants are possible and exist in real PDF files.

The rendered result of the string "The fox eats the lazy mouse." looks quite normal:

The fox eats the lazy mouse.
However, a PDF driver does not necessarily store this text in one record, there are many possible
variants:

%This is the easiest variant, one record contains the entire text line.

Function Reference Page 500 of 854

%It would be returned in one GetPageText() call as one coherent kerning
%record.
(The fox eats the lazy mouse.)Tj

%This version emulates the spaces with kerning space.
%It would be returned in one GetPageText() call with 6 kerning records.
[(The)-280(fox)-280(eats)-280(the)-280(lazy)-280(mouse.)]TJ

%This version uses PDF positioning operators to emulate spaces.
%It produces 6 separate GetPageText() calls.

 (The)Tj
 2.8 0 Td
 (fox)Tj
 2.8 0 Td
 (eats)Tj
 2.8 0 Td
 (the)Tj
 2.8 0 Td
 (lazy)Tj
 2.8 0 Td
 (mouse.)Tj

In the worst case each text record consists of only one character and it is also possible that the entire
text occurs unsorted or combined with other texts which lie on completely different positions than
this one. There is not necessarily a logical connection between what you see on screen and what is
stored in the PDF file. Especially if a PDF file contains tables the order of text records is sometimes
very difficult to understand.

Possible encoding issues

If text must be extracted, deleted, or replaced then it is very important that the text in the PDF file
can be converted to Unicode. This conversion is possible if the font uses a standard encoding like
WinAnsi or MacRoman, if it contains a ToUnicode CMap, or if it contains PostScript Character
names which are listed in the Adobe Glyph List, or if it uses a predefined external CMap and if this
CMap is available in one of the CMap search paths (SetSetCMapDir() for further information).

More complicated is the processing of certain European scripts such as Russian, Greek, Czech, and
so on. A common technique to process such scripts is to convert the original font to a symbol font to
avoid the usage of a CID font (multi-byte font) because the PDF format supports only four pre-
defined 8 bit encodings (WinAnsi, MacRoman, MacExpert, and Symbol). The advantage is that 8 bit
strings can be stored in the PDF file which results in a smaller file size and the PDF file is still
compatible to older Acrobat versions prior 4.0 because CID fonts are supported since PDF 1.3.

The problem is that if the font resource contains no ToUnicode CMap or PostScript character names
it is no longer possible to convert the text to Unicode. Depending on how a PDF file was created the
encoding is also often not known by the PDF driver, e.g. when converting PCL or AFP files to PDF.

Function Reference Page 501 of 854

Such PDF files can be viewed and printed correctly but it is not possible to extract human readable
strings from them.

How to calculate the absolute string position?

The absolute string position can be calculated from the matrices ctm and tm. Before the string
position can be computed the matrix tm must be transformed into user space. This can be done by
multiplying the matrices ctm and tm into another one:
TCTM MulMatrix(TCTM &M1, TCTM &M2)
{
 TCTM retval;
 retval.a = M2.a * M1.a + M2.b * M1.c;
 retval.b = M2.a * M1.b + M2.b * M1.d;
 retval.c = M2.c * M1.a + M2.d * M1.c;
 retval.d = M2.c * M1.b + M2.d * M1.d;
 retval.x = M2.x * M1.a + M2.y * M1.c + M1.x;
 retval.y = M2.x * M1.b + M2.y * M1.d + M1.y;
 return retval;
}

The usage is as follows:
TCTM m = MulMatrix(stack.ctm, stack.tm);

Note that the order in which the matrices are multiplied is important; the reversed order would
produce an incorrect result.

Now we need a function that transforms a point with the matrix:
void Transform(TCTM &M, double &x, double &y)
{
 double ox = x;
 x = ox * M.a + y * M.c + M.x;
 y = ox * M.b + y * M.d + M.y;
}

The text position can now easily calculated as follows:
// Get the text matrix in user space
TCTM m = MulMatrix(stack.ctm, stack.tm);
double x = 0.0;
double y = 0.0;
Transform(m, x, y);

How to caluculate the font size?

The font size that is provided in the structure TPDFStack is measured in text space. If you want to
know the visible font size then the value must be transformed to user space:

Function Reference Page 502 of 854

First, we must multiply the matrices ctm and tm with MulMatrix() as shown above and pass the
resulting matrix to GetScaleY() as described below; the return value is the scaling factor on the y-
axis. Finally, the font size must be multiplied with the scaling factor:
// Distance between two points
double CalcDistance(double x1, double y1, double x2, double y2)
{

double dx = x2-x1;
double dy = y2-y1;
return sqrt(dx*dx + dy*dy);

}
// Scaling factor of the y-axis
double GetScaleY(TCTM &M)
{

double x1 = 0.0;
double y1 = 0.0;
double x2 = 0.0;
double y2 = 1.0;
Transform(M, x1, y1);
Transform(M, x2, y2);
if (y1 > y2)

return -CalcDistance(x1, y1, x2, y2);
else

return CalcDistance(x1, y1, x2, y2);
}

TCTM m = MulMatrix(stack.ctm, stack.tm); // User space matrix
double fs = stack.FontSize * GetScaleY(m); // Real font size

How to calculate the rotation angle?

If you want to know whether the string is rotated then use the function TransRotation() to calculate
the rotation angle in radians. Note that this function requires again the pre-multiplied matrix in user
space.
double TransRotation(TCTM &M)
{
 double x1 = 0.0; double x2 = 1.0;
 double y1 = 0.0; double y2 = 0.0;
 Transform(M, x1, y1);
 Transform(M, x2, y2);
 return atan2(y2-y1, x2-x1);
}

How to find and replace text in a page?

As mentioned in the previous sections text replacement or text search algorithms are not easy to
develop because many things must be considered to get suitable results. To make the development
easier DynaPDF is delivered with several example projects which are available in C++, Delphi, VB

Function Reference Page 503 of 854

.Net, and C#. You should take a look into the examples text_extraction, text_extraction2, edit_text,
and text_search to determine how the function GetPageText() can be used.

If you need only a text search algorithm it is better to use the content parser of DynaPDF directly
because it is faster than GetPageText() (see the example text_search for further information).

The class CPDFEditText() (used in the example edit_text) contains already a rather complex and
complete text replacement algorithm that demonstrates how the functions ReplacePageText() and
ReplacePageTextEx() can be used. You should try to understand how this algorithm works so that
you can extend it. This class demonstrates especially how space characters can be identified and
how they must be handled when replacing texts. However, note that PDF files are generally not
designed to edit existing contents. Existing text should only be replaced if there is no other way to
achieve the same result or if only minor changes must be applied, e.g. replacing a misspelled word.

Remarks:

GetPageText() parses the content stream of the currently open page or template as it is at time of
executing the function. The content stream contains all operators and values which were added
beforehand with DynaPDF functions incl. the contents of imported PDF files. If texts should be
replaced or deleted it is usually best to process imported page(s) before adding new contents.

Return values:

If the function succeeds and if further records are available the return value is 1. If the function fails
or if no further records are available the return value is 0.

If a content stream contains no text the return value is 0 and the members TextLen and KerningCount
are set to 0. If a content stream contains only one text record the return value is 0 that means that no
further records are available but the members TextLen and KerningCount are set to values greater 0.

GetPageWidth

Syntax:
double pdfGetPageWidth(
 const PPDF* IPDF) // Instance pointer

The function returns the width of the currently open page. If no open page can be detected the
return value is the default width which will be used for newly created pages. The page width refers
to the media box of a page. The real size is maybe smaller if a crop box is present. The crop takes
precedence because it crops the media box.

If SetUseVisibleCoords() was set to true, the function checks whether a cop box is present and
returns the size of this box if set. A PDF unit represents 1/72 inch. See also GetBBox().

Function Reference Page 504 of 854

GetPDFVersion

Syntax:
SI32 pdfGetPDFVersion(
 const PPDF* IPDF) // Instance pointer

The function returns the PDF version as specified in the member TPDFVersion. The return value is
defined as SI32 (signed 32 bit integer) due to historical reasons. Make a typecast to TPDFVersion to
get the correct value.

GetPDFVersionEx() can be called to determine the underlying PDF standard as well as the major
and minor version.

GetPDFVersionEx

Syntax:
LBOOL pdfGetPDFVersionEx(
 const PPDF* IPDF, // Instance pointer
 struct TPDFVersionInfo* Value) // Required

struct TPDFVersionInfo
{
 UI32 StructSize; // Must be set to sizeof(TPDFVersionInfo)
 UI32 Major; // PDF major version, e.g. 1
 UI32 Minor; // PDF minor version, e.g. 7
 const char* MainVer; // Set if the file conforms to a specific PDF standard, e.g. "PDF/X
 // 1a:2003", "PDF/A 3b", and so on.
 const char* SubVer; // e.g. "ZUGFeRD 2.0", "Factur-X", and so on.
 // PDF/A
 const char* PDFAConformance; // e.g. A, B, E, F, U, or UA.
 UI32 PDFAVersion; // If greater zero, this is a PDF/A file.
 // PDF/E
 const char* PDFEVersion; // e.g. PDF/E-1
 // PDF/VT
 const char* PDFVTModDate; // Modification date, e.g. 2016-05-07T15:42:23+01:00
 const char* PDFVTVersion; // e.g. PDF/VT-2
 // PDF/X
 const char* PDFXConformance; // e.g. PDF/X-1a:2001 or PDF/X-1a:2003. PDF/X 3 and above do not set
 // this key anymore.
 const char* PDFXVersion; // e.g. PDF/X-1:2001, PDF/X-1:2003, and so on.
 // ZUGFeRD, Factur-X, XRechnung
 const char* FXConfLevel; // ConformanceLevel
 const char* FXDocName; // DocumentFileName
 const char* FXDocType; // DocumentType
 const char* FXVersion; // Version
 SI32 VersionConst; // If >= 0 this is the TPDFVersion constant as integer. If the
 // version is not supported by DynaPDF, this member is set to -1.
};

The function retrieves the major and minor version of the PDF document as well as the underlying
PDF standard(s), if any.The member StructSize must be set to sizeof(TPDFVersionInfo) before the
function be called.

A PDF file can be compatible to multiple standards like PDF/A and PDF/X. Therefore, more than
one version can be set at time.

Function Reference Page 505 of 854

ZUGFeRD, Factur-X, XRechnung

ZUGFeRD, Factur-X, and XRechnung invoices depend on an embedded XML invoice. The name of
this file is set to FXDocName. This name can be passed to FindEmbeddedFile() to get a handle of this
file. If the file cannot be found make sure that embedded files were imported either via
ImportPDFFile() or ImportCatalogObjects().

If these functions were called then check the import flags. The flag ifEmbeddedFiles must be set to get
embedded files imported. See SetImportFlags() for further information.

Note also that ZUGFeRD 2.1 and Factur-X use the same XMP version identifiers. Therefore, it is not
possible to distiguish between these versions without parsing the embedded XML invoice.

VersionConst

The member VersionConst is set if DynaPDF supports the file version. Note that a PDF version
consists of a version constant plus optional flags. See enum TPDFVersion for further information.

The value is set to -1 if the version is not supported by DynaPDF.

Not implemented

The function does not support all PDF versions currently on the marked. Not recognized are
PDF/VCR and PDF/R (PDF Raster) files.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 506 of 854

GetPrintSettings

Syntax:
LBOOL pdfGetPrintSettings(

const PPDF* IPDF,
struct TPDFPrintSettings* Settings)

struct TPDFPrintSettings
{

TDuplexMode DuplexMode; // See below
SI32 NumCopies; // -1 means not set. The maximum value is 5
SI32 PickTrayByPDFSize; // -1 means not set. 0 == false, 1 == true
// If set, the array contains PrintRangesCount * 2 values. Each pair
// consists of the first and last page of the sub-range. The first page
// in the PDF file is denoted by 0.
UI32* PrintRanges;
UI32 PrintRangesCount; // Number of ranges
TPrintScaling PrintScaling; // dpmNone means not set
/* 9 reserved fields follow*/

};

typedef enum
{
 dpmNone, // Use the default value of the viewer
 dpmSimplex,
 dpmFlipShortEdge,
 dpmFlipLongEdge
}TDuplexMode;

The function retrieves the currently defined print settings of the document. The print settings are
used to initialize the print dialog in a viewer application. See also SetPrintSettings().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetPtDataArray

Syntax:
LBOOL pdfGetPtDataArray(
 const IPTD* PtData, // Pointer of Point Data dictionary
 UI32 Index, // Array index
 char** DataType, // Out -> Data type as string
 float** Values, // Out -> Pointer of float array
 UI32* ValCount) // Out -> Number of values in the array

The function returns a Point Data dictionary. A point data dictionary specifies points in 2D space for
geospatical measures. The parameter DataType specifies the type of points, such as LAT for latitude
in degrees, LON for longitute in degrees, or ALT for altitude in metres.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 507 of 854

GetPtDataObj

Syntax:
LBOOL pdfGetPtDataObj(
 const IPTD* PtData, // Pointer of Point Data dictionary
 char** Subtype, // Out -> Should be Cloud
 UI32* NumArrays) // Out -> Number of point data arrays

The function returns the main properties of a Point Data dictionary. A point data dictionary contains
one or more point data arrays. The point data arrays can be accessed with GetPtDataArray().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetRelFileNode

Syntax:
LBOOL pdfGetRelFileNode(
 const IRFN* IRF, // Instance pointer
 struct TPDFRelFileNode* F, // see below
 LBOOL Decompress) // Decompress the embedded file?

struct TPDFRelFileNode
{

UI32 StructSize; // Must be set to sizeof(TPDFRelFileNode).
 const char* NameA; // Name of this file spcification.
 const UI16* NameW; // Either the Ansi or Unicode name is set.
 struct TPDFFileSpec EF; // Embedded file.
 IRFN* NextNode; // Next node if any.
};

The function retrieves the properties of a related files node. An embedded file can contain a related
files array that contains additional files related to the base file. For example, the base file could be a
composite image, and the related files array could contain the separations for every color channel.

Related files are stored in as a single linked list. The member NextNode contains a pointer to the next
file, if any. The member StructSize must be set to sizeof(TPDFRelFileNode) before the function can
be called.

The structure TPDFFileSpec is described in detail at GetEmbeddedFile().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 508 of 854

GetResetAction

Syntax:
LBOOL pdfGetResetAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Handle of a ResetFormAction
 struct TPDFResetFormAction* Value) // See below

struct TPDFResetFormAction
{

UI32 StructSize; // Must be set to sizeof(TResetFormAction)
 const void** Fields; // Array of field pointers -> GetFieldEx2().
 UI32 FieldsCount; // Number of fields in the array.
 LBOOL Include; // If true, the fields in the array must be
 // reset. If false, these fields must be
 // excluded.

SI32 NextAction; // -1 or next action handle to be executed if any
 TActionType NextActionType; // Only set if NextAction is >= 0.
};

The function returns the properties of a Reset Form Action. The member StructSize must be
initialized with the structure size before the function can be called.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetResolution

Syntax:
SI32 pdfGetResolution(
 const PPDF* IPDF) // Instance pointer

The function returns the resolution in DPI (Dots per Inch), in which images are stored by DynaPDF.
The value will be ignored if the property SaveNewImageFormat was set to false.
Default value = 150 (DPI)

GetSaveNewImageFormat

Syntax:
SI32 pdfGetSaveNewImageFormat(
 const PPDF* IPDF) // Instance pointer

If false (0), images are not downscaled if necessary to achieve the specified resolution (see
SetResolution()).
Default value = 1 (true)

Function Reference Page 509 of 854

GetSeparationInfo

Syntax:
LBOOL pdfGetSeparationInfo(

const PPDF* IPDF, // Instance pointer
char* ADDR Colorant, // Colorant name
TExtColorSpace ADDR CS) // Separation, DeviceN, or NChannel

The function returns the separation info stored in the current open page. The colorant name is
returned UTF-8 Unicode format.

Return values:

If the function succeeds the return value is 1. If the function fails or if the page contains no
separation info the return value is 0.

GetSigDict

Syntax:
LBOOL pdfGetSigDict(
 const PPDF* ISignature, // Pointer of a signature dictionary
 struct TPDFSigDict* SigDict) // see below

struct TPDFSigDict
{
 UI32 StructSize; // Must be set to sizeof(TPDFSigDict).
 const UI32* ByteRange; // ByteRange -> Byte offset followed by the corresponding length.
 // The byte ranges are required to create the digest. The values
 // are returned as is. Check whether the offsets and length
 // values are valid. There are normally at least two ranges.
 // Overlapping ranges are not allowed! Any error breaks
 // processing and the signature should be considered as invalid.
 UI32 ByteRangeCount; // The number of Offset / Length pairs.
 const BYTE* Cert; // X.509 Certificate when SubFilter is adbe.x509.rsa_sha1.
 UI32 CertLen; // Length in bytes
 const UI32* Changes; // If set, an array of three integers that specify changes to the
 // document that have been made between the previous signature
 // and this signature in this order: the number of pages altered,
 // the number of fields altered, and the number of fields filled
 // in.
 const char* ContactInfoA; // Optional contact info string
 const UI16* ContactInfoW; // Optional contact info string
 const BYTE* Contents; // The signature. This is either a DER encoded PKCS#1 binary data
 // object or a DER-encoded PKCS#7 binary data object depending on
 // the used SubFilter.
 UI32 ContentsSize; // Length in bytes.
 const char* Filter; // The name of the security handler, usually Adobe.PPKLite.
 const char* LocationA; // Optional location of the signer
 const UI16* LocationW; // Optional location of the signer
 const char* SignTime; // Date/Time string
 const char* NameA; // Optional signers name
 const UI16* NameW; // Optional signers name
 UI32 PropAuthTime; // The number of seconds since the signer was last authenticated.
 const char* PropAuthType; // Optional -> The method that shall be used to authenticate the
 // signer. Valid values are PIN, Password, and Fingerprint.
 const char* ReasonA; // Optional reason
 const UI16* ReasonW; // Optional reason
 SI32 Revision; // The version of the signature handler that was used to create
 // the signature.
 const char* SubFilter; // A name that describes the encoding of the signature value.

Function Reference Page 510 of 854

 // This should be adbe.x509.rsa_sha1, adbe.pkcs7.detached, or
 // adbe.pkcs7.sha1.
 SI32 Version; // The version of the signature dictionary format.
};

The function returns the properties of a signature dictionary. This dictionary is only present if an
imported PDF file was digitally signed. Note that the byte ranges refer to the original file that
contained the signature. With the information of this dictionary it is possible to validate the
signature with a cryptographic library like the Windows Crypt API, OpenSSL or similar libraries.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetSpaceWidth

Syntax:
double fntGetSpaceWidth(

const PPDF* IFont, // Pointer to internal font object
double FontSize) // Font size to compute the space width

The function returns the width of the space character of the font depending on the font size. If the
font contains no space character a default size is used to compute the space width.

The parameter IFont must be a valid pointer to a PDF font. Such a pointer is returned by
GetPageText(), EnumDocFonts(), or by the content parser (see ParseContent()).

Return values:

If the function succeeds the return value is the space width. If the function fails the return value is
zero. This function does not use the exception handling of DynaPDF. No error message is set on
failure.

Function Reference Page 511 of 854

GetStrokeColor

Syntax:
UI32 pdfGetStrokeColor(
 const PPDF* IPDF) // Instance pointer

The function returns the current stroke color. The returned color value is not converted to the active
color space. For example, if the color space will be changed with SetColorSpace(), the color value is
still the same. Colors must be correctly defined in the current color space.
Default value = 0 (Black)

GetSubmitAction

Syntax:
LBOOL pdfGetSubmitAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // SubmitFormAction handle
 struct TPDFSubmitFormAction* Value) // See below

struct TPDFSubmitFormAction
{

UI32 StructSize; // Must be set to sizeof(TSubmitFormAction)
 const char* CharSet; // Optional charset in which the form should be submitted.
 const void** Fields; // Array of field pointers -> GetFieldEx2().
 UI32 FieldsCount; // Number of fields in the array.
 TSubmitFlags Flags; // Various flags, see CreateSubmitAction().
 const char* URL; // The URL of the script that will process the
 // submission.

SI32 NextAction; // -1 or next action handle to be executed if any
 TActionType NextActionType; // Only set if NextAction is >= 0.
};

The function returns the properties of a Submit Form Action. The member StructSize must be
initialized with the structure size before the function can be called.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetSysFontInfo

Syntax:
SI32 pdfGetSysFontInfo(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Next font handle or 0 for the first call
 struct TPDFSysFont* Out) // Out -> See below

struct TPDFSysFont
{

UI32 StructSize; // Must be set to sizeof(TPDFSysFont)
 TFontBaseType BaseType; // Font type
 const char* CIDOrdering; // OpenType CID fonts only
 const char* CIDRegistry; // OpenType CID fonts only
 UI32 CIDSupplement; // OpenType CID fonts only
 UI32 DataOffset; // Data offset

Function Reference Page 512 of 854

 const UI16* FamilyName; // Family name
 const char* FilePathA; // Font file path (Ansi string on Windows, UTF-8 otherwise
 const UI16* FilePathW; // Font file path
 UI32 FileSize; // File size in bytes
 TEnumFontProcFlags Flags; // Bitmask
 const UI16* FullName; // Full name
 UI32 Length1; // Length of the clear text portion of a Type1 font
 UI32 Length2; // Length of the eexec encrypted portion of a Type1 font
 const char* PostScriptNameA; // Postscript mame
 const UI16* PostScriptNameW; // Postscript mame
 SI32 Index; // Zero based font index if stored in a TrueType collection
 LBOOL IsFixedPitch; // If true, the font is a fixed pitch font
 TFStyle Style; // Font style
 TUnicodeRange1 UnicodeRange1; // Bitmask
 TUnicodeRange2 UnicodeRange2; // Bitmask
 TUnicodeRange3 UnicodeRange3; // Bitmask
 TUnicodeRange4 UnicodeRange4; // Bitmask
};

The function returns the most important properties of a system font. The member StructSize must be
set to sizeof(TPDFSysFont) before the function can be called.

If you want to know how many fonts will be returned then call EnumHostFonts() with the
parameter EnumProc set to NULL beforehand. The function returns the number of available fonts in
this case.

However, also if the number of host fonts is known, it is not possible to loop over the available fonts
from 0 to FontCount - 1 since the parameter Handle represents no array index.

In the first call set the parameter Handle to 0 or Out to NULL. In this case, the function returns the
handle of the first font file. This value must be passed to the next call until the return value is zero.

Note that if Out is set in the first call, then the first font will already be returned.

Since the return value could be zero if only one system font is available, the caller must check
whether FamilyName is non-NULL to determine whether a font was returned (all members are
initialized with zero in this case). The family name is always set if a font was returned.

Example (C#):
// This code adds the full names to a list box.
int next;
TPDFSysFont f = new TPDFSysFont();
next = 0;
next = pdf.GetSysFontInfo(next, ref f);
if (next >= 0 && f.FamilyName != null)
{

listBox1.Items.Add(f.FullName);
}
while (next > 0)
{

next = pdf.GetSysFontInfo(next, ref f);
if (next >= 0)
{

listBox1.Items.Add(f.FullName);
}

}

Function Reference Page 513 of 854

The function returns the fonts in the current font search order. That means if the search order is
{fbtTrueType, fbtOpenType, fbtType1, fbtStdFont}, for example, then the function returns first all
TrueType fonts sorted in ascending order, then all OpenType fonts, and so on.

Since standard fonts are no system fonts, these fonts are not returned.

Return values:

If the function succeeds the return value is greater or equal zero and the parameter Out was
initialized or filled with values. If the function fails the return value is a negative error code. The
parameter Out is not initialized in this case.

GetTabLen

Syntax:
SI32 pdfGetTabLen(
 const PPDF* IPDF) // Instance pointer

The function returns the tabulator length in spaces that is used to emulate tabulators during text
formatting (see WriteFText() for further information).

Because tabulators are emulated with spaces they have no fixed with. The width of a tabulator
depends on the width of the space character of the active font.
Default value = 3

GetTemplCount

Syntax:
SI32 pdfGetTemplCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of templates used by a page. The page must be opened with
EditPage() beforehand.

Return values:

If the function succeeds the return value is the number of templates. If the function fails the return
value is a negative error code.

GetTemplHandle

Syntax:
SI32 pdfGetTemplHandle(

const PPDF* IPDF) // Instance pointer

The function returns the handle of the current open template or a negative error code on failure.

Function Reference Page 514 of 854

GetTemplHeight

Syntax:
double pdfGetTemplHeight(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle) // Template handle

The function returns the height of a template. The parameter Handle must be a valid template
handle.

Return values:

If the function succeeds the return value is the height of the template. If the function fails the return
value is a negative error code.

GetTemplWidth

Syntax:
double pdfGetTemplWidth(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle) // Template handle

The function returns the width of a template. The parameter Handle must be a valid template
handle.

Return values:

If the function succeeds the return value is the width of the template. If the function fails the return
value is a negative error code.

GetTextDrawMode

Syntax:
SI32 pdfGetTextDrawMode(
 const PPDF* IPDF) // Instance pointer

typedef enum
{

dmNormal = 0,
 dmStroke = 1,
 dmFillStroke = 2,
 dmInvisible = 3,
 dmFillClip = 4,
 dmStrokeClip = 5,
 dmFillStrokeClip = 6,
 dmClipping = 7
}TDrawMode;

The function returns the text draw mode. Se draw modes are described in detail under
SetTextDrawMode().

Function Reference Page 515 of 854

GetTextFieldValue

Syntax:
LBOOL pdfGetTextFieldValue(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 char* ADDR Value, // Field value
 LBOOL ADDR ValIsUnicode, // If true, Value is a Unicode string
 char* ADDR DefValue, // Default value
 LBOOL ADDR DefValIsUnicode) // If true, DeValue is a Unicode string

The function returns the value and default of a text field. Both values can be in Ansi or Unicode
format (UTF-16).

Return value:

If the function succeeds the return value is 1, if the function fails the return value is 0.

GetTextRect

Syntax:
SI32 pdfGetTextRect(
 const PPDF* IPDF, // Instance pointer
 double ADDR PosX, // X-Coordinate of the rectangle
 double ADDR PosY, // Y-Coordinate of the rectangle
 double ADDR Width, // Width of the rectangle
 double ADDR Height) // Height of the rectangle

The function retrieves the bounding rectangle to output formatted text. No parameter of the
function must be NULL. See also SetTextRect(), WriteFText().

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetTextRise

Syntax:
double pdfGetTextRise(
 const PPDF* IPDF) // Instance pointer

The function returns the current text rise used to output text. Text rise specifies the distance, in
unscaled text space units, to move the baseline up or down from its default location. Positive values
of text rise move the baseline up. Adjustments to the baseline are useful for drawing superscripts or
subscripts. The default location of the baseline can be restored by setting the text rise to 0. The figure
below illustrates the effect of the text rise. Text rise always applies to the vertical coordinate in text
space. See also SetTextRise().

The text moves around the baseline.
Default value = 0

Function Reference Page 516 of 854

GetTextScaling

Syntax:
double pdfGetTextScaling(
 const PPDF* IPDF) // Instance pointer

The function returns the current value of horizontal text scaling. The scaling value adjusts the width
of glyphs by stretching or compressing them in the horizontal direction. Its value is specified as a
percentage of the normal width of the glyphs, with 100 being the normal width. See also
SetTextScaling().
Default value = 100

Value = 100 Word
Value = 50 WordWord

GetTextWidth

Syntax:
double pdfGetTextWidth(
 const PPDF* IPDF, // Instance pointer
 const char* AText) // Null-terminated text string

The function computes the width of a text string in horizontal writing mode and the height in
vertical writing mode. The graphics state parameters character spacing, word spacing, text scaling,
and the current font size are all considered. A font must be set before this function can be used.

The function computes the visible width of the string. This is the width excluding the last character
spacing. The bounding box of the string is the text width plus the current character spacing. This
behaviour must be taken into account when writing right aligned text with WriteFText(). Due to
certain formatting rules WriteFText() must use the real bounding box of the text.

Visible Text Width (character spacing = 5.0)

C h a r a c t e r S p a c i n g

Real Bounding Box (character spacing = 5.0)

C h a r a c t e r S p a c i n g

Function Reference Page 517 of 854

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

CJK to Unicode code pages are supported by the Ansi version only because CJK strings must be
converted to Unicode beforehand. These conversion algorithms are available in the Ansi version
only. However, native CJK character sets are also supported with the wide string version in
combination with a CJK font. See SetFont() for further information.

Return values:

If the function succeeds the return value is the string width in un-scaled units. If the function fails
the return value is a negative error code.

GetTextWidth (Font API)

Syntax:
double fntGetTextWidth(

const void* IFont, // Pointer of the font object
const BYTE* Text, // PDF Text string
UI32 Len, // Length of the string
float CharSpacing, // Current character spacing
float WordSpacing, // Current word spacing
float TextScale) // Current text scaling

The function can be used to calculate the width of a sub string that was returned by the content
parser (see ParseContent() for further information). The parameter IFont must be a valid pointer of a
font object that was provided in the TSetFont callback function. Note that this function is optimized
for speed and does not use the normal error handling of DynaPDF. The parameters CharSpacing,
WordSpacing, and TextScale must be taken from the current graphics state.

The function returns the real text width of a string:

Visible Text Width (character spacing = 5.0)

C h a r a c t e r S p a c i n g

Real Text Width (character spacing = 5.0)

C h a r a c t e r S p a c i n g

Return values:

If the function succeeds the return value is the string width measured in text space. If the parameter
IFont is set NULL the return value is 0.0.

Function Reference Page 518 of 854

GetTextWidthEx

Syntax:
double pdfGetTextWidthEx(

const PPDF* IPDF, // Instance pointer
const char* AText, // Text string
UI32 Len) // Length of the string in characters

The function computes the width of a text string. The graphics state parameters character spacing,
word spacing, text scaling, and the current font size are all considered. A font must be set before this
function can be used.

The function computes the visible width of the string. This is the width excluding the last character
spacing. The bounding box of the string is the text width plus the current character spacing. This
behaviour must be taken into account when writing right aligned text with WriteFText(). Due to
certain formatting rules WriteFText() uses the bounding box of a text string to output text.

Visible Text Width (character spacing = 5.0)

C h a r a c t e r S p a c i n g

Real Bounding Box (character spacing = 5.0)

C h a r a c t e r S p a c i n g

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

CJK to Unicode code pages are supported by the Ansi version only because CJK strings must be
converted to Unicode beforehand. These conversion algorithms are available in the Ansi version
only. However, native CJK character sets are supported by the Unicode version in combination with
a CJK font. See SetFont() for further information.

Return values:

If the function succeeds the return value is the string width in un-scaled units. If the function fails
the return value is a negative error code.

GetTransparentColor

Syntax:
UI32 pdfGetTransparentColor(
 const PPDF* IPDF) // Instance pointer

The function returns the transparent color value that is used for newly inserted images.
Default value = 0xFFFFFF (RGB White)

Function Reference Page 519 of 854

GetTrapped

Syntax:
LBOOL pdfGetTrapped(

const PPDF* IPDF) // Instance pointer

The function returns the trapped key of the document. The default value is false. However, the real
default value is unknown that means the key is not written to the file. The trapped key must be set
with SetTrapped() if it should written to the file.

GetTypoLeading

Syntax:
double pdfGetTypoLeading(
 const PPDF* IPDF) // Instance pointer

The function returns the typographic leading or line height of a font. This is sTypoAscender –
sTypoDescender + sTypoLineGap of the OS/2 table of TrueType and OpenType fonts. The value is
scaled to the current font size. Type1 fonts do not support these metrics.

The function can be called after a font was activated in the graphics state, e.g. with SetFont(),
SetFontEx(), SetCIDFont(), or ChangeFont().

If typographic metrics are not available the return value is Ascent – Descent. If the value is smaller
than the font size then the font size is returned.

Return values:

If the function succeeds the return value is the typographic leading of the active font, this is a value
greater zero. If the function fails the return value is a negative error code.

GetURIAction

Syntax:
LBOOL pdfGetURIAction(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Action handle
 struct TPDFURIAction* Action) // see below

struct TPDFURIAction
{

UI32 StructSize; // Must be set to sizeof(TPDFURIAction)
 const char* BaseURL; // Optional, if defined in the Catalog object.
 LBOOL IsMap; // A flag specifying whether to track the mouse position
 // when the URI is resolved: e.g. http://test.org?50,70.
 const char* URI; // Uniform Resource Identifier.
 SI32 NextAction; // -1 or next action handle to be executed if any.
 TActionType NextActionType; // Only set if NextAction is >= 0.
};

The function retrieves the properties of a URI action. The member StructSize must be set to
sizeof(TPDFURIAction) before the function can be called.

Function Reference Page 520 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetUseExactPwd

Syntax:
LBOOL pdfGetUseExactPwd(
 const PPDF* IPDF) // Instance pointer

If the property UseExactPwd is false, an encrypted PDF file can always be decrypted, if either the
open or owner password in the file is an empty string. If true, the open or owner password must be
known to open the PDF file (see also SetUseExactPwd()).
Default value = 1 (true)

Remarks:

If your application should allow the modification of encrypted PDF files, you may check the access
permissions to grant user rights, if the file was opened with the open password instead of the owner
password (see also GetUserRights()).

Due to the license agreement of Adobe, all manufacturers of applications which make the treatment
of encrypted PDF files possible, must respect the access permissions of a PDF file, if the file was
opened with the open password.

Only if the file was opened with the owner password, all rights should be granted. See PDF
Reference 1.5 for further information.

The property UseExactPwd should be true, if the application is a commercial software product.

GetUseGlobalImpFiles

Syntax:
LBOOL pdfGetUseGlobalImpFiles(
 const PPDF* IPDF) // Instance pointer

The property specifies whether import files should be loaded permanent into memory, e.g. to enable
splitting of large PDF files. An open import file will not be closed when CloseFile() or FreePDF() is
called when the property is true. See also SetUseGlobalImpFiles().
Default value = 0 (false)

http://partners.adobe.com/asn/tech/pdf/specifications.jsp
http://partners.adobe.com/asn/tech/pdf/specifications.jsp

Function Reference Page 521 of 854

GetUserRights

Syntax:
SI32 pdfGetUserRights(
 const PPDF* IPDF) // Instance pointer

typedef SI32 TRestrictions;
#define rsDenyNothing 0x00000000 // Editing is not restricted
#define rsDenyAll 0x00000F3C // Deny anything
#define rsPrint 0x00000004 // Deny printing
#define rsModify 0x00000008 // Deny modification of contents
#define rsCopyObj 0x00000010 // Deny copying of contents
#define rsAddObj 0x00000020 // No commenting
/* 128/256 bit only -> not meaningful with 40 bit encryption */
#define rsFillInFormFields 0x00000100 // requires rsModify + rsAddObj
#define rsExtractObj 0x00000200 // Extract text, images, vector data
#define rsAssemble 0x00000400 // Text access for screen readers
#define rsPrintHighRes 0x00000800 // Disable high res. printing
#define rsExlMetadata 0x00001000 // Metadata streams are unencrypted?
#define rsEmbFilesOnly 0x00002000 // If set, rsExlMetadata is set too

The function returns the encryption flags of the last imported PDF file or -1 if the file was not
encrypted. These flags must be considered when opening an encrypted PDF with user privileges,
that is, when the open password was used to decrypt the file. The print flags rsPrint and
rsPrintHighRes can be ignored for editing, but the file must be encrypted again with the same
encryption flags.

The encryption flags are described in detail at CloseFileEx(). If no file was imported beforehand the
return value is zero. Use GetInIsEncrypted() to determine whether the file was encrypted.

GetUserUnit

Syntax:
float pdfGetUserUnit(
 const PPDF* IPDF) // Instance pointer

The function returns the user unit of the current open page. A user unit acts like a scaling factor. The
page format and all page coordinates are multiplied with this factor in a viewer application. The
default size of a PDF unit is 1/72 inch and the default user unit is 1.0. User units can be useful if the
page format would be too large to be expressed in standard PDF units. The largest page format in
PDF is limited to 14400 units or 200 inches. This limit can be extended with the user unit.

The largest value that is supported is 75.0 which results in a maximum page format of 15,000 x
15,000 inches or 1,800,000 units.

Function Reference Page 522 of 854

GetUseStdFonts

Syntax:
LBOOL pdfGetUseStdFonts(
 const PPDF* IPDF) // Instance pointer

The function returns 1 (true) if the 14 standard fonts are enabled. PDF viewer applications support
14 standard fonts, these fonts are not embedded by default, also if the parameter Embed of the
function SetFont() is true and if the font file is available.

If a standard font should be embedded it is recommended to disable the internal fonts supported by
DynaPDF. See also SetFont() or SetUseStdFonts().
Default value = 1 (true)

GetUseSystemFonts

Syntax:
LBOOL pdfGetUseSystemFonts(
 const PPDF* IPDF) // Instance pointer

The property specifies whether the default font directory of the operating system should be added
to the list of font search paths. On Windows this is the %Windows%/Fonts directory plus additional
fonts which can be named in the Registry.

On Mac OS X the following font directories will be added to the list of font search paths (in this
order):
~/Library/Fonts/
/Library/Fonts/
/System/Library/Fonts/

System fonts are loaded on demand, e.g. when a function tries to load a font. To improve processing
speed the internal font cache is hold in memory until the PDF instance will be deleted. Additional
font search paths can be added with AddFontSearchPath().

Because Linux and UNIX operating system support no default font directory the property is
ignored.

Return values:

The return value is 1 if systems fonts are enabled, or zero otherwise.

Function Reference Page 523 of 854

GetUsesTransparency

Syntax:

SI32 pdfGetUsesTransparency(
 const PPDF* IPDF, // Instance pointer
 SI32 PageNum) // Page number or -1 to check all pages

The function checks whether a page or the entire document uses transparency. This is no quick
check as GetDocUsesTransparency() applies. The function parses the page or pages to determine
whether transparent objects are really used.

To check whether a specific page uses transparency set the parameter PageNum to the wished page
number. The first page is denoted by 1. To check the entire PDF file set PageNum to -1.

Return values:

The return value is a bit mask on success (a positive integer value), or a negative error code on
failure.

The following flags are defined:

• 0: The page or document uses no transparency.

• 1: The content stream of a page contains transparent objects.

• 2: A page defines the blending color space (Group dictionary).

• 4: A page contains transparent annotations or form fields.

The above values can occur in any combination. To check whether a specific flag was set use a
binary and operator:

Example C++:
...
SI32 retval = pdfGetUsesTransparency(pdf, 1);
if (retval < 0)
 // an error occurred
else if (retval == 0)
 // no transparency used
else
{
 if (retval & 1)
 {
 // The page or document uses transparency
 }
 if (retval & 2)
 {
 // At least one page defines the blending color space. If bit 1 is absent then no transparency
 // is used in the content stream of a page.
 }
 if (retval & 4)
 {
 // A page contains transparent annotations or form fields.
 }
}
...

Function Reference Page 524 of 854

GetUseTransparency

Syntax:
LBOOL pdfGetUseTransparency(
 const PPDF* IPDF) // Instance pointer

The property specifies whether images should get a transparent background. If true, the transparent
color (see SetTransparentColor() is used to mask an image. The property has no effect for JPEG
compressed images.
Default value = 1 (true)

GetUseVisibleCoords

Syntax:
LBOOL pdfGetUseVisibleCoords(
 const PPDF* IPDF) // Instance pointer

The property specifies whether DynaPDF should consider the crop box to calculate the position of
an object. The crop box crops a page, but the paper format (media box) is left unchanged. To move
the coordinates into the visible area, set the property to true. Coordinates can then be used as if no
crop box was defined. The bounding boxes are described in detail at SetBBox().

GetViewerPreferences

Syntax:
LBOOL pdfGetViewerPreferences(
 const PPDF* IPDF, // Instance pointer
 SI32 ADDR Preference, // Preference
 SI32 ADDR AddVal) // Parameter of the preference if any

typedef SI32 TViewerPreference;
#define vpUseNone 0x00000000 // No preference is set
#define vpHideToolBar 0x00000001 // No parameter
#define vpHideMenuBar 0x00000002 // No parameter
#define vpHideWindowUI 0x00000004 // No parameter
#define vpFitWindow 0x00000008 // No parameter
#define vpCenterWindow 0x00000010 // No parameter
#define vpDisplayDocTitle 0x00000020 // (PDF 1.4) No parameter
#define vpNonFullScrPageMode 0x00000040 // Key, values see below
#define vpDirection 0x00000080 // (PDF 1.3)
#define vpViewArea 0x00000100 // (PDF 1.4)
#define vpViewClip 0x00000200 // (PDF 1.4)
#define vpPrintArea 0x00000400 // (PDF 1.4)
#define vpPrintClip 0x00000800 // (PDF 1.4)

typedef SI32 TViewPrefAddVal;
#define avNone 0x00000000
#define avNonFullScrUseNone 0x00000001
#define avNonFullScrUseOutlines 0x00000002
#define avNonFullScrUseThumbs 0x00000004
#define avNonFullScrUseOC 0x00000400 // PDF 1.6
#define avDirectionL2R 0x00000008
#define avDirectionR2L 0x00000010
#define avViewPrintArtBox 0x00000020
#define avViewPrintBleedBox 0x00000040
#define avViewPrintCropBox 0x00000080

Function Reference Page 525 of 854

#define avViewPrintMediaBox 0x00000100
#define avViewPrintTrimBox 0x00000200

#define AV_NON_FULL_SRC_MASK 0x00000005
#define AV_DIRECTION_MASK 0x00000018
#define AV_VIEW_PRINT_MASK 0x000003E0

The function retrieves the viewer preferences specified in the document. The parameters Preference
and AddVal are bit masks; they must be masked out with a bitwise and operator. Preferences in red
color are keys which have a corresponding value which must be taken from the parameter AddVal.

Note that more than one preference can be set at time.

The mask values can be used to easily mask out a specific parameter, see the example below.

Example (C++):
...
SI32 pref = 0, value = 0;
pdfGetViewerPreferences(pdf, pref, value);
if ((pref & vpDirection) && (value & avDirectionR2L))
 printf("Right to left reading order was defined!\n");
if (pref & AV_NON_FULL_SRC_MASK)
{
 printf("Non full screen mode is: \n");
 switch(value & AV_NON_FULL_SRC_MASK)
 {
 case avNonFullScrUseNone: printf("Use none\n");
 case avNonFullScrUseOutlines: printf("Use outlines\n");
 case avNonFullScrUseThumbs: printf("Use thumbs\n");
 }
}
...

Function Reference Page 526 of 854

GetViewport
LBOOL pdfGetViewport(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum, // Page number
 UI32 Index, // Viewport index
 struct TPDFViewport* VP) // See below

struct TPDFViewport
{

UI32 StructSize; // Must be set to sizeof(TPDFViewport)
 TFltRect BBox; // Bounding box
 IMSR* Measure; // Optional -> GetMeasureObj()
 const char* NameA; // Optional name
 const UI16* NameW; // Optional name
 IPTD* PtData; // Pointer of a Point Data dictionary -> GetPtDataObj().
};

The functions returns a viewport that is associated with a page. A viewport is a rectangular region
of a page, that specifies usually a measure coordinate system or points in a geospatical coordinate
system.

Since viewports might overlap, to determine the viewport to use for any point on a page, the
viewports in the array shall be examined, starting with the last one and iterating in reverse, and the
first one whose BBox entry contains the point shall be chosen.

The member StructSize must be set to sizeof(TPDFViewport) before the function can be called. To
determine the number of viewports associated with a page call GetViewportCount().

To determine how viewports and measure dictionaries can be used, please have a look into the PDF
Reference 2.0, ISO/DIS 32000-2, Section Measurement properties.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetViewportCount

Syntax:
SI32 pdfGetViewportCount(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum) // Page number

The function returns the number of viewports which are associated with a page. The first page has
the page number 1.

Return values:

If the function succeeds the return value is the number of viewports, a number greater or equal zero.
If the function fails the return value is a negative error code. The function can only fail if the page
number is invalid.

Function Reference Page 527 of 854

GetWMFDefExtent

Syntax:
LBOOL pdfGetWMFDefExtent(
 const PPDF* IPDF, // Instance pointer
 UI32 ADDR Width, // Width in 0.01 millimetres units
 UI32 ADDR Height) // Height in 0.01 millimetres units

The function retrieves the default size which is used to convert non-portable WMF files to EMF. See
InsertMetafile() for further information.
Default value:
Width = 0;
Height = 0;

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetWMFPixelPerInch

Syntax:
SI32 pdfGetWMFPixelPerInch(
 const PPDF* IPDF) // Instance pointer

The function returns the default pixels per inch of the y-axis which are used to convert portable
WMF files to EMF. DynaPDF uses a corrected value to get exact proportions. See InsertMetafile() for
further information.
Default value = 2400

GetWordSpacing

Syntax:
double pdfGetWordSpacing(
 const PPDF* IPDF) // Instance pointer

The function returns the current word spacing.
Default value = 0

Value = 0 Word Space
Value = 80 Word Space

Function Reference Page 528 of 854

GetXFAStream

Syntax:
LBOOL pdfGetXFAStream(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Array index
 struct TPDFXFAStream* Out) // Can be NULL. See description.

struct TPDFXFAStream
{

UI32 StructSize; // Must be set to sizeof(TPDFXFAStream)
const BYTE* Buffer; // XML Stream

 UI32 BufSize; // Buffer size in bytes
 const char* NameA; // Stream name
 const UI16* NameW; // Either the Ansi or Unicode name is set but
 // never both
};

The function returns an XFA stream. The parameter Index is the array index. The function
GetXFAStreamCount() returns the number of available streams.

The function must decompress the stream before it can be returned. To compress the stream again
call the function a second time and set the parameter Out to NULL. The function compresses the
stream in this case. This step is recommended to reduce the memory usage. Note that the returned
pointer become invalid when the stream will be compressed.

An XFA form consist of several XML streams. The stream name must be used to determine which
stream was returned.

Return value:

If the function succeeds the return value is 1. If the function fails the return value is 0.

GetXFAStreamCount

Syntax:
SI32 pdfGetXFAStreamCount(
 const PPDF* IPDF) // Instance pointer

The function returns the number of available XFA streams. XFA streams are available after a PDF
file was imported.

Return value:

If the function succeeds the return value is the number of available XFA streams. If the function fails
the return value is a negative error code.

Function Reference Page 529 of 854

HaveDPartRoot

Syntax:
LBOOL pdfHaveDPartRoot(
 const PPDF* IPDF) // Instance pointer

The function checks whether the PDF file in memory contains a DPartRoot dictionary.

DPart stands for Document Parts. DParts are a feature of PDF/VT, a PDF format for the printing
industry.

The function should be used to determine whether a DPart structure is already in memory, before
calling CreateDPartRoot() since the function would fail if this is the case.

An existing DPart structure can be extended with additional DPart nodes, but it is not yet possible to
edit existing nodes.

Return values:

If the document contains a DPartRoot dictionary, the return value is 1 or 0 otherwise.

HaveOpenDoc

Syntax:
LBOOL pdfHaveOpenDoc(
 const PPDF* IPDF) // Instance pointer

If an error occurred it is not always clear whether the PDF file was already deleted or if it is still in
memory. Therefore, this function can be used to determine whether a PDF file is still in memory.

Return values:

If an open PDF file is in memory the return value is 1. If no open PDF file is in memory the return
value is 0.

HaveOpenPage

Syntax:
LBOOL pdfHaveOpenPage(
 const PPDF* IPDF) // Instance pointer

The function returns true (1) if an open page is in memory. Otherwise the return value is false (0).

Function Reference Page 530 of 854

HighlightAnnot

Syntax:
SI32 pdfHighlightAnnot(

const PPDF* IPDF, // Instance pointer
TAnnotType SubType, // Allowed values are atHighlight, atSquiggly,
 // atStrikeOut, or atUnderline
double PosX, // X-Coordinate
double PosY, // Y-Coordinate
double Width, // Annotation height
double Height, // Annotation width
UI32 Color, // Highlight color
const char* Author, // Optional author
const char* Subject, // Optional subject (PDF 1.5)
const char* Comment) // Optional comment

The function creates a Highlight annotation. Highlight annotations are used to mark text on a PDF
page.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
bounding rectangle. If the coordinate system is top-down it defines the upper left corner.

The parameter Color specifies the highlight color; it must be defined in RGB color space. The line
width of a Strikout or Underline annotation is not adjustable. The line width depends on the size of
the annotation and is automatically calculated.

The active color space must be set to DeviceRGB before creating the annotation. See SetColorSpace()
for further information.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

ImportBookmarks

Syntax:
SI32 pdfImportBookmarks(
 const PPDF* IPDF) // Instance pointer

This function imports the outline tree of the currently opened import file (see OpenImportFile() or
OpenImportBuffer()).

Return values:

If the function succeeds the return value is the number of imported bookmarks. If the function fails
the return value is a negative error code.

Function Reference Page 531 of 854

ImportCatalogObjects

Syntax:
LBOOL pdfImportCatalogObjects(

const PPDF* IPDF) // Instance pointer

The function imports global objects of the currently open import file such as bookmarks, JavaScripts,
embedded files, open actions, invisible page templates, rendering intents, the document info entries,
and certain other global properties such as the page mode or page layout.

These objects are normally imported by ImportPDFFile(). However, in cases where this function
cannot be used, it is possible to import the global objects manually if necessary.

Remarks:

The function considers the current import flags. If certain objects are not imported, check whether
the right import flags are set. See also SetImportFlags().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ImportDocInfo

Syntax:
LBOOL pdfImportDocInfo(

const PPDF* IPDF) // Instance pointer

The function imports the document info entries from the currently opened import file. Already
existing entries are not overridden.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 532 of 854

ImportEncryptionSettings

Syntax:
LBOOL pdfImportEncryptionSettings(
 const PPDF* IPDF) // Instance pointer

The function imports the encryption settings from the currently open import file (see
OpenImportFile() or OpenImportBuffer() for further information).

If the PDF file is not encrypted, the function does nothing. To determine whether the open PDF file
is encrypted call GetInIsEncrypted().

The encryption settings should be imported to make sure that the PDF file can be saved with the
same settings after it was edited. The user rights should be considered if the file was opened with
the open password, also if the password was just an empty string. See GetUserRights() for further
information.

If the file was opened with the owner password, then all editing rights should be grated.

The PDF file must be closed with CloseFile() or CloseAndSignFile() for example. Don't use
CloseFileEx() for example since this function would override the encryption settings.

If the file should be saved unencrypted call ResetEncryptionSettings() before closing the file.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ImportOCProperties

Syntax:
LBOOL pdfImportOCProperties(
 const PPDF* IPDF) // Instance pointer

The function imports the global Optional Content Properties of the curent open import file (see
OpenImportFile() fur further information).

OC properties are normally automatically imported by functions like ImportPDFFile() or when
importing a page that contains layers. However, a viewer application must be able to access the OC
properties right after the PDF file was opened so that the layer configuration and the layer tree can
be loaded (see LoadLayerConfig() and GetOCUINode() for further information).

The function can be called multiple times without causing unwanted side effects.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 533 of 854

ImportPage

Syntax:
SI32 pdfImportPage(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum) // Page number

The function imports a page from an external PDF file and converts it to a template. The external
PDF file must be opened with OpenImportFile() or OpenImportBuffer() beforehand. The parameter
PageNum specifies the page number that should be imported; the first page has the number 1.

The conversion of pages to templates is required if an imported page should be scaled or placed on
a specific position or if an imported page should be used on more than one destination page, e.g. as
a custom page background.

However, in cases where the conversion of pages to templates is not necessary the usage of
ImportPageEx() within an open page is preferred. In this case it is also possible to import interactive
objects with the page such as annotations or form fields. Such objects cannot be imported with
ImportPage() because templates do not support interactive objects.

The new template is not placed on the current open page if any. To make the template visible the
template must be placed on a page or other template with PlaceTemplate() or PlaceTemplateEx().
The template can be used on arbitrary pages and arbitrary positions. It is also possible to scale a
template like an image. See PlaceTemplateEx() for further information.

Imported pages are often called watermark. A watermark is usually a simple text or some kind of
graphics that was imported from a PDF file. Such a graphics can be placed in background or in
foreground of a page. To place a template in background, add the template as first object to the
desired page. If the template should appear in foreground, add it as last object. The background of
an imported page is transparent as long as it doesn't contain any opaque objects which blank out the
entire background. Scanned images which are converted to PDF are often not transparent. Those
pages must be placed in background to avoid overlaying objects.

It is possible to import an external page outside of an open page, and it is also possible to import a
page outside of an open output PDF file. However, all templates will be deleted when CloseFile() is
called the next time. It is not possible to import an external page as template and hold it in memory
for use with more than one PDF file.

Bounding boxes

As mentioned earlier, imported pages are converted to templates by this function. A template has
only one bounding box, but a PDF page has 5 bounding boxes (see SetBBox() for a full explanation).
The most important bounding boxes are the media box and crop box of the original page.

A bounding box is defined as a rectangle giving the coordinates pair of diagonally opposite corners.
The media box of a page is usually expressed in a normalized form where the coordinates of the
lower-left point are set to 0.

Function Reference Page 534 of 854

However, the normalized form is used in 99% of all available documents but it is also possible that a
document uses a non-normalized form. For instance, the media box can look like this:
mediabox.Left = -100.0; // lower-left x
mediabox.Bottom = -100.0; // lower-left y
mediabox.Right = 200.0; // upper-right x
mediabox.Top = 200.0; // upper-right y

The size of the page that uses such a bounding box is 300 x 300 units. The problem is that the
coordinate origin lies at -100, -100. The page can also contain a crop box and the original page can be
rotated. This makes the handling more complicated.

When placing such a template with PlaceTemplate() on a page without further considerations the
result will be wrong because PlaceTemplate() does not consider the coordinate origin or the original
page orientation.

To simplify the work with imported templates PlaceTemplateEx() should be used instead. This
function considers the coordinate origin, crop box, and it preserves the original orientation when the
template is placed on a page. See PlaceTemplateEx() for further information.

Return values:

If the function succeeds the return value is a template handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

ImportPageEx

Syntax:
SI32 pdfImportPageEx(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum, // Page number
 double ScaleX, // Horizontal scaling factor (1.0 = no scaling)
 double ScaleY) // Vertical scaling factor (1.0 = no scaling)

The function imports a PDF page of an external PDF file incl. interactive objects such as annotations,
form fields and so on, if any. The external PDF must be opened with the function OpenImportFile()
or OpenImportBuffer() beforehand.

Link annotations and article beads are not imported by default because the destinations of such
annotations become invalid if the remaining pages are not imported in the same order as they
appeared in the original PDF file. Web links are affected too because it is not possible to distinguish
between a normal page link and web link annotations during import.

However, if you can make sure that all pages of a PDF file will be imported in the same order as in
the original file you can set the import flag ifAllPageObjects (see SetImportFlags()) to disable the
normal import behaviour. If this flag is set all annotation types will be imported. However, article
beads are always discarded by this function because these objects depend on other global objects
which cannot be resolved when importing pages manually. Article beads can only be preserved if
the entire PDF file is imported with ImportPDFFile().

Function Reference Page 535 of 854

The function can be used in two ways, inside an open page or outside.

Calling the function inside of an open page

If the function is called inside an open page, the external page will be imported and scaled by using
the scaling factors ScaleX and ScaleY, if the import flag ifImportAsPage is not set (see
SetImportFlags() for further information). All bounding boxes of the page will be scaled too and the
orientation will be set to the value of the source page.

An external page can only be scaled to an arbitrary format if it is converted to a template. This
conversion is done if the import flag ifImportAsPage is not set (default).

However, if a page must not be scaled or used as a template on multiple pages the flag
ifImportAsPage should be set to avoid the conversion of pages to templates. In this case, the scaling
factors will be ignored and the page is imported as is.

If an imported page contains a crop box (see GetBBox()) the property UseVisibleCoords can be used
to move all coordinates into the visible area of the crop box. If the property is true, all functions
consider the coordinate origin of the crop box to calculate the position of an object.

Calling the function outside of an open page

If the function is called outside of an open page, no interactive objects are imported and the scaling
factors ScaleX and ScaleY are ignored. The page becomes converted to a template. The function
works then exactly like ImportPage(). The resulting template can be placed on one or more pages
with PlaceTemplate() or better PlaceTemplateEx(). The latter version is preferred because it
considers the coordinate origin of the template as well as a maybe existing crop box and it preserves
the original page orientation.

Remarks:

This function is available in an Ansi and Unicode compatible version.

Return values:

If the function succeeds and if the imported page was converted to a template, the return value is a
template handle, a value greater or equal zero.

If the imported page was not converted to a template and if the function succeeds, the return value
is zero. If the function fails the return value is a negative error code.

Function Reference Page 536 of 854

ImportPDFFile

Syntax:
SI32 pdfImportPDFFile(
 const PPDF* IPDF, // Instance pointer
 UI32 DestPage, // Add the new pages at this position
 double ScaleX, // Horizontal scaling factor (1.0 = no scaling)
 double ScaleY) // Vertical scaling factor (1.0 = no scaling)

The function imports an external PDF file including interactive objects such as annotations,
bookmarks, form fields, and so on. DynaPDF supports a large set of flags to enable import of
required objects only. Unwanted objects can be removed by the function if necessary. The import
flags are described in detail at SetImportFlags() and SetImportFlags2().

The parameter DestPage specifies the destination page on which the new pages will be inserted or
added if the pages already exist. It is possible to import multiple PDF files on the same or
overlapping destination page.

Example 1:
...
pdfOpenImportFile(pdf, "c:/test1.pdf");
pdfImportPDFFile(pdf, 1, 1.0, 1.0); // Start import at page one
// The previous PDF file will be closed automatically.
pdfOpenImportFile(pdf, "c:/test2.pdf");
// No we have overlapping pages. For instance, if both PDF files
// contain 3 pages, then we get 3 pages in which the pages of the second
// PDF file are placed on top of the already existing ones.
pdfImportPDFFile(pdf, 1, 1.0, 1.0);
pdfCloseImportFile(pdf);
...

Example 2:

PDF files can be merged as follows:
...
pdfOpenImportFile(pdf, "c:/test1.pdf");
SI32 nextPage;
// We avoid the conversion of pages to templates in this case.
pdfSetImportFlags(ifImportAll | ifImportAsPage);
nextPage = pdfImportPDFFile(pdf, 1, 1.0, 1.0); // Start import at page one
// The previous PDF file will be automatically closed.
pdfOpenImportFile(pdf, "c:/test2.pdf");
// Add the new file behind the previous one.
pdfImportPDFFile(pdf, nextPage + 1, 1, 1);
pdfCloseImportFile(pdf);
...

Imported pages are converted to templates by default. This conversion is done by default mainly to
achieve the same runtime behaviour in comparison to older versions of DynaPDF and to enable

Function Reference Page 537 of 854

scaling of PDF pages (scaling is only possible with templates). So, if you want to scale the pages to
another page format then the conversion of pages to templates is required.

However, in most cases scaling is not required. The conversion of pages to templates should be
avoided in this case by setting the flag ifImportAsPage:
pdfSetImportFlags(pdf, ifImportAll | ifImportAsPage);

The advantage is that non-converted pages are a little bit smaller and a PDF file can be imported
and written to disk arbitrary often without increasing the file size or the nesting depth of templates.

Especially the nesting depth of templates can be an important aspect if a PDF file must edited
multiple times. Note that each time a PDF file is imported, while pages are converted to templates,
the nesting depth of templates becomes incremented. So, if you would import and save a PDF file in
a loop, while each time pages are converted to templates, the resulting PDF file becomes larger and
larger, and the nesting depth of templates becomes higher and higher. A nesting depth of more than
8 can already cause printing problems. Viewer applications support usually much higher nesting
depths but the memory usage becomes then very large and the rendering speed is decreased.

Return values:

If the function succeeds the return value is the last page number that was touched. For example, if
the document in memory contains already 20 pages, and if we import a PDF file with 23 pages, and
if the destination page is 21 the return value should be 43 because this is the last page that was
invoked during import.

If the function fails the return value is a negative error code.

InitBarcode2

Syntax:
LBOOL pdfInitBarcode2(
 struct TPDFBarcode2* Barcode) // Barcode structure

The function initializes the TPDFBarcode2 structure with default values. The member StructSize must
be set to sizeof(TPDFBarcode2) before the function can be called. The structure size is used to
identify different versions of the structure.

Please note that many members of the structure must be initialized with non-zero values.
Initializing the structure with zero is no meaningful initialization.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 538 of 854

InitColorManagement
LBOOL pdfInitColorManagement(
 const PPDF* IPDF, // Instance pointer
 struct TPDFColorProfiles* Profiles, // Color profiles or NULL
 TPDFColorSpace DestSpace, // Destination color space
 TPDFInitCMFlags Flags) // See below

struct TPDFColorProfiles
{
 UI32 StructSize; // Must be set to sizeof(TPDFColorProfile)
 const char* DefInGrayA; // Optional
 const UI16* DefInGrayW; // Optional
 const char* DefInRGBA; // Optional, sRGB is the default.
 const UI16* DefInRGBW; // Optional
 const char* DefInCMYKA; // Optional, but this is the most important
 const UI16* DefInCMYKW; // profile!
 const char* DeviceProfileA; // Optional, must be compatible with the
 const UI16* DeviceProfileW; // output color space. Default is sRGB.
 const char* SoftProofA; // Optional, emulates another output device.
 const UI16* SoftProofW; // Optional.
};

typedef enum
{

icmDefault = 0, // Default rules.
 icmBPCompensation = 1, // Black point compensation preserves the black
 // point when converting CMYK colors to
 // different color spaces.
 icmCheckBlackPoint = 2 // If set, soft proofing will be disabled if the
 // black point of the output intent is probably
 // invalid. The limit is 35 for L* measured in
 // Lab color space.
}TPDFInitCMFlags;

The function enables color management in the functions RenderPage(), RenderPageEx(),
RenderPageToImage(), and RenderPDFFile(). All color profiles are optional. Default profiles for
DeviceGray and DeviceRGB color spaces (sRGB is default) are automatically created if not provided.

The most important color profile is the CMYK profile because it is not possible to create such a
profile with build-in functions. If no CMYK profile is set DynaPDF renders CMYK only with color
management if the file contains corresponding ICCBased color spaces or an embedded CMYK
output intent.

The file paths can be defined in Ansi or Unicode format (UTF-16). Ansi strings are interpreted in the
code page 1252 on Windows and in UTF-8 Unicode on non-Windows operating systems.

It is also possible to load the ICC profiles from file buffers. See InitColorManagementEx() for further
information.

The SoftProof profile specifies an arbitrary output color space that should be simulated.

To disable color management set the parameter Profile to NULL. Because Visual Basic 6 doesn't
accept vbNull for this parameter, call DisableColorManagement() instead. This function exists in the
VB 6 interface only.

Although Black Point Compensation (BPC) is not enabled by default, it is recommended to enable it
because it improves the rendering quality of CMYK images a lot.

Function Reference Page 539 of 854

Remarks:

All profile paths must be absolute paths. Otherwise it is maybe not possible to reload a profile if
necessary. DynaPDF must be able to reload the profiles if a PDF file contains ICCBased color spaces.

Initializing the color management requires a considerable amount of processing time. It is strongly
recommended to use one PDF instance as long as possible so that it must not be initialized again
when another PDF file will be rendered.

The color management can be initialized right after the PDF instance was created.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

InitColorManagementEx

Syntax:
LBOOL pdfInitColorManagementEx(
 const PPDF* IPDF, // Instance pointer
 struct TPDFColorProfilesEx* Profiles, // Color profiles or NULL
 TPDFColorSpace DestSpace, // Destination color space
 TPDFInitCMFlags Flags) // See below

struct TPDFColorProfilesEx
{

UI32 StructSize; // Must be set to sizeof(TPDFColorProfilesEx)
 const void* DefInGray; // Optional
 UI32 DefInGrayLen; // Optional
 const void* DefInRGB; // Optional
 UI32 DefInRGBLen; // Optional
 const void* DefInCMYK; // Optional, but this is the most important
 UI32 DefInCMYKLen; // but this is the most important profile.
 const void* DeviceProfile; // Optional, must be compatible with the output color
 UI32 DeviceProfileLen; // space. Default is sRGB.
 const void* SoftProof; // Optional, emulates another output device.
 UI32 SoftProofLen; // Optional.
};

typedef enum
{

icmDefault = 0, // Default rules.
 icmBPCompensation = 1, // Black point compensation preserves the black
 // point when converting CMYK colors to
 // different color spaces.
 icmCheckBlackPoint = 2 // If set, soft proofing will be disabled if the
 // black point of the output intent is probably
 // invalid. The limit is 35 for L* measured in
 // Lab color space.
}TPDFInitCMFlags;

The function enables color management in the functions RenderPage(), RenderPageEx(),
RenderPageToImage(), and RenderPDFFile() exactly like InitColorManagement() but accepts ICC
profile buffers instead of file paths. See InitColorManagement() for further information.

To disable color management set the parameter Profiles to NULL.

Function Reference Page 540 of 854

Remarks:

Initializing the color management requires a considerable amount of processing time. It is strongly
recommended to use one PDF instance as long as possible so that it must not be initialized again
when another PDF file will be rendered.

The color management can be initialized right after the PDF instance was created.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

InitExtGState

Syntax:
LBOOL pdfInitExtGState(

struct TPDFExtGState* GS) // Structure to be initialized

The function initializes the structure GS with default values. The initialization is strongly
recommended before creating an extended graphics state object. See also CreateExtGState().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

InitHeaderFooter

Syntax:
LBOOL pdfInitHeaderFooter(
 struct TPDFHeaderFooter* Init, // Adress of TPDFHeaderFooter structure
 struct TPDFHdrFtr* HFArray, // Array of TPDFHdrFtr structures
 UI32 Count) // Number of values in the array

The function initializes the variables Init and HFArray with default values.

The member StructSize of the structure TPDFHeaderFooter must be initialized to
sizeof(TPDFHeaderFooter) before the function can be called. The structure size is used to identify
different versions of the structure.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 541 of 854

InitOCGContUsage

Syntax:
LBOOL pdfInitOCGContUsage(
 struct TPDFOCGContUsage* Value) // Address of TPDFOCGContUsage
 // structure

The function initializes the TPDFOCGContUsage structure with default values. The member
StructSize must be set to sizeof(TPDFOCGContUsage) before the function can be called. The
structure size is used to identify different versions of the structure.

Once the structure was initialized, one or more members can be changed and passed to
SetOCGContUsage().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

InitStack

Syntax:
LBOOL pdfInitStack(
 const PPDF* IPDF, // Instance pointer
 struct TPDFStack* Stack) // Stack variable to be initialized

The function initializes the variable Stack with default values and prepares the editing of a content
stream. This function must always be called before a content stream can be parsed with the function
GetPageText(). See also GetPageText().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 542 of 854

InkAnnot

Syntax:
SI32 pdfInkAnnot(
 const PPDF* IPDF, // Instance pointer
 struct TFltPoint* Points, // Array of points
 UI32 NumPoints, // Number of points (must be greater 1)
 double LineWidth, // Line width
 UI32 Color, // Color
 TPDFColorSpace CS, // Color space in which Color is defined
 const char* Author, // Optional author
 const char* Subject, // Optional subject
 const char* Content) // Optional content

The function creates an Ink annotation. An ink annotation (PDF 1.3) represents a freehand "scribble"
composed of one or more disjoint paths. The parameter Points represents a stroked path. More paths
can be added with AddInkList().

The points are interpreted in currect user space. Any transformation that was applied on the
coordinate system will be taken into account.

The points are connected with bezier curves to achieve a smooth transition between points. If the
points should be connected with straight lines, then create a PolyLine annotation instead (see
PolyLineAnnot()).

This annotation type has an associated PopUp annotation that displays the string Content in a
floating window. The initial window state of the associated PopUp annotation is closed by default
but the state can be changed with SetAnnotOpenState() if necessary.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 543 of 854

InsertBarcode

Syntax:
SI32 pdfInsertBarcode(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double Width, // Width of destination rectangle
 double Height, // Height of destination rectangle
 TCellAlign HAlign, // Horizontal alignment
 TCellAlign VAlign, // Vertical alignment
 struct TPDFBarcode2* Barcode) // See below

typedef enum TPDFBarcodeType
{
 bctNotInitialized = 0x0000, // No valid value
 bctAustraliaPost = 0x003F, // Australia Post Standard Customer
 bctAustraliaRedir = 0x0044, // Australia Post Redirection
 bctAustraliaReply = 0x0042, // Australia Post Reply Paid
 bctAustraliaRout = 0x0043, // Australia Post Routing
 bctAztec = 0x005C, // Aztec Code
 bctAztecRunes = 0x0080, // Aztec Runes
 bctC2Of5IATA = 0x0004, // Code 2 of 5 IATA
 bctC2Of5Industrial = 0x0007, // Code 2 of 5 Industrial
 bctC2Of5Interleaved = 0x0003, // Interleaved 2 of 5
 bctC2Of5Logic = 0x0006, // Code 2 of 5 Data Logic
 bctC2Of5Matrix = 0x0002, // Standard Code 2 of 5
 bctChannelCode = 0x008C, // Channel Code
 bctCodabar = 0x0012, // Codabar
 bctCodablockF = 0x004A, // Codablock-F
 bctCode11 = 0x0001, // Code 11
 bctCode128 = 0x0014, // Code 128 (automatic subset switching)
 bctCode128B = 0x003C, // Code 128 (Subset B)
 bctCode16K = 0x0017, // Code 16K
 bctCode32 = 0x0081, // Code 32
 bctCode39 = 0x0008, // Code 3 of 9 (Code 39)
 bctCode49 = 0x0018, // Code 49
 bctCode93 = 0x0019, // Code 93
 bctCodeOne = 0x008D, // Code One
 bctDAFT = 0x005D, // DAFT Code
 bctDataBarOmniTrunc = 0x001D, // GS1 DataBar-14 Omnidirectional and truncated / RSS14
 bctDataBarExpStacked = 0x0051, // GS1 DataBar Expanded Stacked
 bctDataBarExpanded = 0x001F, // GS1 DataBar Expanded / RSS_EXP
 bctDataBarLimited = 0x001E, // GS1 DataBar Limited / RSS_LTD
 bctDataBarStacked = 0x004F, // GS1 DataBar-14 Stacked
 bctDataBarStackedO = 0x0050, // GS1 DataBar-14 Stacked Omnidirectional
 bctDataMatrix = 0x0047, // Data Matrix ECC200
 bctDotCode = 0x0073, // DotCode
 bctDPD = 0x0060, // DPD code
 bctDPIdentCode = 0x0016, // Deutsche Post Identcode
 bctDPLeitcode = 0x0015, // Deutsche Post Leitcode
 bctEAN128 = 0x0010, // GS1-128 (UCC.EAN-128)
 bctEAN128_CC = 0x0083, // Composite Symbol with GS1-128 linear component
 bctEAN14 = 0x0048, // EAN-14
 bctEANX = 0x000D, // EAN
 bctEANX_CC = 0x0082, // Composite Symbol with EAN linear component
 bctEANXCheck = 0x000E, // EAN + Check Digit
 bctExtCode39 = 0x0009, // Extended Code 3 of 9 (Code 39+)
 bctFIM = 0x0031, // FIM
 bctFlattermarken = 0x001C, // Flattermarken
 bctHIBC_Aztec = 0x0070, // HIBC Aztec Code
 bctHIBC_CodablockF = 0x006E, // HIBC Codablock-F
 bctHIBC_Code128 = 0x0062, // HIBC Code 128

Function Reference Page 544 of 854

 bctHIBC_Code39 = 0x0063, // HIBC Code 39
 bctHIBC_DataMatrix = 0x0066, // HIBC Data Matrix ECC200
 bctHIBC_MicroPDF417 = 0x006C, // HIBC MicroPDF417
 bctHIBC_PDF417 = 0x006A, // HIBC PDF417
 bctHIBC_QR = 0x0068, // HIBC QR Code
 bctISBNX = 0x0045, // ISBN (EAN-13 with verification stage)
 bctITF14 = 0x0059, // ITF-14
 bctJapanPost = 0x004C, // Japanese Postal Code
 bctKIX = 0x005A, // Dutch Post KIX Code
 bctKoreaPost = 0x004D, // Korea Post
 bctLOGMARS = 0x0032, // LOGMARS
 bctMailmark = 0x0079, // Royal Mail 4-State Mailmark
 bctMaxicode = 0x0039, // Maxicode
 bctMicroPDF417 = 0x0054, // Micro PDF417
 bctMicroQR = 0x0061, // Micro QR Code
 bctMSIPlessey = 0x0047, // MSI Plessey
 bctNVE18 = 0x004B, // NVE-18
 bctPDF417 = 0x0037, // PDF417
 bctPDF417Truncated = 0x0038, // PDF417 Truncated
 bctPharmaOneTrack = 0x0033, // Pharmacode One-Track
 bctPharmaTwoTrack = 0x0035, // Pharmacode Two-Track
 bctPLANET = 0x0052, // PLANET
 bctPlessey = 0x0056, // Plessey
 bctPostNet = 0x0028, // PostNet
 bctPZN = 0x0034, // PZN
 bctQRCode = 0x003A, // QR Code
 bctRMQR = 0x0091, // Rectangular Micro QR Code (rMQR)
 bctRoyalMail4State = 0x0046, // Royal Mail 4 State (RM4SCC)
 bctRSS_EXP_CC = 0x0086, // Composite Symbol with GS1 DataBar Extended component
 bctRSS_EXPSTACK_CC = 0x008B, // Composite Symbol with GS1 DataBar Expanded Stacked component
 bctRSS_LTD_CC = 0x0085, // Composite Symbol with GS1 DataBar Limited component
 bctRSS14_CC = 0x0084, // Composite Symbol with GS1 DataBar-14 linear component
 bctRSS14Stacked_CC = 0x0089, // Composite Symbol with GS1 DataBar-14 Stacked component
 bctRSS14StackOMNI_CC = 0x008A, // Composite Symbol with GS1 DataBar-14 Stacked Omnidirectional
 bctTelepen = 0x0020, // Telepen Alpha
 bctTelepenNumeric = 0x0057, // Telepen Numeric
 bctUltracode = 0x0090, // Ultracode
 bctUPCA = 0x0022, // UPC A
 bctUPCA_CC = 0x0087, // Composite Symbol with UPC A linear component
 bctUPCACheckDigit = 0x0023, // UPC A + Check Digit
 bctUPCE = 0x0025, // UCP E
 bctUPCE_CC = 0x0088, // Composite Symbol with UPC E linear component
 bctUPCECheckDigit = 0x0026, // UPC E + Check Digit
 bctUPNQR = 0x008F, // UPNQR (Univerzalni Placilni Nalog QR)
 bctUSPSOneCode = 0x0055, // USPS OneCode
 bctVIN = 0x0049 // Vehicle Identification Number (America)
}TBarcodeType;

typedef enum TPDFBarcodeDataType
{
 bcdtBinary = 0, // Binary data.
 bcdtUnicode = 1, // UTF-8.
 bcdtGS1Mode = 2, // Encodes GS1 data using FNC1 characters.
 bcdtEscapeMode = 8 // Scan input data for escape sequences. This flag can be combined with the
 // other constants, e.g. TBarcodeDataType(bcdtUnicode | bcdtEscapeMode).
}TBarcodeDataType;

// The following flags can be combined with a binary or operator, e.g.
TBarcodeOptions(bcoNoASCII | bcoDottyMode).
typedef enum TPDFBarcodeOptions
{
 bcoDefault = 0x00000000, // Use default settings.
 bcoNoASCII = 0x00000001, // Consider non-ASCII characters when creating the barcode.
 bcoBind = 0x00000002, // Boundary bars above and below the symbol and between rows.
 bcoBox = 0x00000004, // Add a box surrounding the symbol and whitespace.
 bcoReaderInit = 0x00000010, // Add a reader initialisation symbol before encoding.
 bcoSmallText = 0x00000020, // Use a smaller font for human readable text.
 bcoBoldText = 0x00000040, // Embolden human readable text.

Function Reference Page 545 of 854

 bcoDottyMode = 0x00000100, // Plot a matrix symbol using dots rather than squares.
 bcoGS1_GS_Separator = 0x00000200, // Use GS instead FNC1 as GS1 separator.
 bcoImageOutput = 0x01000000, // Draw the barcode as an image.
 bcoUseActiveFont = 0x02000000 // Vector output only. If set, text is output with the active
 // font. Helvetica is used otherwise.
}TBarcodeOptions;
struct TPDFBarcode2
{
 UI32 StructSize; // Must be set to sizeof(TPDFBarcode2).
 TPDFBarcodeType BarcodeType; // The type of barcode that should be created.
 UI32 BgColor; // Background color -> Default NO_COLOR (transparent).
 UI32 BorderWidth; // Border width -> default 0.
 const char* Data; // Required: Data string.
 TPDFBarcodeDataType DataType; // Data type and escape flag.
 float DotSize; // Dotty mode only -> Default 4.0/5.0.
 SI32 Eci; // Extended Channel Interpretation mode -> Default 0.
 UI32 FgColor; // RGB Foreground color -> Default 0.
 float FSizeFactor; // Font size correction factor -> Default 0.7.
 SI32 Option1; // Various, depends on barcode type. -> Default -1.
 SI32 Option2; // Various, depends on barcode type. -> Default 0.
 SI32 Option3; // Various, depends on barcode type. -> Default 0.
 TPDFBarcodeOptions Options; // Output options.
 SI32 Orientation; // Supported values: 0, 90, -90, 180, -180, 270, -270.
 const char* Primary; // Composite codes only. Primary data message (max 127 bytes).
 float Scale; // Image based barcodes only. Default 1.0.
 LBOOL ShowText; // Show human readable text? Default true.
 UI32 SpaceWidth; // Whitespace width in pixels -> Default 0 (auto).
 UI32 SymbHeight; // Default 50.
 float TextOffsetY; // Offset to correct the y-coordinate of text -> Default 0.
 struct TFltRect OuterBorder; // Optional border around the scaled barcode measured in user
 // space. The border is drawn in BgColor.
};

The function inserts a barcode to the current open page. The creation of a barcode starts with the
initialisation of the structure TPDFBarcode2 with InitBarcode2(). However, before we can call
InitBarcode2(), StructSize must be set to sizeof(TPDFBarcode2) (C/C++ only). This is required
because the structure size is used to identify different versions of the structure.

After the structure was initialized, the barcode type and data must be set. Composite barcodes
require also a primary message (member Primary) but that's it, most barcode types can already be
created with this minimal initialisation.

Although it is possible to create barcodes with pure default values, we want now take a deeper look
into the barcode options and available flags.

Output position and orientation

Because every barcode has a distinct size that is usually unknown, a barcode is placed into a
destination rectangle. If the coordinate system is bottom-up the point PosX, PosY defines the lower
left corner of the output rectangle. If the coordinate system is top-down it defines the upper left
corner.

The barcode is horizontally and vertically aligned into the output rectangle according to the values
of HAlign and VAlign.

The barcode can also be rotated in 90 degrees steps with the member Orientation. Note that the
barcode will be rotated and not the output rectangle!

Function Reference Page 546 of 854

Vector vs. Image Barcodes

All barcode types, with exception of Ultracode, can be created as vector graphic (default) or as an
image. Vector based barcodes offer the highest output quality but it is not always recommended to
use this format. For example, image based barcodes can easily be extracted and analyzed with a
barcode reader. This is not possible with vector based barcodes.

An image based barcode will be created if the flag bcoImageOutput is set. If BgColor is set to white or
NO_COLOR (default) and if the barcode type is not Ultracode, a 1 bit image will be created and
compressed with flate if the resulting binary size is less than 500 bytes. If the image is larger, JBIG2
compression will be used. The resulting image is often smaller as the vector version of the same
barcode.

Output resolution

Image based barcodes are not necessarily resolution dependent. This is due to the fact that most
barcodes consist of rectangles only. This special kind of image data can be scaled with almost no loss
of quality.

However, the output resolution plays a rule if a barcode contains non-rectangular areas like dots,
circles, or text. DotCode and Maxicode are examples, as well as all barcodes with human readable
text.

The current implementation of the barcode library is not able to scale text with the surrounding
barcode. Therefore, it is recommended to draw the barcode as vector graphic if the text quality is not
high enough. At time of publication it is not possible to draw the text portions independent of an
image based barcode as it is the case in vector mode.

DotCode and Maxicode are the only barcodes which should be rendered in a higher resolution to
increase the image quality.

The resolution can be increased with the member Scale. As the name suggests, Scale is just a scaling
factor. Because a barcode has always a distinct size that is resolution independent, it is not possible
to render a barcode in an arbitrary resolution, the scaling capabilities are limited.

Scale must be between 0.1 though 30.0 although values greater than 10 make probably no sense.

Background and foreground colors

If BgColor is set to NO_COLOR (default) the barcode is drawn transparent. In image mode the
barcode is rendered as an image mask. In vector mode, no background rectangle is drawn in the size
of the barcode.

The foregound and background color must be specified in DeviceRGB. RGB values can be created
with the macro PDF_RGB() or with common functions like rgb() which are available in most
programming languages. Other color spaces are not yet supported for barcodes.

Function Reference Page 547 of 854

Human readable text

Many barcodes consist of the barcode and a human readable text portion that is mostly drawn
below the barcode. In image mode it is possible to adjust the font size and font weight with the flags
bcoSmallText and bcoBoldText. More options are not available in image mode.

In vector mode, we have more control over the text. The default font for text is the standard font
Helvetica but it is possible to change it to an arbitrary font by setting the flag bsoUseActiveFont.

When this flag is set the active font is used to output the text. This font should be loaded with the
code page cp1252 or cpUnicode. If no font is active the function falls back again to Helvetica. This font
is always available unless it was disabled with SetUseStdFonts() or SetFontSearchOrder(). Note that
the function fails with a fatal error if no font can be loaded when text must be drawn.

The function tries to achieve an almost identical result in comparison to the image version of a
barcode. This required a bit fine tuning by adjusting the font size and vertical text position. The font
size scaling factor (member FSizeFactor) is set to 0.7 by default but it can be set to values between 0.3
through 3.0. However, the text cannot become wider as the barcode. The font size will be decreased
if the text does not fit into the barcode width. Setting the scaling factor to an unneccesary large value
increases the processing time.

The vertical text position can be adjusted with the member TextOffsetY.

Outer border

The member OuterBorder can be used to extend the background rectangle. Each side of OuterBorder
specifies the line width of the corresponding side of the rectangle. OuterBorder is measured in user
space whereas BorderWidth is measured in pixels of the reference grid (see Scaling Details below).

Note that the background rectangle is drawn only if BgColor is set to another value than
NO_COLOR (default).

Scaling details

Barcodes are rendered internally to a virtual integer raster that we call reference grid. Although the
width and height of the reference grid is mostly unknown, the height of lines or bars of 1D codes
can be controlled with the member SymbHeight and the amount of space between bars can be
adjusted with SpaceWidth. Both values are measured in pixels of the reference grid.

The default symbol height of 1D barcodes is 50. The default space width is just zero since
meaningful values depend on the barcode type.

The full height of a 1D barcode is the height of the bars plus optional text, that is mostly drawn
below the code. The default font size is 8 for image based barcodes and 9 for vector based barcodes.

Although not every part of a barcode can be scaled freely, with SymbHeight and SpaceWidth it is
possible to control the proportions of a barcode precise enough to achieve reasonable results.

Function Reference Page 548 of 854

Special options

A few barcode types support additional flags or properties which can be set with the members
Option1 through Option3.

Unfortunately, the Zint library is completely undocumented in regard to barcode options. The
following values were taken from the source codes and maybe incomplete:

Barcode type Member to set Description Supported range
bctAztec Option1 Error correction level -1..4
bctAztec Option2 Symbol size 0..36
bctCodablockF Option1 Number of rows -1..44
bctCodablockF Option2 Number of columns -1, 0, 9..67
bctDataMatrix Option3 Force square output 100
bctDataMatrix Option3 Enable Rectangular Extension 101
bctDataMatrix Options Use GS1 separator instead of FNC1 bcoGS1_GS_Separator
bctMaxicode Option1 Maxicode mode -1, 2..6
bctCodabar Option2 Add checksum 0, 1
bctCode32 Option2 Add checksum 0, 1
bctMSIPlessey Option2 Symbol size 0..4
bctPharmaOneTrack Option2 Add checksum 0, 1
bctPharmaTwoTrack Option2 Add checksum 0, 1
bctPDF417 Option1 Security value -1..8
bctPDF417 Option2 Number of columns 0..30
bctQRCode Option1 Error correction level -1, 1..4
bctQRCode Option2 Symbol size 0..40
bctQRCode Option3 Full multibyte -> Kanji mode unsupported
bctRSS_EXPSTACK_CC Option1 Component linkage flag 0, 2
bctRSS_EXPSTACK_CC Option2 Number of columns 0..11
bctUltracode Option1 Error correction level -1..6
bctUltracode Option3 Ultra compression 128

Return values:

The return value depends on whether an image or vector graphic was created. If the flag
bcoImageOutput is set or if the barcode type is bctUltracode, the return value is the image handle, a
value greater or equal zero on success or a negative error code on failure.

In vector mode the return value is zero on success or a negative error code on failure.

Function Reference Page 549 of 854

InsertBMPFromBuffer (obsolete)

Syntax:
SI32 pdfInsertBMPFromBuffer(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight, // Scaled height of destination rectangle
 const void* Buffer) // Source buffer of the DIB

The function inserts a Device Independent Bitmap from a file buffer. The parameter Buffer requires a
normal file buffer as bitmap image.

This function is marked as obsolete, please use InsertImageFromBuffer() if possible.

Return values:

If the function succeeds the return value is the image handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

InsertBMPFromHandle

Syntax:
SI32 pdfInsertBMPFromHandle(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight, // Scaled height of destination rectangle
 void* hBitmap); // Windows HBITMAP handle

This function inserts a bitmap in the same way as InsertImage() but accepts a HBITMAP handle as
input. The bitmap must not be selected into a device context when calling this function.

See also InsertImage().

Return values:

If the function succeeds the return value is the image handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

InsertBookmark

Syntax:
SI32 pdfInsertBookmark(
 const PPDF* IPDF, // Instance pointer
 const char* Title, // Bookmark title
 SI32 Parent, // Immediate parent bookmark
 UI32 DestPage, // Destination page that should be opened

Function Reference Page 550 of 854

 LBOOL Open, // Open or close the node when it contains children
 LBOOL AddChildren) // Add all bookmarks below the new one as children

The function inserts a bookmark in an existing outline tree. It sets also the page mode to
pmUseOutline (see SetPageMode()). If the outline tree should not be shown when opening the
document then set the page mode back to pmUseNone or another value before closing the
document.

Parent can be the handle of the parent bookmark after the new bookmark should be inserted or -1. If
Parent is set to -1 the bookmark is inserted as the first root node in the outline tree.

If the parameter AddChildren is set to true, the bookmarks below the new one are added as children
to the new bookmark. This can be useful when merging PDF files and if the bookmarks from each
PDF file should be separated.

Notice:

When inserting a bookmark the handles of all bookmarks below the new one are incremented by
one.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a bookmark in an arbitrary encoding
convert the string to Unicode with the function ConvToIncode() and use the Unicode version to
create the bookmark.

Return values:

If the function succeeds the return value is the bookmark handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 551 of 854

InsertBookmarkEx

Syntax:
SI32 pdfInsertBookmarkEx(
 const PPDF* IPDF, // Instance pointer
 const char* Title, // Bookmark title
 SI32 Parent, // Immediate parent bookmark
 UI32 NamedDest, // Named Destination handle
 LBOOL Open, // Open or close the node when it contains children
 LBOOL AddChildren) // Add all bookmarks below the new one as children

The function inserts a bookmark in an existing outline tree. It sets also the page mode to
pmUseOutline (see SetPageMode()). If the outline tree should not be shown when opening the
document then set the page mode back to pmUseNone or another value before closing the
document.

Parent can be the handle of the parent bookmark after the new bookmark should be inserted or -1. If
Parent is set to -1 the bookmark is inserted as the first root node in the outline tree.

If the parameter AddChildren is set to true, the bookmarks below the new one are added as children
to the new bookmark. This can be useful when merging PDF files and if the bookmarks from each
PDF file should be separated.

NamedDest must be a valid handle from a named destination, see CreateNamedDest() for further
information. If the destination lies in another document then insert the bookmark with
InsertBookmark(), create an extended Go To Remote Action with CreateGoToRActionEx(), and add
the action finally to the bookmark with AddActionToObj().

Notice:

When inserting a bookmark the handles of all bookmarks below the new one are incremented by
one.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a bookmark in an arbitrary encoding
convert the string to Unicode with the function ConvToIncode() and use the Unicode version to
create the bookmark.

Return values:

If the function succeeds the return value is the bookmark handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 552 of 854

InsertImage (obsolete)

Syntax:
SI32 pdfInsertImage(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight, // Scaled height of destination rectangle
 const char* AFile) // File path

This function is marked as obsolete, please use the function InsertImageEx() if possible.

InsertImageEx

Syntax:
SI32 pdfInsertImageEx(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight, // Scaled height of destination rectangle
 const char* AFile, // File path
 UI32 Index) // Image index

The function inserts an image from a file. The parameter Index specifies the image index of a multi-
page image. The first image index is denoted by 1. If the image file is not a multi-page image, the
parameter Index will be ignored. To determine the number of images stored in an image file call the
function GetImageCount().

The image will be compressed with the compression filter that was set with SetCompressionFilter().
The default filter is Flate, which is a lossless compression filter. JPEG images should be inserted in
pass-though mode if possible, see the description of the JPEG filter below.

Supported image formats

The function does not depend on a correct file extension. It parses the image header to determine the
image format. The following image formats are supported:

• BMP -> Device independent bitmaps with and without a valid file header. Embedded PNG
and JPEG images are supported. Which filter should be used for bitmaps depends on type pf
the image. Bitmaps are usually uncompressed or run-length encoded. Since Flate is a loss-
less compression filter, this filter can be used as a default if the filter cannot be changed in
the application.

• GIF -> The best alternate compression filter for GIF images is Flate encoding. GIF images are
treated as single page image. It is not possible to access a specific frame of a GIF animation.

Function Reference Page 553 of 854

• JPG -> JPEG images should be inserted in pass-though mode if possible. See the description
of the compression filter below.

• JP2, JPC, or JPX -> These formats are JPEG 2000 compressed images.

• PBM, PGM, PNM, PPM -> ASCII and Binary encoded images.

• PNG -> Flate compressed images. Since Flate is the native compression filter of PNG images,
this filter should be set when inserting the image.

• PSD -> Only the preview image will be processed.

• TIFF

How to get the image format?

The most important image parameters such as width, height, bits per pixel and the default
compression filter can be retrieved with the function ReadImageFormat() or ReadImageFormatEx().

Color spaces

The handling of image color space is described in detail at Color Spaces and Images.

How to change the color depth?

DynaPDF can reduce the color depth of true color images to 256 color images. The color depth will
be changed if the default color depth was set to 8 bit per pixel and if the used compression filter is
Flate. The default color depth can be changed with the function SetDefBitsPerPixel().

Duplicate check

The function performs by default a duplicate check so that the same image can be inserted multiple
times without increasing the resulting PDF file size. For file based images the function compares the
file name and the output parameters like the scaled width and height, transparency settings and so
on. For memory based images the entire image buffer is taken into account. The required processing
time for the duplicate check is therefore considerable higher for memory based images.

However, the duplicate check for file based images can lead to wrong results, e.g. if the application
creates temporary images with the same file name. In such cases it is possible to disable the
duplicate check with the flag gfNoImageDuplCheck. The flag can be set with SetGStateFlags().

Compression Filters

At time of publication DynaPDF supports Flate, CCITT Fax G3, CCITT Fax G4, JBIG2, JPEG, and
JPEG 2000 compression. The compression filter can be individually set with SetCompressionFilter().

Flate Encode

Flate encode (also called zip compression) is a loss-less compression filter. It can be used with all
supported color spaces. It produces good compression rates for images with large uniform surfaces.

Function Reference Page 554 of 854

It is also the best compression filter for images with color depths less than 8 bits (except 1 bit). The
compression level can be adjusted with the function SetCompressionLevel().

CCITT Fax G3/4

CCITT Fax G3 and G4 compression are lossless compression filters for 1 bit b/w images. These filter
are relatively fast and achieve good compression rates. However, JBIG2 compression achieves much
higher compression rates! Therefore, these filters should no longer be used.

JBIG2

JBIG2 is a lossless compression filter for 1 bit b/w images. It achieves on average 1.5 to 8 times
higher compression rates than CCITT Fax G4 and it is relatively fast. This filter should be used by
default for 1 bit black & white images. JBIG2 supports also a lossy compression method but this
mode is not implemented in DynaPDF because errors in the resulting image are usually not
acceptable.

JPEG Encode

JPEG is a lossy compression method which produces very good compression rates for color and
gray scale images. It can be used in combination with all supported color spaces. The compression
ratio and resulting quality can be adjusted with SetJPEGQuality(); the default quality is 70%.

JPEG images are inserted in pass-through mode if the image resolution is lower or equal to the
specified resolution (see SetResolution()) and if the image color space matches the destination color
space. DynaPDF removes embedded ICC profiles also in pass-through mode since PDF readers do
not use such profiles when displaying an image. See Embedded ICC profiles below for further
information.

The image scaler can be disabled with SetSaveNewImgageFormat(). It is also possible to explicitly
disable the pass-through mode by setting the JPEG quality to a negative value. The image will be re-
compressed in this case. This can be useful if a higher compression ratio should be achieved.

Real pass-through mode

JPEG images are rebuild by default, also in pass-through mode, to avoid issues with certain
malformed images which cannot be displayed in Adobe's Acrobat or Reader and to remove
embedded ICC profiles.

The image is not re-compressed when rebuilding the image structure but this action requires some
processing time which can be avoided when it is known that the image is already Adobe Acrobat or
Reader compatible and if the image contains no embedded ICC profile. To enable real pass-through
mode set the flag gfRealPassThrough with SetGStateFlags(). The processing speed will be significantly
improved in this case.

Function Reference Page 555 of 854

Embedded ICC profiles

JPEG images can contain embedded ICC profiles but PDF readers ignore such profiles. However,
DynaPDF can extract the embedded ICC profile to create an ICC based color space for the image. To
enable the usage of embedded ICC profiles set the flag gfUseImageColorSpace with SetGStateFlags().
See also Color Spaces and Images. The embedded ICC profile will be removed from the image
stream so that no unnecessary data must be stored in the PDF file.

Note that embedded ICC profiles will not be removed if real pass-through mode is enabled.
Especially embedded CMYK profiles are very large and should be removed if possible. Real
pass-through mode should be disabled in this case.

Optimized Huffmann encoding

Images are compressed with optimized Huffmann tables if the current compression level is set to
clMax (see SetCompressionLevel()). This level produces better compression ratios without loosing
quality. However, the optimized compression method is minimal slower than the normal one.

JPEG images are inserted in path-through mode if either the property SetSaveNewImageFormat() is
set to false (default = true) or if no further conversion or downscaling is required.

JPEG 2000

JPEG 2000 is a compression method that supports loss-less and lossy compression. JPEG 2000
images support alpha transparency but most image viewers discard the alpha channel. This can lead
to diffent results since DynaPDF considers the alpha channel by default. The alpha channel can be
ignored if necessary by setting the flag gfNoBitmapAlpha with SetGStateFlags().

JPEG 2000 compression achieves very good compression rates for color and gray scale images. It can
be used with all color depths and supported color spaces. However, note that most current image
viewers do not support CMYK or CMYKA images. Already RGBA or GrayA images are incorrectly
displayed by most popular image viewers.

If you create GrayA, RGBA, CMYK, or CMYKA images, e.g. with the rendering engine of DynaPDF,
be aware that many image viewers are not able to display such images error free.

Setting the image quality

The image quality can be set with SetJPEGQuality() in the very same way as for JPEG images.

However, the JPEG 2000 encoder supports two different ranges: 0..100 and 0..-1000. A positive value
represents a percentage. A negative number is used as absolute value that is divided by 10. It
disables also the pass-through mode of the JPEG and JPEG 2000 decoders.

The loss-less variant is used if the JPEG quality is set to 0, 100, or -1000.

Function Reference Page 556 of 854

Quality comparison against JPEG

JPEG 2000 achieves in most cases a sligthly better result in comparison to JPEG for a given
compression ratio. Especially images with larger uniform colored areas achieve better results with
JPEG 2000 compression because this filter does not produce typical compression artifacts due to
color quantization which are typical for JPEG compression.

However, one thing that must be considered is the fact that Adobe's Acrobat uses another rendering
technique to display JPEG 2000 images. This leads to worse results because JPEG 2000 images are
rendered a bit blurry while JPEG images appear sharp. For a correct comparison render the file with
DynaPDF or compare images directly with an image viewer.

Embedded ICC profiles

JPEG 2000 images can contain an embedded ICC profile that can be used to create an ICC based
color space for the image (ICC based color spaces are device independent). To enable the usage of
embedded ICC profiles set the flag gfUseImageColorSpace with SetGStateFlags(). See also Color
Spaces and Images.

Pass-through mode

JPEG 2000 images can be inserted in pass-through mode. Pass-through mode is not enabled by
default since not all features are known which are unsupported in Adobe's Acrobat. To enable pass-
through mode set the flag gfRealPassThrough with SetGStateFlags().

Note that this flag just enables pass-through mode. That means the image is inserted in pass-
through mode if no scaling is required and if the image is probably compatible with Adobe's
Acrobat. Images in known incompatible formats are re-compressed as usual.

The output should be tested with Adobe's Acrobat or Reader when pass-through mode is enabled.

Why does DynaPDF not support LZW compression?

LZW is a very fast lossless compression filter that can be used for sampled images and arbitrary
binary data. Flate encoded output is usually more compact than LZW encoded output for the same
input, but Flate encoding is considerably slower than LZW. However, LZW encoding is marked as
obsolete by Adobe. Because it is not clear whether this filter will be supported in future versions of
Adobe's Acrobat, it will not be added to DynaPDF.

TIFF images

The TIFF image format is the most complex format of all available image formats. DynaPDF
supports a full featured implementation of the TIFF format incl. most currently available
compression methods and color spaces. TIFF images can be organized in scanlines, tiles or stripes,
all three formats are fully supported by DynaPDF.

Function Reference Page 557 of 854

If the image is a multi-page image, a specific image can be selected with the parameter Index. The
first image has the index 1. The number of available images inside a multi-page image can be
determined with the function GetImageCount().

TIFF images can be defined in device dependent and device independent color spaces, such as Lab,
CalGray, CalRGB, or ICC based color spaces. If the original color space should be preserved if
possible, set the flag gfUseImageColorSpace with SetGStateFlags(). See also Color Spaces and
Images.

1 Bit TIFF images

1 bit TIFF images use sometimes different resolutions for the x- and y-axis. DynaPDF considers the
resolution information and scales the image according to the resolution information that is stored in
the image file. Note that the resolution information is only considered for 1 bit images. No
adjustment will be applied for higher bit depths since most image viewers do the same.

It is important to know that ReadImageFormat() or ReadImageFormat2() return the logical size of 1
bit TIFF images. That means, the resolution information was already taken into account. The
physical size of a 1 bit TIFF image can be calculated as follows:
SI32 bits, useZip;
UI32 resX = 0, resY = 0, physHeight, physWidth, w, h;

pdfReadImageFormat2(pdf, "test.tif", 1, w, h, bits, useZip);
pdfReadImageResolution(pdf, "test.tif", 1, resX, resY);

if (resX != resY && resX > 0 && resY > 0)
{
 if (resX > resY)
 {
 physWidth = w;
 physHeight = h / (resX / resY);
 }else
 {
 physWidth = w / (resY / resX);
 physHeight = h;
 }
}else
{
 physHeight = h;
 physWidth = w;
}

Note that the above calculation uses integer arithmetic. Note also that you don't need to consider the
physical size when inserting such an image. The physical size should be used to determine the
paper format when converting scanned faxes to PDF since the logical format produces often no
exact match with available paper formats when calculated with the given resolution information.

Function Reference Page 558 of 854

Bitmap images

Bitmaps support alpha transparency but most image viewers discard the alpha channel. This can
lead to diffent results since DynaPDF considers the alpha channel in 32 bit bitmaps by default.

Since many 32 bit bitmaps contain an invalid alpha channel that is zero for all pixels, it is possible to
fully discard the alpha channel as most image viewers would do. This can be achieved by setting the
flag gfNoBitmapAlpha with SetGStateFlags().

GIF images

GIF images are LZW compressed images which are widely used in the internet. LZW is a loss-less
compression filter. Non-transparent GIF images are recompressed with the current compression
filter when inserting the image. The optimal compression filter for GIF images is Flate, and
therefore, the compression filter should be set to Flate before inserting such an image (see
SetCompressionFilter()).

Transparent GIF images are handled differently. GIF images use color key masking to achieve the
transparency effect. This kind of masking depends on exact color values and therefore, it is not
possible to compress such images with JPEG or JPEG 2000 compression without invalidating the
transparency information. To achieve correct results DynaPDF changes the compression filter for
transparent GIF images automatically to Flate and the image will not be downscaled independent of
the used settings.

Note also that transparent GIF images will be inserted transparent independent of the current
transparency settings. DynaPDF considers also the image resolution information if the image uses
different values for the x- and y-axis.

How to calculate the image size?

The calculation of the image size should be easy as possible. In most cases, images must be inserted
with exact proportions. Therefore, all image functions support two special values to make the
calculation easier. The width and height can be calculated as follows:

• If ScaleWidth or ScaleHeight is -1 the function uses the original width or height from the
image. If both parameters are -1 the image will be inserted with a resolution of 72 DPI.

• If ScaleWidth or ScaleHeight is 0, the missing value is calculated in relation to the given value
of ScaleHeight or ScaleWidth to preserve the image's aspect ratio. The resulting output is an
image with exact proportions relative to its original size.

• If ScaleWidth and ScaleHeight is 0, the original size is used (same effect as -1).

• A negative value of Width or Height mirrors the image on the x- and or y-axis.

Image Resolution

Images will be scaled to the defined resolution (see SetResolution()) if the original size is larger than
required, and if the property SaveNewImageFormat is set to true (default).

Function Reference Page 559 of 854

Images are downscaled with a high quality scaling algorithm to avoid loss of image quality.
However, 1 bit images are never downscaled because the loss of quality can be very large.

If the image resolution is only a little bit larger than required, the new image can require more disk
space than the original unscaled image. This is an effect of the color interpolation because scaled
images contain usually more colors than the original image.

However, to avoid the above effect the original image must be at least 5% larger than required
before the image will be scaled.

Transparent images (Color Key Masking)

DynaPDF masks images without an alpha channel with color key masking by default. Color key
masking is natively supported in GIF images only. Therefore, it is recommended to disable image
transparency by default since it is automatically applied on GIF images if necessary.

That color key masking is enabled by default is an artifact of older DynaPDF versions which didn't
support alpha transparency. Use the function SetUseTransparency() to enable or disable color key
masking.

Notice:

If an image will be downscaled to a lower resolution, it is possible that the transparent color
does no longer produce the wished transparency effect. This can occur due to color
interpolation during downscaling. To avoid such issues set the resolution to a higher value or
disable downscaling with the function SetSaveNewImageFormat(). Color key masking does also
not properly work with JPEG or JPEG 2000 compressed images since these filters are lossy filters
which change color values.

Images with an alpha channel

Images which contain an alpha channel are always inserted transparent, independent of the current
value of SetUseTransparency(). If an image with an alpha channel should appear opaque then draw
a rectangle in the wished background color in background of it (just before inserting the image).

Remarks:

To insert an image from a file buffer use the function InsertImageFromBuffer(). It is possible to use
one image on several pages or positions. To insert an image multiple times use the function
PlaceImage(). However, once an image was inserted, the physical dimension cannot be changed
anymore; it can only be scaled to different sizes. If an image should be used with different
dimensions, insert the largest version first or insert it again with this function.

DynaPDF checks whether an image was already inserted before inserting an image again. The
duplicate check is done by using a MD5 hash of the file name and the used parameters to insert the
image. If all parameters are the same, the already available image is used instead.

Function Reference Page 560 of 854

Return values:

If the function succeeds the return value is the image handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

InsertImageFromBuffer

Syntax:
SI32 pdfInsertImageFromBuffer(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight, // Scaled height of destination rectangle
 const void* Buffer, // Pointer to image buffer
 UI32 BufSize, // Buffer size
 UI32 Index) // Image index of a multi page image

The function inserts an image in exactly the same way as InsertImageEx(), but it accepts a file buffer
as input. A specific image of a multi-page image can be selected with the parameter Index; the first
image is denoted by the index 1. If the image file is not a multi-page image, the parameter Index will
be ignored. To determine the number of images stored in an image file use the function
GetImageCount() or GetImageCountEx(). The usage of the function is described in detail at
InsertImageEx().

Remarks:

DynaPDF applies always a duplicate check when inserting an image. To enable an efficient
duplicate check a MD5 hash is build from all image parameters and from the image buffer.
Although the calculation of a MD5 hash is very fast, it is significantly slower in comparison to file
based images since only the file name must be taken into account in this case. To improve
processing speed the usage of InsertImageEx() should be preferred.

Return values:

If the function succeeds the return value is the image handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 561 of 854

InsertMetafile

Syntax:
LBOOL pdfInsertMetafile(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to EMF or WMF file
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height) // Height of output rectangle

The function converts an Enhanced Meta File (EMF) or Windows Meta File (WMF) to native PDF
vector graphics. The function requires an open page or template into which the metafile can be
drawn (see Append() or EditPage()). If a metafile should be used as fixed background on multiple
pages, then insert it into a template and place this template on the pages where it should be used
(see BeginTemplate() for further information). It is of course also possible to insert such a metafile
on each page separately, but this would waste processing time and disk space.

The point PosX, PosY defines the lower left corner of the output rectangle if the coordinate system is
bottom-up and the upper left corner otherwise.

Bounding box check

The function checks whether the resolution of the EMF file seems to be larger as 1800 DPI. If this is
the case then the rclBounds rectangle is used to calculate the picture size since this is mostly an
indication that the rclFrame rectangle was incorrectly calculated. If you need to process EMF files in
a higher resoultion as 1800 DPI then disable the bounding box check with the flag mfNoBBoxCheck.
See SetMetaConfFlags() for further information.

How to calculate the image size?

The calculation of the image size should be easy as possible. In most cases, metafiles must be
inserted with exact proportions. Therefore, all metafile functions support two special values to make
the calculation easier. The width and height can be calculated as follows:

• If Width or Height is -1 the function uses the original width or height from the image. If both
parameters are -1 the metafile will be inserted with a resolution 72 DPI. However, this is not
meaningful for metafiles because the logical size of a metafile is usually too large as if it
could be used. You should not produce EMF files in a resolution of 72 DPI.

• If Width or Height is 0, the missing value is calculated in relation to the given value of Height
or Width to preserve the metafile's aspect ratio. The resulting output is a vector graphic with
exact proportions relative to its original size.

• If Width and Height is 0, the original size is used (same effect as -1, should not be used).

• Negative values of Width or Height are ignored; the function uses always the absolute values.

Function Reference Page 562 of 854

Font selection in EMF files

When selecting a font with the GDI function CreateFont(), the GDI selects a font that is a good
match in comparison to the used parameters. The highest search priority has the Charset, followed
by PitchAndFamily. If one of these parameters are not supported by the requested font, then the
GDI selects an arbitrary other font that represents a better match.

To get a close match to what the GDI would select, the flag mfGDIFontSelection can be set (see
SetMetaConvFlags() for further information). DynaPDF uses then a device context to select fonts.
This produces often better results since many EMF files use invalid font names or other invalid
parameters.

In general, DynaPDF checks whether the requested glyphs are available in the font. If one or more
glyphs are missing then the selected font will be loaded in Unicode mode if it was loaded with a
code page. If still glyphs are missing then the font will be changed to Arial Unicode MS. This
fallback was mainly added for Asian EMF files which use often wrong charsets or fonts which do
not support Asian characters.

Character sets

The charset parameter of a CreateFont() function should be set correctly so that DynaPDF can
directly load a font with the required code page or Unicode:

• Ansi_CHARSET: The font will be loaded with the code page 1252. This saves disk space
because Ansi strings require only one byte per character. However, if the same font must
also be used with other encodings then use DEFAULT_CHARSET instead.

• DEFAULT_CHARSET: The font is directly loaded in Unicode mode. This charset must be
used for any non-Latin charset.

• SYMBOL_CHARSET: This charset must be used for symbol fonts. Symbol codes start at
0xF000. The mapping in EMF file is often wrong. DynaPDF corrects this automatically.

• All other character sets are treated in Unicode mode. EMF files do not contain strings in
other encodings.

• For Asian EMF files it is recommended but not required to set the flag mfUseUnicode. This
flag makes sure that a font will not be loaded with the code page 1252 which is mostly not
meaningful in Asian EMF files. It slightly improves the processing speed if a file contains
many create font records with invalid charset information.

Non-portable WMF files

Two WMF file formats are available, the old non-portable WMF format and the newer portable
WMF format. Both formats are converted to EMF before they can be converted to PDF. DynaPDF
uses the Windows API function SetWinMetaFileBits() to convert WMF files. Because of this, WMF
files are not supported on Mac OS X, Linux or UNIX.

Function Reference Page 563 of 854

However, the old non-portable WMF format is device depended; it contains no size information in
the file's header so that this file type must be handled separately. The conversion function
SetWinMetaFileBits() requires a parameter of the type METAFILEPICT, this structure is only
initialized to default values by DynaPDF for non-portable WMF files:
METAFILEPICT pict;
pict.hMF = NULL;
pict.mm = MM_ANISOTROPIC;
pict.xExt = 0;
pict.yExt = 0;

The picture size is set to zero so that the GDI must calculate the size. WMF files converted in this
way are often stretched. To get correct output results you must set the width and height of the WMF
file manually with the function SetWMFDefExtent(). The size must be calculated in 0.01 millimetre
units. A widely used size is 210000 x 280000 units for high resolution metafiles.

Notice: Missing lines or other objects indicates that the output size is too small. The GDI function
SetWinMetaFileBits() removes records which would be invisible or too small to appear in the
requested size. Set the output size to a larger value in this case.

Portable WMF files

The usage of portable WMF files is the same as of normal EMF files. However, many people want or
must to personalize WMF files with additional contents and many of them have problems to
calculate the correct WMF picture size which is required to get a correct EMF file. Let's see how
DynaPDF calculates the size of a WMF file:

First, we need the header of the WMF file because the structure contains the size of the WMF file.
The WMF header is defined as follows:
struct TRectS
{
 SI16 Left;
 SI16 Top;
 SI16 Right;
 SI16 Bottom;
};
#include <pshpack2.h> // packed structure
struct TPORT_METAHEADER // 16 bit portable WMF file
{
 UI32 Key; // WMF identifier (must be 0x9AC6CDD7)
 SI16 Handle; // Number of handles in file
 TRectS BBox; // Bounding rectangle
 UI16 Inch; // Pixels per inch
 UI32 Reserved;
 UI16 CheckSum; // Aldus checksum
};
#include <poppack.h>

Function Reference Page 564 of 854

The header files pshpack2.h and poppack.h are available in Visual Studio and Embarcadeo's C++
Builder; they are used to declare a packed structure. Fill the structure TPORT_METAHEADER now
with values:
TPORT_METAHEADER wmf;
fread(&wmf, 1, sizeof(wmf), f);
if (wmf.Key != 0x9AC6CDD7) // Is this a portable WMF file?
{
 fclose(f);
 return -2;
}

Now we can calculate the size of the metafile picture:
METAFILEPICT pict;
if (!wmf.Inch) wmf.Inch = 96;
pict.hMF = NULL;
pict.mm = MM_ANISOTROPIC;
pict.xExt = (wmf.BBox.Right - wmf.BBox.Left) * 2540 / wmf.Inch;
pict.yExt = (wmf.BBox.Bottom - wmf.BBox.Top) * 2400 / wmf.Inch;

As you can see above, the y-axis is not calculated with 2540 pixels per inch. DynaPDF uses 2400
pixels instead. I don't know why it must be 2400 pixels in most cases, but the y-axis is often
stretched otherwise. This value can be adjusted in the range 2000 to 3000 with the property
WMFPixelPerInch. This property changes the value of the y-axis only; the value of the x-axis is
always 2540.

Notice: The adjustment above is maybe not required. The value 2400 pixels per inch was determined
via trial and error.

ROP Codes (Raster Operation Codes)

EMF files are mostly created for a raster device like a monitor or printer. Because of this, metafiles
use often ROP codes which combine fore- and background colors to achieve transparency or other
color effects. Such ROP codes are meaningful on a raster device but not on a vector device like PDF.
Because no raster image is created during conversion, it is not possible to use ROP codes which
combine fore- and background colors.

The function checks for unsupported ROP codes during conversion. If unsupported ROP codes will
be used then the EMF file will be rendered to an image by default. The problem with ROP codes is
that the result depends mainly on the background. Many unsupported ROP codes have no effect if
the background is empty. In most cases it is better to disable the rasterizer with the flag
mfDisableRasterEMF and to enable it only if the output is wrong. See SetMetaConvFlags() for
further information.

Function Reference Page 565 of 854

Notice:

When an EMF file is rendered to an image then it will be rendered in the resolution that was set
with SetResolution(). The default resolution is 150 DPI which is usually too low to achieve good
results. For good results the resolution should be set to 300 or 600 DPI.

How to convert spool EMF files?

EMF spool files contain EMF files for every page of a GDI print job. The spool file can also contain
embedded fonts which are required by the EMF files. These fonts must be loaded in a pre-
conversion step before the first EMF file can be converted. Embedded font subsets and
corresponding delta font records must also be converted to regular TrueType fonts.

The function ConvertEMFSpool() can be used to convert a complete spool file to PDF, or if you want
to use your own spool file parser, it can be used to load the embedded fonts from the spool file.
Note that you must set the flags mfUseUnicode and mfIgnoreEmbFonts with SetMetaConvFlags() if
only the spool fonts should be loaded. These flags are required in this case!

If you want to do anything manually with your own code then make sure that embedded font
subsets and corresponding delta fonts will be converted back to regular TrueType fonts with
Microsoft's function MergeFontPackage() of the fontsub.dll.

The resulting fonts as well as all other embedded fonts must be loaded with LoadFont() with the
code page cpGlyphIndexes or cpUnicode (cpGlyphIndexes is preferred). In addition, the flags
mfUseUnicode and mfIgnoreEmbFonts must be set with SetMetaConvFlags().

The code page cpGlyphIndexes or cpUnicode as well as the flag mfUseUnicode must be set to avoid
collusions with the internal font selection during EMF conversion. The flag mfIgnoreEmbFonts
makes sure that DynaPDF does not load the same embedded fonts again which are available in
GDIComment records.

Compatibility Note:

DynaPDF versions prior 2.5.0.516 were not able to load spool fonts automatically. It was
required to load the fonts in the user's temp directory manually with AddFontSearchPath() and
the font cache had to be cleared before the next spool file could be converted. This technique
was rather inefficient and is no longer supported. Existing applications should be changed to
avoid the unnecessary calls of AddFontSearchPath() and ClearHostFonts().
AddFontSearchPath() does no longer load fonts with the extension tmp.

Remarks:

DynaPDF supports several flags to convert metafiles files to PDF, see SetMetaConvFlags() for
further information. Because the GDI function SetWinMeatFileBits() is used to convert WMF files to
EMF, WMF files are not supported on Mac OS X, Linux or UNIX.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 566 of 854

InsertMetafileEx

Syntax:
LBOOL pdfInsertMetafileEx(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // Metafile buffer
 UI32 BufSize, // Buffer length
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height) // Height of output rectangle

The function converts an Enhanced Meta File (EMF) or Windows Meta File (WMF) to a native PDF
vector graphic in the same way as InsertMetafile(). However, this function requires a file buffer that
was returned by the API function GetEnhMetaFileBits(), GetWinMetaFileBits() or
GetMetaFileBitsEx(). Buffer can also be a file buffer of an EMF or WMF file.

This function is mostly used to convert EMF files which were already loaded into memory or
displayed on screen. Those memory based EMF or WMF files can directly be converted to PDF as
follows:

In this example we have already a handle of an enhanced metafile. This handle can be used to get
the file buffer of the EMF file:

Example 1 (C++):
// First, we need the size of the file buffer
SI32 bufSize = GetEnhMetaFileBits(emf, 0, NULL);
BYTE* buffer = (BYTE*)malloc(bufSize); // Allocate memory
if (!buffer) return -1; // Out of memory?
// Now we can get the file buffer
bufSize = GetEnhMetaFileBits(emf, bufSize, buffer);
// We convert the buffer directly to PDF
pdfSetPageCoords(pdf, pcTopDown);
pdfInsertMetafileEx(pdf, buffer, bufSize, 0, 0, pdfGetPageWidth(pdf), 0);
// Free the buffer
free(buffer);

Example 2 (Delphi):
// emf is a TMetafile; we store the buffer in a TMemoryStream
emf.SaveToStream(stream);
pdf.InsertMetafileEx(stream.Memory,stream.Size,0,0,pdf.GetPageWidth,0);

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 567 of 854

InsertMetafileExt

Syntax:
LBOOL pdfInsertMetafileExt(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to EMF or WMF file
 struct TRectL* View, // Optional view rectangle (can be NULL)
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height) // Height of output rectangle

struct TRectL
{

SI32 Left;
 SI32 Top;
 SI32 Right;
 SI32 Bottom;
};

The function converts an Enhanced Meta File (EMF) or Windows Meta File (WMF) to a native PDF
vector graphic in the same way as InsertMetafile(). However, the function supports an additional
parameter View which can be used to zoom into an EMF or WMF file.

How the View rectangle must be calculated is described in detail under the function
GetLogMetafileSize(), this function is always required for the calculation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

InsertMetafileExtEx

Syntax:
LBOOL pdfInsertMetafileExtEx(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // Metafile buffer
 UI32 BufSize, // Buffer length
 struct TRectL* View, // Optional view rectangle (can be NULL)
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height) // Height of output rectangle

struct TRectL
{

SI32 Left;
 SI32 Top;
 SI32 Right;
 SI32 Bottom;
};

The function converts an Enhanced Meta File (EMF) or Windows Meta File (WMF) to a native PDF
vector graphic in the same way as InsertMetafileExt(). However, this function requires a file buffer

Function Reference Page 568 of 854

that was returned by the API function GetEnhMetaFileBis(), GetWinMetaFileBits() or
GetMetaFileBitsEx(). Buffer can also be a file buffer of an EMF or WMF file.

The usage of the function is described at InsertMetafile(). How the View rectangle must be calculated
is described in detail at GetLogMetafileSize(), this function is always required for the calculation
(use GetLogMetafileSizeEx() instead, it supports a file buffer such as this function).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

InsertMetafileFromHandle

Syntax:
LBOOL pdfInsertMetafileFromHandle(
 const PPDF* IPDF, // Instance pointer
 const void* hEnhMetafile, // Enhanced Metafile Handle
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height) // Height of output rectangle

This function inserts an Enhanced Metafile exactly in the same way as InsertMetafile() but accepts a
HENHMETAFILE handle as input. See also InsertMetafile().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

InsertMetafileFromHandleEx

Syntax:
LBOOL pdfInsertMetafileFromHandleEx(
 const PPDF* IPDF, // Instance pointer
 const void* hEnhMetafile, // Enhanced Metafile Handle
 struct TRectL* View, // Optional view rectangle (can be NULL)
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height) // Height of output rectangle

This function inserts an Enhanced Metafile exactly in the same way as InsertMetafileExt() but
accepts a HENHMETAFILE handle as input. See also InsertMetafileExt().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 569 of 854

InsertRawImage

Syntax:
SI32 pdfInsertRawImage(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // Image buffer
 UI32 BitsPerPixel, // Color depth in bits per pixel
 UI32 ColorCount, // Number of colors in color table if any
 SI32 ImgWidth, // Image width
 SI32 ImgHeight, // Image height (negative values mirror the image)
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight) // Scaled height of destination rectangle

typedef enum
{

rifByteAligned = 0x1000, // Scanlines are byte aligned
rifRGBData = 0x2000, // RGB data format, instead of BGR
rifCMYKData = 0x4000 // CMYK image data or color table

}TRawImageFlags;

The function inserts an image from a raw image buffer that contains no image header. The
parameter Buffer must be a valid pointer to the image data.

The scanlines of the image must be double word aligned by default. This is the default format for
Device Independent Bitmaps (DIBs).

The scanline length can be calculated as follows:
scanLineLen = ((Width * BitsPerPixel + 31) / 32) * 4;

Or more efficient in C notation:
scanLineLen = ((Width * BitsPerPixel + 31) & ~31) >> 3;

DynaPDF 2.5 introduced several extensions which affect the data alignment, supported pixel
formats, and color spaces.

Flag Description

rifByteAligned Scanlines are byte aligned. If this flag is set, the scanline length is calculated
as follows:
scanLineLen = (Width * BitsPerPixel + 7) / 8;

rifRGBData The image data is defined in RGB format instead of BGR. If BitsPerPixel is less
than 16 a color table in RGB format must precede the image data.

rifCMYKData The image data is defined in CMYK. BitsPerPixel must be 1, 2, 4, 8, or 32 in
this case. If BitsPerPixel is less than 32 a color table in CMYK format must
precede the image data.

Function Reference Page 570 of 854

The flags must be added to the parameter ColorCount with a binary or operator:
UI32 colorCount = 256 | rifRGBData | rifByteAligned; // C/C++, C#
long colorCount = 256 or rifRGBData or rifByteAligned // Visual Basic
DWORD colorCount := 256 or rifRGBData or rifByteAligned; // Delphi

The above example specifies that the image data starts with a color table with 256 RGB colors and
the following scanlines are byte aligned.

If the image has a color depth of 24 or 32 bits per pixel the pixel data must be defined in BGR or
BGRA (BGR Alpha) or RGB or RGBA format depending on whether the flag rifRGBData was set.
The alpha component will be converted to a soft mask to preserve the alpha channel. However,
alpha components in a color table will be ignored at this time.

If a 32 bit image should be interpreted as CMYK image then set the flag rifCMYKData.

A color table in BGRA or RGB format must precede the image data if BitsPerPixel is 4 or 8 and
depending on whether the flag rifRGBData was set. The parameter ColorCount specifies the number
of colors in the color table. It is also possible to insert a gray scale image. BitsPerPixel must be 8 in
this case, and ColorCount must be zero. No color table must precede the image data in this case.

If the color depth is 1, 16, 24, or 32 bits per pixel no color table must be present. The parameter
ColorCount will be ignored for these images, it should be set to 0.

If the image height is a positive value the image is treated from bottom to top. Top-down images can
be mirrored by setting the image height to a negative value.

Color spaces

If the active color space is a device color space the image will be converted into that color space if
necessary (with exception of 1 bit images).

For all other color spaces the image data must be defined in the active color space. 1 bit images can
also be used with Separation color spaces. See also Color Space and Images. However, all other color
spaces require 8 bits per color component.

A color table cannot be prepended if the image is defined in a non device color space but it is
possible to create an indexed color space for the image (see CreateIndexedColorSpace()) and to
activate it with SetExtColorSpace() before the image will be inserted. The image data must contain 8
bit indexes into the color table in this case.

If the active color space is DeviceN, the image can contain up to 32 color components (256 bits per
pixel). Images with more than 4 color components are always Flate compressed.

How to calculate the image size?

The calculation of the image size should be easy as possible. In most cases, images must be inserted
with exact proportions. Therefore, all image functions support two special values to make the
calculation easier. The width and height can be calculated as follows:

Function Reference Page 571 of 854

• If ScaleWidth or ScaleHeight is -1 the function uses the original width or height from the
image. If both parameters are -1 the image will be inserted with a resolution of 72 DPI.

• If ScaleWidth or ScaleHeight is 0, the missing value is calculated in relation to the given value
of ScaleHeight or ScaleWidth to preserve the image's aspect ratio. The resulting output is an
image with exact proportions relative to its original size.

• If ScaleWidth and ScaleHeight are 0, the original size is used (same effect as -1).

• A negative value of Width or Height mirrors the image on the x- or y-axis.

The function contains no parameter to define the buffer length. However, the required length is
calculated from the parameters of the function.

The pixel data must be uncompressed. Raw images are handled in the same way as other image
formats; they are downscaled if necessary, converted to the current color space and compressed
with the defined compression filter. Note that 1 bit images are treated as image mask if transparency
is enabled (see SetUseTransparency()), see InsertImage() for further information.

Remarks:

InsertRawImageEx() is more flexible regarding the number of color components, specific scanline
lengths and alpha channels in multi-channel images.

It is possible to use one image on several pages or positions. To insert an image multiple times use
the function PlaceImage(). However, once an image was inserted, the physical dimension cannot be
changed; it can only be scaled to different sizes. If an image should be used with different
dimensions, insert the largest version first.

Return values:

If the function succeeds the return value is the image handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

InsertRawImageEx

Syntax:
SI32 pdfInsertRawImageEx(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight, // Scaled height of destination rectangle
 struct TPDFRawImage* Image) // see below

struct TPDFRawImage
{
 UI32 StructSize; // Must be set to sizeof(TPDFRawImage)
 const void* Buffer; // Image buffer
 UI32 BufSize; // Buffer size
 UI32 BitsPerComponent; // Bits per component
 UI32 NumComponents; // Number of components (max 32)
 TExtColorSpace CS; // Image color space

Function Reference Page 572 of 854

 SI32 CSHandle; // Color space handle or -1
 SI32 Stride; // A negative value mirrors the image
 LBOOL HasAlpha; // The image has an alpha channel?
 LBOOL IsBGR; // Windows bitmap format?
 LBOOL MinIsWhite; // 1 bit images only
 UI32 Width; // Width in pixels
 UI32 Height; // Height in pixels
};

The function inserts an image from a raw image buffer that contains no image header. Unlike
InsertRawImage() the function supports also multi-channel images with less than 8 bits per
component as well as arbitrary aligned scanlines.

Images with 1, 2, 4, 8, and 16 bits per component are supported. 2 and 4 bits per component images
can be used with Indexed and DeviceN color spaces. The corresponding color space must be created
beforehand and the color space handle must be set to CSHandle. No color table must precede the
image data.

1 bit images with only one component are treated as an image mask if SetUseTransparency() is set to
true (default) and if the color space of the image is set to esDeviceGray. An image mask is drawn
with the current fill color. Zero pixel values produce no output.

Images with 8 bits per component can contain an alpha channel. The parameter HasAlpha must be
set to true in this case and the alpha channel must be assigned to the last component. The image can
contain up to 32 components including the alpha channel.

If the alpha channel is stored in a separate image buffer then use AddMaskImage() to add the alpha
channel. The function supports also the creation of a 1 bit image mask.

The scanline length (Stride) can be a positve or negative value. If negative, the image is read from
bottom to top.

If IsBGR is true and if the color space is set to esDeviceRGB, the color components are interpreted in
BGR order. This component order is mainly used in Windows Bitmaps.

If MinIsWhite is set to true, zero pixel values are interpreted as white. This parameter applies only to
images with 1 bit per component.

The function does not use the active color space and it performs no color conversion.

Color Key Masking

Images which use a device color space are treated as usual. That means, if SetUseTransparency() is
set to true (default), then the image is masked with the current transparent color (see
SetTransparentColor()).

Images of other color spaces can be masked too with SetColorMask(). Color key masking depends
on exact color values. To avoid issues due to color interpolation the image should be compressed
with Flate encoding. See SetCompressionFilter() for further information.

Function Reference Page 573 of 854

How to calculate the image size?

The calculation of the image size should be easy as possible. In most cases, images must be inserted
with exact proportions. Therefore, all image functions support two special values to make the
calculation easier. The width and height can be calculated as follows:

• If ScaleWidth or ScaleHeight is -1 the function uses the original width or height from the
image. If both parameters are -1 the image will be inserted with a resolution of 72 DPI.

• If ScaleWidth or ScaleHeight is 0, the missing value is calculated in relation to the given value
of ScaleHeight or ScaleWidth to preserve the image's aspect ratio. The resulting output is an
image with exact proportions relative to its original size.

• If ScaleWidth and ScaleHeight are 0, the original size is used (same effect as -1).

• A negative value of Width or Height mirrors the image on the x- or y-axis.

Remarks:

It is possible to use one image on several pages or positions. To insert an image multiple times use
the function PlaceImage(). However, once an image was inserted, the physical dimension cannot be
changed; it can only be scaled to different sizes. If an image should be used with different
dimensions, insert the largest version first.

Return values:

If the function succeeds the return value is the image handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

IsBidiText

Syntax:
SI32 pdfIsBidiText(
 const PPDF* IPDF, // Instance pointer
 const UI16* AText) // Unicode string

The function returns the position of the first bidirectional character that can be found in the string or
-1 if no such character can be found.

IsColorPage

Syntax:
SI32 pdfIsColorPage(
 const PPDF* IPDF, // Instance pointer
 LBOOL GrayIsColor) // Treat gray as color

This function checks whether a page is a color page or if all graphic elements of the page use black &
white only. If the parameter GrayIsColor is true, gray shades are treated as color. The page which
should be checked must be opened with the function EditPage() beforehand.

Function Reference Page 574 of 854

Complex color spaces such as Lab, Separation, DeviceN, Colored Tiling Patterns, and Shadings are
always treated as color. The function does not return when a color is set, the color must be used by
an object.

Return values:

If an object of the page uses a color, the return value is 1. If no object uses a color the return value is
0. A negative return value indicates that an error occurred.

IsEmptyPage

Syntax:
SI32 pdfIsEmptyPage(
 const PPDF* IPDF) // Instance pointer

The function checks whether a page is empty. The page which should be checked must be opened
with the function EditPage() beforehand. The function does not check whether the buffer size of a
page is zero to determine whether a page is empty. Instead, the content stream will be parsed until a
visible object can be found.

Return values:

If no visible object can be found the return value is 1. If a visible object can be found the return value
is 0. A negative return value indicates that an error occurred.

IsWrongPwd

Syntax:
#define IsWrongPwd(ErrCode) // C/C++
Function IsWrongPwd(ByVal ErrCode As Integer) As Boolean // Visual Basic
function IsWrongPwd(ErrCode: Integer): Boolean; // Delphi

The function returns true is the supplied error code indicates that a password is required to decrypt
the PDF file. The error code must be a return value of the function OpenImportFile() or
OpenImportBuffer().

This function is implemented as macro in C/C++. In prior DynaPDF versions the macro name was
PDF_WRONG_PWD() which is still defined. However, for consistency among different
programming languages the new macro name IsWrongPwd() should be used.

Function Reference Page 575 of 854

LineAnnot

Syntax:
SI32 pdfLineAnnot(
 const PPDF* IPDF, // Instance pointer
 double x1, // X-Coordinate of the start point
 double y1, // Y-Coordinate of the start point
 double x2, // X-Coordinate of the end point
 double y2, // Y-Coordinate of the end point
 double LineWidth, // Line width
 TLineEndStyle Start, // End line style of the start point
 TLineEndStyle End, // End line style of the end point
 UI32 FillColor, // Text and interiour color -> see description
 UI32 StrokeColor, // This is the line color
 TPDFColorSpace CS, // The color space in which colors are defined
 const char* Author, // Optional author
 const char* Subject, // Optional subject
 const char* Content) // Optional content or caption of a measure line

typedef enum
{
 leNone,
 leButt,
 leCircle,
 leClosedArrow,
 leDiamond,
 leOpenArrow,
 leRClosedArrow,
 leROpenArrow,
 leSlash,
 leSquare
}TLineEndStyle;

The function creates a line annotation. The simplest form of a line annotation represents a simple
straight line that has an associated PopUp annotation to display the string Content in a floating
window.

The initial window state of the associated PopUp annotation is closed by default but the state can be
changed with SetAnnotOpenState() if necessary.

The coordinates are interpreted in current user space. Any transformation that was applied on the
coordinate system will be taken into account.

The parameter FillColor is only used if the line end style of the start or end point has an interior that
can be filled. The special constant NO_COLOR represents a transparent interior.

The stroke color is required and must not be set to NO_COLOR.

Measure lines

A measure line is an extended line annotation that has additional properties. To create a measure
line create first the line annotation and set then the measure line specific properties with
SetLineAnnotParms().

Function Reference Page 576 of 854

The parameter LineWidth must be in the range 0 through 12 units. Values outside the valid range
will be adjusted to the nearest allowed value. A zero line width produces a 1 pixel wide line.

The line end styles can be changed if necessary with SetAnnotLineEndStyle().

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

LineTo

Syntax:
LBOOL pdfLineTo(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of ending point
 double PosY) // Y-Coordinate of ending point

The function draws a path from the current position up to the specified point. The start point must
be set with another vector graphic function beforehand, such as MoveTo() or other functions which
draw an open path segment.

In PDF all vector graphics are defined as paths, a path is invisible as long it was not stroked, filled or
both. See also Path construction and Painting.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

LoadCMap

Syntax:
SI32 pdfLoadCMap(

const PPDF* IPDF, // Instance pointer
const char* CMapName, // CMap name
LBOOL Embed) // See description below

The function loads an external CMap file into memory so that it can be used with OpenType or
TrueType fonts. The returned CMap handle is a required parameter of the function SetCIDFont().

Embedding CMap Files

The CMap should be embedded if it is not predefined or if the supplement number is higher than
supported in the viewer version to which compatibility is required.

However, dependencies to external CMaps are always removed if the font, that uses the external
CMap, is embedded. The parameter Embed is ignored in this case. This handling reduces the amount
of data that must be stored in a PDF file and the file can be viewed with Adobe's Acrobat or Reader
without installed Asian language pack that would otherwise be required.

Function Reference Page 577 of 854

Predefines CMaps

The following table lists all predefined CMaps and the corresponding character collections which
are supported in a specific PDF version. The corresponding Acrobat versions are Acrobat 3 for PDF
1.2, Acrobat 4 for PDF 1.3 and so on.

CMap PDF 1.2 PDF 1.3 PDF 1.4 PDF 1.5
Chinese (Simplified)
GB-EUC-H/V Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0
GBpc-EUC-H Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0
GBpc-EUC-V - Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0
GBK-EUC-H/V - Adobe-GB1-2 Adobe-GB1-2 Adobe-GB1-2
GBKp-EUC-H/V - - Adobe-GB1-2 Adobe-GB1-2
GBK2K-H/V - - Adobe-GB1-4 Adobe-GB1-4
UniGB-UCS2-H/V - Adobe-GB1-2 Adobe-GB1-4 Adobe-GB1-4
UniGB-UTF16-H/V - - - Adobe-GB1-4

Chinese (Traditional)
B5pc-H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0
HKscs-B5-H/V - - Adobe-CNS1-3 Adobe-CNS1-3
ETen-B5-H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0
ETenms-B5-H/V - Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0
CNS-EUC-H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0
UniCNS-UCS2-H/V - Adobe-CNS1-0 Adobe-CNS1-3 Adobe-CNS1-3
UniCNS-UTF16-H/V - - - Adobe-CNS1-4

Japanese
83pv-RKSJ-H Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1
90ms-RKSJ-H/V Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2
90msp-RKSJ-H/V - Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2
90pv-RKSJ-H Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1
Add-RKSJ-H/V Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1
EUC-H/V - Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1
Ext-RKSJ-H/V Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2
H/V Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1
UniJIS-UCS2-H/V - Adobe-Japan1-2 Adobe-Japan1-4 Adobe-Japan1-4
UniJIS-UCS2-HW-H/V - Adobe-Japan1-2 Adobe-Japan1-4 Adobe-Japan1-4
UniJIS-UTF16-H/V - - - Adobe-Japan1-5

Korean
KSC-EUC-H/V Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0
KSCms-UHC-H/V Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1
KSCms-UHC-HW-H/V - Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1
KSCpc-EUC-H Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0
UniKS-UCS2-H/V - Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1
UniKS-UTF16-H/V - - - Adobe-Korea1-2

Adobe's Acrobat 9 and Reader 9 support also the character collections Adobe-GB1-5, Adobe-CNS1-
5, and Adobe-Japan1-6. Adobe offers also many more CMaps which support other encodings like
UTF-8 or UTF-32. However, CMaps which are not predefined must either be embedded or the font
that uses the CMap must be embedded.

CMaps and the CID-Keyed Font Architecture are described in detail in the Adobe Technical Notes
#5092 and #5099. Detailed information about Adobe Character Collections can be found in the
Adobe Technical Notes #5094, #5093, #5078, #5079, #5080, and #5097. These documents can be
downloaded from the Adobe website at www.adobe.com.

Function Reference Page 578 of 854

External CMaps cannot be used with Type1 fonts and DynaPDF does not support glyph names to
access CIDs because this format is reserved for use with Type1 fonts.

Working with External CMaps

External CMaps can be used to specify a rich mixture of encodings with fixed and variable code
lengths of up to four bytes per character. Many CJK encodings use a mixture of one- and two-byte
encodings while Unicode encodings use one through four-byte representations.

When working with external CMaps it is important to understand how the mapping works in
conjunction with the string functions in DynaPDF. Practically all string functions in DynaPDF are
available in an Ansi and Wide string version.

The wide string version uses 16 bits or two-bytes per character. So, these functions can be used with
CMaps which support a code length of two, four, or a mixture of two/four byte codes but it is not
possible to access CIDs which are encoded with code lengths of one or three bytes because less than
two bytes cannot be consumed from the source string.

No such restriction is given if the Ansi version is used instead because all code lengths from one
through four bytes can be created from the source string.

The mapping of codes to CIDs works essentially as follows:

The CMap parser initializes a 32 bit variable with the first char code of the string. Depending on the
string format the consumed code length is incremented by one or two bytes. Then it checks whether
a CID is defined for this code. If this is not the case, the next char code is consumed and combined
with the existing code to from a 16, 24, or 32 bit code. The search run continues until the maximum
code length or string end was reached. If no CID is defined for that code the notdef character is
returned.

DynaPDF does not know how a string is encoded when using a CID font with an external CMap. So,
functions which output formatted text like WriteFText() can only be used if the CID font was loaded
with a CMap that maps UTF-16 (Unicode) to CIDs (the wide string version must be used in this
case).

Because TrueType fonts have no native notation of CIDs, the usage with CID-keyed OpenType fonts
is preferred. CID-keyed OpenType fonts contain an embedded Type1 font in Compact Font Format
(CFF). This font contains also information about the supported character collection. The supported
character collection of the font must match the one of the CMap file. It is not possible to load an
OpenType font with a CMap that contains a mapping into another character collection.

Remarks:

One CMap file can be used with an arbitrary number of CID fonts. The function checks whether a
CMap was already loaded before it loads the same CMap again. A CMap specifies also the writing
mode. The style flag fsVerticalMode will be ignored when loading a font with an external CMap.

Function Reference Page 579 of 854

Return values:

If the function succeeds the return value is a CMap handle, a value greater or equal zero. If the
function fails the return value is a negative error code. The CMap handle is required to load a CID
font with this CMap.

LoadFont

Syntax:
SI32 pdfLoadFont(

const PPDF* IPDF, // Instance pointer
const void* Buffer, // Font file buffer
UI32 BufSize, // Buffer size in bytes
TFStyle Style, // Font style
double Size, // Font size
LBOOL Embed, // If true, the font will be embedded
TCodepage CP) // Code page

The function loads a font from a file buffer and activates it in the graphics state if the function was
called within an open page or template. Supported font formats are TrueType, OpenType, and
Type1 fonts in PFB or PFA format.

It is also possible to load fonts directly from a font file with LoadFontEx(). This function is preferred
because it is more flexible and reduces the memory usage.

The function returns the font handle on success. The font handle is required whenever the font
should be set again with ChangeFont(), e.g. when opening a new page or if the font was changed to
another one.

The function does not check whether the font was already loaded in a previous call. The caller must
make sure that no unnecessary duplicates will be loaded. However, if the font should be used with
different code pages, a separate copy of the font is required for each code page.

The parameter Style sets the style flags fsUnderlined, fsStriked, or fsVerticalLayout only. It is also
possible to emulate font styles with manually loaded fonts. Use the function ChangeFontStyleEx() if
a font style should be emulated.

If the font name is known by the caller then it is also possible to set this font later with SetFont().
However, for proper behaviour manually loaded fonts should always be set with ChangeFont().

If SetFont() is used then there is no guarantee that the function loads exactly this font because the
function tries to load the best match according to the provided parameters.

Note that a font that was loaded with this function can only be used with the code page that was
used to load the font. If the code page must be changed then you must load a further copy of the
font. To reduce the memory usage, it is recommended to use LoadFontEx() instead, because this
function loads only required parts of the font file and it provides generally a better resource
handling.

Function Reference Page 580 of 854

TrueType Collections

To enable access on a specific font of a TrueType Collection the 4 high bits of the parameter BufSize
are reserved for the font index. Index 0 through 15 can be encoded in this way (larger collections do
probably not exist). The wished font index must be combined with the buffer size as follows:
bufSize |= (index << 28); // C/C++, C#
bufSize = bufSize or (index << 28) // VB .Net
bufSize := bufSize or (index shl 28); // Delphi
If index < 8 Then // Visual Basic

bufSize = bufSize Or (index * &H10000000)
Else
 bufSize = bufSize Or ((index And 7) * &H10000000) Or &H80000000
End If

Remarks:

Like all other fonts, manually loaded fonts are unloaded when the PDF file is closed or discarded
with FreePDF().

Return values:

If the function succeeds the return value is the font handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

LoadFontEx

Syntax:
SI32 pdfLoadFontEx(
 const PPDF* IPDF, // Instance pointer
 const char* FontFile, // Path to a font file
 UI32 Index, // Index of a TrueType Collection
 TFStyle Style, // Font style
 double Size, // Font size
 LBOOL Embed, // If true, the font will be embedded
 TCodepage CP); // Code page

The function loads a font from a font file and activates it in the graphics state if the function was
called within an open page or template. Supported font formats are TrueType, OpenType, and
Type1 fonts in PFB or PFA format.

The function returns the font handle on success. The font handle is required whenever the font
should be set again with ChangeFont(), e.g. when opening a new page or if the font was changed to
another one.

While LoadFont() loads a font always explicitely, this function performs a duplicate check before the
font is loaded. This enables a more efficient resource handling especially if a font must be loaded
with different code pages. The function compares the absolute file path and not the font name.
Therefore, it is strongly recommended to load fonts always from the same directories.

Function Reference Page 581 of 854

The parameter Style sets the style flags fsUnderlined, fsStriked, or fsVerticalLayout only. It is also
possible to emulate font styles with manually loaded fonts. Use the function ChangeFontStyleEx() if
a font style should be emulated.

If the font name is known by the caller then it is also possible to set the font later with SetFont().
However, for proper behaviour manually loaded fonts should always be set with ChangeFont().

If SetFont() is used then there is no guarantee that the function loads exactly this font because the
function tries to load the best match according to the provided parameters.

The parameter Index is used to load a specific sub font of a TrueType Collection. If a normal font is
loaded or if the index is unknown set the parameter to zero. Note that the parameter is used when
DynaPDF performs the duplicate check.

Remarks:

A font file that was loaded with function must not be deleted or modified before the PDF file was
closed or discarded.

Like all other fonts, manually loaded fonts are unloaded when the PDF file is closed or discarded
with FreePDF().

The function is implemented in an Ansi and Unicode compatible variant. The Unicode version is
preferred on Windows because Unicode is the default string format that DynaPDF uses for font files
on this platform.

Unicode file paths are converted to UTF-8 on non-Windows operating systems.

Return values:

If the function succeeds the return value is the font handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

LoadFDFData

Syntax:
LBOOL pdfLoadFDFData(

const PPDF* IPDF, // Instance pointer
const char* FileName, // File path of the FDF file
const char* Password, // Defined for future use, should be NULL
UI32 Flags) // Defined for future use, should be 0

The function loads form data from a FDF file (Forms Data Format). The corresponding form must be
imported before the function can be used. See ImportPDFFile() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 582 of 854

LoadFDFDataEx

Syntax:
LBOOL pdfLoadFDFDataEx(

const PPDF* IPDF, // Instance pointer
const void* Buffer, // FDF file buffer
UI32 BufSize, // Buffer size if bytes
const char* Password, // Defined for future use, should be NULL
UI32 Flags) // Defined for future use, should be 0

The function loads form data from a FDF file (Forms Data Format) like LoadFDFData but it accepts
a file buffer instead. The corresponding form must be imported before the function can be used. See
ImportPDFFile() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

LoadHeaderFooterSettings

Syntax:
SI32 pdfLoadHeaderFooterSettings(
 const PPDF* IPDF, // Instance pointer
 struct TPDFHeaderFooter* Init, // Pointer to TPDFHeaderFooter structure
 struct TPDFHdrFtr* HFArray) // Array of 6 TPDFHdrFtr structures

// Only constants which are considered by this function are listed.
typedef enum TPDFHdrFtrFlags
{
 hffLoadUTF8 = 8, // Load all strings in UTF-8 format. The PHP extension uses this flag.
 hffLoadBatesN = 32, // Force to load bates number settings.
 hffLoadHF = 64, // Force to load regular header / footer settings.
 hffSearchRun = 128 // Scan the file for available header / footer types.
};

The function loads imported header / footer settings from the PDF file currently in memory. The
function is able to identify header / footer settings independent of the way how they were imported,
e.g. with ImportPDFFile(), ImportPage(), or ImportPageEx().

The parameter HFArray must be an array of six TPDFHdrFtr records. The function sets header /
footer settings in their natural order. That means the indexes 0..2 contain the header definitions of
the alignments left, center, and right. The remaining indexes 3..5 contain the footer definitions of the
very same alignments.

A record whose TextLen is zero must be ignored. Otherwise either the Ansi or Unicode string is set.
If the flag hffLoadUTF8 is absent, the function sets usually TextW, and TextA otherwise. However, the
caller must be able to process both variants. Strings are generally null-terminated.

All Ansi or single byte strings are encoded in the Windows code page 1252 unless the flag
hffLoadUTF8 was set. In the latter case UTF-8 encoded Unicode strings are returned.

Function Reference Page 583 of 854

Flags can be set via the member Flags of the TPDFHeaderFooter structure right after it was
initialized with InitHeaderFooter().

Notice:

Header / footer settings are stored in PieceInfo dictionaries. If the import flag ifPieceInfo was
absent, e.g. if the flag IfImportAll was not set, then it is not possible to identify header / footer
settings, since the required data was not imported. See SetImportFlags() for further information.

Header / footer types

Two different types of headers / footers exist: headers / footers which contain arbitrary text, page
numbers, or dates, and headers / footers wich contain also bates numbers. The two types can be
loaded and deleted independently from each other.

Loading header / footer or bates number settings

By default, the function loads whatever it finds first. However, with the flags hffLoadBatesN and
hffLoadHF it is possible to force loading of either type.

Although this approach works perfectly for most applications, it is also possible to scan the file for
header / footer settings without loading the data.

How to check whether a file contains headers or footers?

A pure search run can be achieved with the flag hffSearchRun. If this flag is set, the function searches
for both header / footer types and returns as soon as both types were found. This makes it possible
to check very quickly whether a file contains headers / footers, bates numbers, or none of them.

If the flag hffSearchRun is set the function returns one of the following values:

• < 0: An error occurred.

• 0: No header / footer settings were found.

• 32: The file contains bates numbers.

• 64: The file contains normal headers / footers.

• 96: The file contains bates numbers and heades / footers.

As you can see above, the values 32, 64, and 96 are just combinations of the flags hffLoadBatesN,
hffLoadHF, and (hffLoadBatesN | hffLoadHF).

Return values:

If the flag hffSearchRun was not set the function returns the number of records which were filled
with data. Note that the array can contain empty records.

Function Reference Page 584 of 854

LoadLayerConfig

Syntax:
LBOOL pdfLoadLayerConfig(
 const PPDF* IPDF, // Instance pointer
 SI32 Index) // See description

The function loads the specified layer configuration. A PDF file that contains layers (Optional
Content Groups in PDF syntax) contains usually at least a default configuration dictionary. This
configuration is loaded by default when the visibility state of a layer or optional content group must
be determined, e.g. when rendering a page.

Use this function to load another configuration if available. To determine the number of available
configurations call GetLayerConfigCount().

The parameter Index can be one of the following:

• -1: Load the default configuration.

• -2: If a configuration was already loaded, leave it unchanged. Load
 the default configuration otherwise.

• 0..Count -1: Load the specified configuration.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

LockLayer

Syntax:
LBOOL pdfLockLayer(
 const PPDF* IPDF, // Instance pointer
 UI32 Layer) // Handle of an OCG

The functions adds a layer to the list of locked layers. The state of a locked layer cannot be changed
through the user interface of a PDF viewer. However, the state of locked layers can still be changed
via Javascript or SetOCGState actions.

Returns values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 585 of 854

MarkTemplateAsWatermark

Syntax:
LBOOL pdfMarkTemplateAsWatermark(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Template handle

The function adds additional metadata to a template (XObject type Form in PDF terms, see
BeginTemplate() or BeginTransparencyGroup() for further information) so that PDF editors like
Adobe Acrobat are able to identify the template as watermark.

Watermarks can be deleted with Acrobat and many other PDF editors. DynaPDF can delete such
watermarks too with DeleteWatermark() or Optimize().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

MovePage

Syntax:
LBOOL pdfMovePage(

const PPDF* IPDF, // Instance pointer
UI32 Source, // Source page number
UI32 Dest) // Target page number

The function moves a page to another position in the document. Moving a page requires some
processing time if the document contains many bookmarks or page links because the destinations of
all links and bookmarks must be modified so that they refer still to the correct page. For example, if
the first page of a document should be moved to the last page, all pages of the document must be
reordered. If the document is large and if it contains a few thousands page links as well as
bookmarks, this action can take a while.

The parameter Source must be a valid page number in the document. Page numbering starts at one.
If the destination page is larger than the source page, the page number can be greater than the
number of pages currently available in the document. The document is then filled with empty pages
until the destination page becomes valid.

If the destination page is smaller than the source page number, both page numbers must already
exist in the document.

It is also possible to exchange two pages with ExchangePage().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 586 of 854

MoveTo

Syntax:
LBOOL pdfMoveTo(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of new position
 double PosY) // Y-Coordinate of new position

The function moves the current position to the point specified by PosX, PosY. This function must be
called before a line or curved path segment can be drawn. See also LineTo(), Bezier_1_2_3().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

MultiplyMatrix

Syntax:
LBOOL pdfMultiplyMatrix(
 struct TCTM* M1, // First transformation matrix
 struct TCTM* M2, // Second transformation matrix
 struct TCTM* NewMatrix) // Resulting transformation matrix

The function multiplies two transformation matrices and stores the result in the parameter
NewMatrix. This function is required to calculate the resulting matrix in user coordinate space when
using the functions GetPageText() in combination with WriteTextMatrix().

The two matrices M1 and M2 are multiplied as follows:
 NewMatrix->a = M2->a * M1->a + M2->b * M1->c;
 NewMatrix->b = M2->a * M1->b + M2->b * M1->d;
 NewMatrix->c = M2->c * M1->a + M2->d * M1->c;
 NewMatrix->d = M2->c * M1->b + M2->d * M1->d;
 NewMatrix->x = M2->x * M1->a + M2->y * M1->c + M1->x;
 NewMatrix->y = M2->x * M1->b + M2->y * M1->d + M1->y;

Matrix multiplication is not commutative - the order in which matrices are multiplied is significant.

This function is implemented as native procedure in the interfaces for Visual Basic, Visual Basic .Net
and Delphi.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 587 of 854

NewPDF

Syntax:
void* pdfNewPDF(void)

The function creates a new PDF instance and returns the pointer of it. If there is no sufficient
memory to create the PDF instance the return value is NULL.

To improve processing speed one PDF instance should be used as long as possible. A PDF instance
holds a few important data structures such as the font cache and CMap cache. Rebuilding these
caches is an expensive operation and should be avoided if not necessary. Using the same PDF
instance to create as many PDF files as possible can significantly improve processing speed.

It is possible to use mutliple PDF instances at the same time. Each instance is fully isolated from
each other and thread-safe.

Thread-safety

If multiple instances are used in different threads, make sure that code executed in callback
functions, e.g. in the error callback function, is thread safe too. If unsafe code must be executed,
acquire a mutex and lock the thread before calling non-thread safe code.

Thread-safety is guaranteed for every PDF instance but it is not allowed to call functions of one
instance in different threads.

If a PDF instance is no longer needed then it must be deleted with DeletePDF().

Remarks:

This function is automatically called in the wrapper classes for Visual Basic, Visual Basic .Net, C#,
and Delphi. There is no need to create PDF instances manually when using these programming
languages.

C/C++ developers must create a PDF instance before a DynaPDF function can be executed.

OpenImportBuffer

Syntax:
SI32 pdfOpenImportBuffer(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // Pointer to PDF file
 UI32 BufSize, // Buffer length in bytes
 TPwdType PwdType, // Kind of password and flags (see below)
 const char* Password) // Password to decrypt the file

typedef enum
{
 ptOpen = 0, // Open password
 ptOwner = 1, // Owner password
 ptForceRepair = 2, // See description below
 ptDontCopyBuf = 4 // If set, the buffer is not copied
}TPwdType;

Function Reference Page 588 of 854

The function opens an external PDF file like OpenImportFile() but accepts a file buffer as input.

The function supports the additional flag ptDontCopyBuf to specify whether the import buffer
should be copied to an internal buffer or not.

If the flag ptDontCopyBuf is absent then DynaPDF creates a copy of the input buffer before it will be
accessed. The original buffer should be released immediately after the function returns in this case.
The internal copy of the file buffer will be released when CloseImportFile() is called, when loading
another PDF file, or when the PDF file in memory is closed.

If the flag ptDontCopyBuf is set, then the function works directly with the source buffer without
creating a copy of it. This reduces the memory usage and improves the processing speed due to the
unnecessary copy action. However, the caller must make sure that the buffer exist until
CloseImportFile() is called. When finish, call first CloseImportFile() and then release the input
buffer.

How to keep multiple memory based PDF files open?

It is also possible to hold more than one memory based PDF file simultaneously in memory. This is
the case if the flag if2UseProxy is set and if CloseImportFile() was not called before opening the next
PDF file (the flag can be set with SetImportFlags2()). The flag reduces also the memory usage and
should normally be set by default.

Be careful with the flag ptDontCopyBuf when loading more than one PDF file into memory. Do not
delete the buffer before all required parts of the PDF file were imported!

Since memory based PDF files have no file name, an existing instance can only be re-opened with
ReOpenImportFile(). The function requires the file handle that OpenImportBuffer() returned. To
reduce the memory usage, memory based PDF files should be closed as soon as possible. A specific
file instance can be closed with CloseImportFileEx().

Remarks:

The flag ptForceRepair can be used to explicitely load a PDF file in repair mode. The usage of is
described at OpenImportFile().

Return values:

If the function succeeds the return value is zero or the file handle if the flag if2UseProxy is set (a
value greater or equal zero). If the function fails the return value is a negative error code. See also
OpenImportFile().

Function Reference Page 589 of 854

OpenImportFile
SI32 pdfOpenImportFile(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to PDF file
 TPwdType PwdType, // Kind of password see below
 const char* Password) // Password to decrypt the file

typedef enum
{
 ptOpen = 0, // Open password
 ptOwner = 1, // Owner password
 ptForceRepair = 2, // See description below
 ptDontCopyBuf = 4 // Not meaningful with OpenImportFile()
}TPwdType;

The function opens an external PDF file so that it can be imported entirely or parts of it. After a PDF
file was opened, properties of it can be derived by several functions such as GetInDocInfo(),
GetInPageCount() and so on. To import specific pages from the file use the functions ImportPage()
or ImportPageEx(). The entire PDF file can be imported with the function ImportPDFFile() (see
example below).

The parameter PwdType specifies the kind of password that is supplied to the function to decrypt a
PDF file if necessary. If the file is not encrypted the parameter Password is ignored.

It is not required to close a PDF file explicitly before another one can be opened. However, if the file
is no longer needed then it should be closed with CloseImportFile().

Recommended settings to split PDF files

To improve processing speed when splitting large PDF files into smaller pieces, one or more PDF
files can be loaded permanent into memory. In this case the PDF files are not automatically closed
when CloseFile() or FreePDF() is called. In order to load a PDF file permanent into memory set the
property SetUseGlobalImpFiles() to true.

After the file or files were fully processed, set the property back to false before closing the last PDF
file in memory or call FreePDF() so that all open import files can be released. For an example take a
look into the description of SetUseGlobalImpFiles().

How to keep multiple PDF files open?

Since DynaPDF 3.0.26.69 it is possible to hold more than one PDF file open to improve the resource
handling when pages from different PDF files cannot be imported in one pass.

A parser instance contains a duplicate array to determine whether a PDF object must be imported or
not. When the parser will be deleted, e.g. when CloseImportFile() was called, then there is no more a
way to determine whether an object was already imported if the same PDF file will be opened again
to import additional pages or objects of it. This yields often to double resources since already
imported objects can no longer be shared.

Function Reference Page 590 of 854

To avoid this issue, it is possible to hold more than one parser instance in memory. This is the case if
the flag if2UseProxy is set and if CloseImportFile() was not called before opening the next PDF file
(the flag can be set with SetImportFlags2()). The flag reduces also the memory usage and should
normally be set by default.

The function returns the file or parser handle in this case, a value greater or equal zero. This handle
can be used to close or re-open a specific parser instance with CloseImportFileEx() or
ReOpenImportFile().

CloseImportFile() closes the last open import file as usual and deletes the corresponding parser
instance.

A parser instance requires about 280 KB memory depending on the number of objects in it. The
memory usage grows a little bit when pages will be imported. Therefore, it is recommended to close
instances when no longer needed to reduce the memory usage.

PDF files with only one page should be closed immediatly after the contents was imported.

OpenImportFile() checks whether an existing instance can be used before it creates a new one.
Therefore, it is safe to open the same PDF file arbitrary often. More efficient to re-open existing
parser instances is to call ReOpenImportFile() with the file handle that OpenImportFile() returned.

DynaPDF makes sure that no more than 6 file handles are opened simultaneously during import.
Maximal 12 files are kept opened simultaneously if SetUseGlobalImpFiles() was set to true. This
ensures that mutliple PDF files can be efficiently imported and written to disk without using too
many system resources. The overhead to re-open additional files is minimal.

Editing encrypted PDF files

If your application should allow the modification of encrypted PDF files, you may check the access
permissions to grant user rights, if the file was opened with the open password instead of the owner
password (see also GetUserRights()).

Due to the license agreement of Adobe, all manufacturers of applications which make the treatment
of encrypted PDF files possible, must respect the access permissions of a PDF file, if the file was
opened with the open password.

Only if the file was opened with the owner password, all rights should be granted. See PDF Reference
1.7 for further information. This document is available at http://www.adobe.com.

If the property UseExactPwd is set to false (see SetUseExactPwd()), the function checks whether the
open or owner password in the file is an empty string. If one password is not set, then the file is
decrypted no matter whether the supplied password was wrong.

However, the property UseExactPwd should be true, if the application is a commercial product
(default).

http://www.adobe.com/

Function Reference Page 591 of 854

Use the function IsWrongPwd() to determine whether the function failed due to a wrong password.
The function requires the return value of this function to determine whether the password was
wrong. The function can be executed in a loop so that the user is able to enter another password.

Damaged PDF files

The function reads the file header, the cross-reference tables and the required global objects when
opening a PDF file. It checks also if the first page object is available. When it is possible to load these
objects without errors then the file is loaded in normal mode by using the cross-reference table to
fetch objects. If an error occurs during loading the global objects then the function tries to repair the
file by scanning the all the objects in the file to rebuild the cross-reference table.

However, PDF files can contain damages in the cross-reference table which cause not necessarily an
error when opening the file, e.g. when the damages affect only specific pages in the file. In such
cases it is possible to load a file explicitely in repair mode. This can be achieved with the flag
ptForceRepair. The flag must be combined with a binary or operator with the parameter PwdType,
e.g. (TPwdType)(ptOpen | ptForceRepair).

The ptForceRepair flag should only be set if it was not possible to load specific pages due to errors
in the file. Check first whether the file was not already loaded in repair mode with
GetInRepairMode(). If the function returns false then load the file in repair mode and try to import it
again. If the file contains no fatal errors then it is often possible to repair the damages.

The repair mode is supported for PDF files with an uncompressed file structure only because PDF
files with a compressed object structure are organized in a manner that does not allow further repair
actions.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Unicode paths are
converted to UTF-8 on non-Windows operating systems.

Return values:

If the function succeeds the return value is zero or the file handle if the flag if2UseProxy is set (a
value greater or equal zero). If the function fails the return value is a negative error code. This code
can be used to check with IsWrongPwd() whether the supplied password was wrong.

Example (C):

This example loads a PDF file and encrypts it. After a PDF file was loaded it is also possible to edit
specific pages of it. Existing pages can be opened with EditPage()…
// First, we declare an error callback function so that we can see all
// errors or warnings.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);

Function Reference Page 592 of 854

 return 0;
}
int main(int argc, char* argv[])
{

char outFile[] = "cout.pdf";
void* pdf = pdfNewPDF(); // Create a new PDF instance
if (!pdf) return -2; // Out of memory?
pdfSetOnErrorProc(pdf, NULL, PDFError);
// The output file is opened later...
pdfCreateNewPDF(pdf, NULL);
// No need to convert pages to templates. See SetImportFlags() for
// further information.
pdfSetImportFlags(pdf, ifImportAll | ifImportAsPage);
pdfSetImportFlags2(pdf, if2UseProxy); // Reduce the memory usage
pdfOpenImportFile(pdf, "test.pdf", ptOwner, NULL);
pdfImportPDFFile(pdf, 1, 1.0, 1.0);
pdfCloseImportFile(pdf);
// No fatal error occurred?
if (pdfHaveOpenDoc(pdf))
{

// OK, now we can open the output file. The function can be called
// in a while statement, e.g. to display a file open dialog.
if (!pdfOpenOutputFile(pdf, outFile))
{

pdfDeletePDF(pdf);
_getch();
return -1;

}
 // We encrypt the file, low-resolution printing should be allowed
 if (pdfCloseFileEx(pdf,NULL,"%3Fc&",kl128bit, rsDenyAll & ~rsPrint))

{
printf("PDF file \"%s\" successfully created!\n", outFile);
ShellExecute(0, "open", outFile, NULL, NULL, SW_SHOWMAXIMIZED);

}
}

 pdfDeletePDF(pdf); // Do not forget to delete the PDF instance
 return 0;
}

Function Reference Page 593 of 854

OpenOutputFile

Syntax:
LBOOL pdfOpenOutputFile(

const PPDF* IPDF, // Instance pointer
const char* OutPDF) // Output file name

The function opens the output file into which the PDF file should be written. The PDF file must be
created in memory if this function should be used. This is the case if the output file name is set to
NULL or to an empty string in CreateNewPDF().

After the output file was opened the PDF file is no longer created in memory. So, there is no need to
call FreePDF() after the file was finished with CloseFile() or CloseFileEx().

OpenOutputFile() can be called in a while statement, e.g. to display a open file dialog if the file
could not be opened. Once the function succeeds the PDF file can be finished with CloseFile().

It is strongly recommended to check with HaveOpenDoc() whether a PDF file is still in memory
before calling this function.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Unicode paths are
converted to UTF-8 on non-Windows operating systems.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 594 of 854

OpenOutputFileEncrypted

Syntax:
LBOOL pdfOpenOutputFileEncrypted(
 const PPDF* IPDF, // Instance pointer
 const char* OutPDF, // The output file that should be opened
 const char* OpenPwd, // Optional open password
 const char* OwnerPwd, // Optional owner password (should be set)
 TKeyLen KeyLen, // Encryption key length
 TRestrictions Restrict) // Restriction flags (see below)

typedef enum
{

kl40bit = 0, // RC4 Encryption -> PDF 1.2, Acrobat 3 or higher
 kl128bit = 1, // RC4 Encryption -> PDF 1.4, Acrobat 5 or higher
 kl128bitEx = 2, // RC4 Encryption -> PDF 1.5, Acrobat 6 or higher
 klAES128 = 3, // AES Encryption -> PDF 1.6, Acrobat 7 or higher
 klAES256 = 4, // AES Encryption -> PDF 1.7, Acrobat 9 or higher
 klAESRev6 = 5 // AES Encryption -> PDF 2.0, Acrobat X or higher
}TKeyLen;

typedef SI32 TRestrictions;
#define rsDenyNothing 0x00000000 // Encrypt the file only
#define rsDenyAll 0x00000F3C // Deny anything
#define rsPrint 0x00000004 // Deny printing
#define rsModify 0x00000008 // Deny modification of contents
#define rsCopyObj 0x00000010 // Deny copying of contents
#define rsAddObj 0x00000020 // No commenting
/* 128/256 bit encryption only -> ignored if 40 bit encryption is used */
#define rsFillInFormFields 0x00000100 // requires rsModify + rsAddObj
#define rsExtractObj 0x00000200 // requires rsModify
#define rsAssemble 0x00000400 // requires rsModify
#define rsPrintHighRes 0x00000800 // Disable high res. printing
#define rsExlMetadata 0x00001000 // PDF 1.5 Exclude metadata streams
#define rsEmbFilesOnly 0x00002000 // PDF 1.6 AES Encryption only

The function opens the output file and sets the encryption parameters. This function enables in
combination with FlushPages() the creation of very large encrypted PDF files with minimal memory
usage.

The function can be called in a while statement, e.g. to display a open file dialog if the file could not
be opened. Once the function succeeds the PDF file can be finished with CloseFile().

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Unicode paths are
converted to UTF-8 on non-Windows operating systems.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 595 of 854

OpenTag

Syntax:
LBOOL pdfOpenTag(

const PPDF* IPDF, // Instance pointer
TPDFBaseTag Tag, // The tag that should be created
const char* Lang, // Optional RFC 3066 laguage identifier
const char* AltText, // Optional alternate text
const char* Expansion) // Optional expansion of abbrevations or
 // acronyms

typedef enum
{
 btArt,
 btArtifact, // Artifact (contents that should be ignored)
 btAnnot, // An annotation must be inserted to finish the tag!
 btBibEntry, // Bibliography entry
 btBlockQuote,
 btCaption,
 btCode,
 btDiv,
 btDocument,
 btFigure,
 btForm, // A form field must be inserted to finish the tag!
 btFormula,
 btH,
 btH1,
 btH2,
 btH3,
 btH4,
 btH5,
 btH6,
 btIndex,
 btLink, // A link annotation must be inserted to finish the tag (FileLink(), PageLink(),
 // or WebLink()!
 btList, // L
 btListElem, // LI
 btListText, // LBody
 btNote,
 btP,
 btPart,
 btQuote,
 btReference,
 btSection, // Sect
 btSpan,
 btTable,
 btTableDataCell, // TD
 btTableHeader, // TH
 btTableRow, // TR
 btTOC,
 btTOCEntry, // TOCI
 btCL, // CL (Continued List)
 btLabel, // Lbl
 btRuby,
 btWarichu,
 // PDF 2.0 tags:
 btAbbr,
 btCallout,
 btDek,
 btEm,
 btLineNum,
 btReason,
 btRedaction,
 btSidebar,

Function Reference Page 596 of 854

 btStrong,
 btSub,
 btSup
}TPDFBaseTag;

The function opens the specified tag so that contents can be written into it. When the corresponding
contents was drawn or output the tag must be closed with CloseTag(). The supported tags have the
same meaning as the corresponding HTML tags.

Many tags support additional attributes which cannot be set by this function. If additional attributes
should be set, use OpenTagEx() instead.

Notice:

Tagged PDF files require a global structure tree that must be created with CreateStructureTree()
before this function can be called.

DynaPDF is able to extend an existing structure tree that was imported from an external PDF
file. However, when editing external PDF files the following rules must be considered:

• The structure information of a PDF file will only be imported when the entire PDF file is
imported with ImportPDFFile(). When importing single pages with ImportPage() or
ImportPageEx() of a PDF file that contains structure information then tagging will be
disabled because DynaPDF is not able to import the structure information of a PDF file
on a per page basis.

• Import first the PDF file and call then CreateStructureTree(). The reverse order causes

that the structure tree will not be imported and tagging will be disabled!

• Only one PDF file with structure information can be imported without invalidating the

structure information.

• Keep in mind that the structure tree of a PDF file is a complex global structure that is

difficult to edit. Because of this, probably millions of PDF files exist that contain damages
in the structure tree, mostly due to editing actions in certain viewer applications. When
opening an existing page with EditPage() the function tries to find the corresonding
StructParents array of the page in the ParentTree of the document's Structure Tree. When
this action fails then tagging will be disabled for this page. OpenTag() and CloseTag() do
not produce further warnings in this case.

• Note that some tags require a bounding box, e.g. btFigure or btTable. Use OpenTagBBox()

to open such a tag.

The parameters Lang, AltText, and Expansion are all optional. The Lang parameter, if set, must be a
valid language identifier as defined in RFC 3066, Tags for the Identification of Languages. It overrides
the global language identifer that can be set with SetLanguage(). The main language of the
document should always be set with SetLanguage() when creating Tagged PDF files.

Function Reference Page 597 of 854

Note that several structure elements like btListElem or btTableHeader cannot be used stand alone.
That means the corresponding parent tag must be opened before such a tag can be used. For
example, the tag btListElem is only valid as child of a btList element and btListElemText is in turn
only valid when used as a child of a btListElem tag!

Example:
...
pdfOpenTag(PDF, btList, NULL, NULL, NULL); // OK
 pdfOpenTag(PDF, btListElem, NULL, NULL, NULL); // OK
 pdfOpenTag(PDF, btListElemText, NULL, NULL, NULL); // OK
 pdfWriteText(PDF, 50.0, 50.0, "Some list text!");
 pdfCloseTag(PDF);
 pdfCloseTag(PDF);
pdfCloseTag(PDF);

pdfOpenTag(PDF, btList, NULL, NULL, NULL); // OK
 pdfOpenTag(PDF, btListElemText, NULL, NULL, NULL); // Wrong
 pdfOpenTag(PDF, btListElem, NULL, NULL, NULL); // Wrong
 pdfWriteText(PDF, 50.0, 50.0, " Some list text!");
 pdfCloseTag(PDF);
 pdfCloseTag(PDF);
pdfCloseTag(PDF);

pdfOpenTag(PDF, btListElem, NULL, NULL, NULL); // Wrong
 pdfWriteText(PDF, 50.0, 50.0, "List Element!");
pdfCloseTag(PDF);

The tags btAnnot, btForm, and btLink can be used to add annotations and form fields to the structure.
Note that the corresponding annotation or form field is required! When opening such a tag without
inserting the corresponding annotation or field before the tag is closed then the structure will be
damaged!

Remarks:

The maximum allowed nesting level of marked content operators is 64, including optional content
operators (Layers). At time of publication DynaPDF does not check whether tags are used in the
correct hierarchy.

However, when creating tagged PDF files you should always validate the tagging information with
the accessibility check of Adobe's Acrobat (Menu Advanced/Accessibility/Full Check...).

Tagged PDF files should be created in the logical reader.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is zero.

Function Reference Page 598 of 854

OpenTagBBox

Syntax:
LBOOL pdfOpenTagBBox(
 const PPDF* IPDF, // Instance pointer
 TPDFBaseTag Tag, // The tag that should be created
 const char* Lang, // Optional RFC 3066 laguage identifier
 const char* AltText, // Optional alternate text

 const char* Expansion, // Optional expansion of abbrevations or
 // acronyms
 struct TBBox* BBox) // Optional bounding box

The function opens a tag in the very same way as OpenTag() but supports the additional parameter
BBox that is required by the tags btFigure and btTable. Since BBox is optional the function can be used
to create all tags. Set BBox to NULL if it is not required. See OpenTag() for further information.

BBox must be defined in the current coordinate system that is used to output the corresponding
contents. All transformations will be taken into account.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is zero.

OpenTagEx

Syntax:
LBOOL pdfOpenTagEx(
 const PPDF* IPDF,
 TPDFBaseTag Tag, // The tag that should be created
 const char* Lang, // Optional RFC 3066 laguage identifier
 const char* AltText, // Optional alternate text

 const char* Expansion, // Optional expansion of abbrevations or
 // acronyms
 const char* Attributes) // Optional. See description below.

The function opens a tag in the very same way as OpenTag() but supports additional parameters
which can be set in a JSON (Javascript Object Notation) like format.

The optional parameter Attributes is a JSON like string. The JSON parser in DynaPDF supports a
few extensions to make the definition of additional attributes as easy as possible. See JSON Parser
for further information.

Examples (C/C++):
const char attr[] = "{/BBox[50, 450, 200, 500]/Placement/Inline}"; // Ok
const char attr[] = "/BBox :[50 450 200 500]/Placement/Inline"; // Ok
const char attr[] = "{{{{/BBox :[50 450 200 500]/Placement/Inline"; // Ok
const char attr[] = "/BBox :[50 450 200 500]/Placement/Inline}}}}"; // Ok
const char attr[] = "\"BBox\":[50 450 200 500]\"Placement\"/Inline"; // Ok
const char attr[] = "/BBox,[50 450 200 500]\"Placement\"/Inline"; // Ok
const char attr[] = "/BBox:[50 450 200 500]/Placement/Inline"; // Ok

Function Reference Page 599 of 854

The above examples produce all exactly the same output:
 /A<</BBox[50 450 200 500]/Placement/Inline/O/Layout>>

Note that the /O key is added by DynaPDF if not already present. The missing right or left braces in
the third and fourth example cause no error or warning. As described earlier, outer braces are
ignored.

This example produces incorrect output:
const char attr[] = "\"BBox\":[50 450 200 500]\"Placement\"\"Inline\""; // Wrong!

Result:
 /A<</BBox[50 450 200 500]/Placement(Inline)/O/Layout>>

The problem is that the value of the /Placement key must be a name object. The JSON parser knows
that a PDF key is always a name object. Therefore, the function converts a key defined as string
automatically to a name object. However, the value of a key can be a name, string, boolean, array,
dictionary, null, or a number. The PDF Standard specifies which data type a key accepts. In this
particular case, the /Placement key requires a name object as value. The function does not know
whether the value of an arbitrary key is valid.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is zero.

Optimize

Syntax:

LBOOL pdfOptimize(
 const PPDF* IPDF, // Instance pointer
 TOptimizeFlags Flags, // See below
 struct TOptimizeParams* Parms) // Can be NULL, see desciption below

typedef enum
{
 ofDefault = 0x00000000, // Just rebuild the content streams.
 ofInMemory = 0x00000001, // Optimize the file fully in memory.
 ofConvertAllColors = 0x00000002, // If set, Separation, DeviceN, and NChannel color spaces
 // will be converted to the device space.
 ofIgnoreICCBased = 0x00000004, // If set, ICCBased color spaces will be left unchanged.
 ofScaleImages = 0x00000008, // Scale images.
 ofSkipMaskedImages = 0x00000010, // Meaningful only if ofScaleImages is set. If set, don't
 // scale images with a color mask.
 ofNewLinkNames = 0x00000020, // If set, rename all object links to short names.
 ofDeleteInvPaths = 0x00000040, // Delete invisible paths. An invisible path is a path that
 // was finished with the no-op operator "n".
 ofFlattenLayers = 0x00000080, // Flatten layers if any.
 ofDeletePrivateData = 0x00000100, // Delete private data from pages, templates, and images.
 ofDeleteThumbnails = 0x00000200, // No need to embed thumbnails (can be created on demand).
 ofDeleteAlternateImages = 0x00000400, // If set, alternate images will be deleted if any.
 ofNoImageSizeCheck = 0x00000800, // Meaningful only if ofScaleImages is set. If set, do not
 // check whether the scaled image is smaller.
 ofIgnoreZeroLineWidth = 0x00001000, // Meaningful only if the parameter MinLineWidth of the
 // TOptimizeParams structure is greater zero.
 // If set, ignore line width operators with a value of zero
 // (zero means one device unit).

Function Reference Page 600 of 854

ofAdjZeroLineWidthOnly = 0x00002000, // Meaningful only if the parameter MinLineWidth of the
 // TOptimizeParams structure is greater zero. If set, change
 // the line width of real hairlines only (a hairline is a
 // one pixel width line -> LineWidth == 0).
ofCompressWithJBIG2 = 0x00004000, // If set, 1 bit images are compressed with JBIG2 if not
 // already compressed with this filter.

 ofNoFilterCheck = 0x00008000, // Meaningful only, if the flag ofCompressWithJBIG2 is set.
 // If set, re-compress all 1 bit images, also if already
 // compressed with JBIG2.
 ofConvertGrayTo1Bit = 0x00010000 // Useful for scanned faxes since many scanners create gray
 // images for black & white input.
 /* ---------------------------- Notice: --
 * Special color spaces like Separation, DeviceN, and NChannel are ignored unless the flag
 ofConvertAllColors is set too.
 */
 ofConvertToGray = 0x00020000, // Convert images, text, and vector graphics to DeviceGray.
 ofConvertToRGB = 0x00040000, // Convert images, text, and vector graphics to DeviceRGB.
 ofConvertToCMYK = 0x00080000 // Convert images, text, and vector graphics to DeviceCMYK.

ocReplaceJP2KWithJPEG = 0x00100000 // Meaningful only, if the flag ofConvertToGray,
 // ofConvertToRGB, or ofConvertToCMYK is set. If set, JPEG
 // 2000 compressed images (which are converted to another
 // color space) will be compressed with JPEG instead of
 // JPEG 2000. JPEG 2000 compression is very slow and
 // requires much memory. JPEG compression is around 10
 // times faster and produces almost identical results.
ofUseOtsuFilter = 0x00200000 // Meaningful only, if the flag ofConvertGrayTo1Bit is set.
 // The Otsu filter is useful for gray scanned faxes.

 ofConvTextToOutlines = 0x00400000, // If set, texts are converted to outlines or vector
 // graphics. The resulting file contains no fonts with
 // exception of Type3 fonts, if any.
 ofConvNonEmbFontsOnly = 0x00800000 // Meaningful only, if the flag ofConvTextToOutlines is
 // set. If set, texts of non-embedded fonts are converted
 // to outlines. Embedded fonts remain embedded.
 ofIgnoreDeviceN = 0x01000000, // Meaningful only if a color conversion flag is set. If
 // set, DeviceN color spaces are left unchanged.
 ofIgnoreNChannel = 0x02000000, // If set, NChannel color spaces are left unchanged.
 ofIgnoreSeparation = 0x04000000, // If set, Separation color spaces are left unchanged.
 ofFailOnOverprinting = 0x08000000, // Meaningful only if a color conversion flag is set. If
 // set, the function returns with a fatal error if an
 // object with enabledoverprinting was found on the page.
 // The appearance of overprinted objects would change and
 // make the page maybe unusable.
 // Overprinted objects can be left unchanged (set the flag
 // ofSkipOverprintedObj in this case) or Optimize() can
 // return with a fatal error to avoid the creation of an
 // invalid document.
 ofSkipOverprintedObj = 0x10000000 // Meaningful only if a color conversion flag is set. If
 // set, objects that would be rendered with enabled
 // overprinting are left unchanged to avoid color errors on
 // the page.
 ofRemoveBatesNumbers = 0x20000000, // Remove bates numbers if any. The type BatesN can contain
 // headers / footers too.
 ofRemoveHeaderFooter = 0x40000000, // Remove headers / footers if any. This type is set if no
 // bates numbering was added. To determine whether a file
 // contains headers or footers call
 // LoadHeaderFooterSettings().
 ofIgnoreSeparationAll = 0x80000000 // Meaningful only if a color conversion flag is set. If
 // set, Separation color spaces with the special colorant
 // "All" will be ignored.
}TOptimizeFlags;

typedef enum
{
 of2Default = 0x00000000, // Nothing to do
 of2DeleteWatermarks = 0x00000001, // Delete watermark templates
 of2InclWatermarkAnnots = 0x00000002 // If set, watermark annotations will be deleted.
}TOptimizeFlags2;

// Placeholder defined for future use

Function Reference Page 601 of 854

typedef enum
{
 of3Default = 0x00000000 // Nothing to do
}TOptimizeFlags3;

typedef enum
{
 of4Default = 0x00000000 // Nothing to do
}TOptimizeFlags4;

struct TOptimizeParams
{

UI32 StructSize; // Must be set to sizeof(TOptimizeParams).

 UI32 Min1BitRes; // Minimum resolution before scaling.
 UI32 MinGrayRes; // Minimum resolution before scaling.
 UI32 MinColorRes; // Minimum resolution before scaling.

 UI32 Res1BitImages; // 1 bit black & white images.
 UI32 ResGrayImages; // Gray images.
 UI32 ResColorImages; // Multi-channel images.

 TCompressionFilter Filter1Bit; // Filter for black & white images.
 TCompressionFilter FilterGray; // Filter for gray images.
 TCompressionFilter FilterColor; // Filter for multi-channel images.
 SI32 JPEGQuality; // JPEG quality.
 SI32 JP2KQuality; // JPEG 2000 quality.
 float MinLineWidth; // Zero means no hair line removal.
 const UI32* ExcludeCS; // Array of color space handles which should be excluded from
 // color conversion.
 SI32 ExcludeCSCount; // Number of handles in the array. This can be a negative
 // value to reverse the meaning. That means convert these
 // color spaces and ignore all others.
 TOptimizeFlags2 Flags2; // Additional flags
 TOptimizeFlags3 Flags3; // Additional flags
 TOptimizeFlags4 Flags4; // Additional flags
};

The function rebuilds the content streams of all pages, templates, patterns, annotations, and form
fields. Useless operators as well as errors in content streams will be fully removed. The resulting
content streams are error free and usually smaller. How much the optimization takes effect depends
on the quality of the original content streams.

Besides content optimization it is also possible to flatten layers, scale or just re-compress images,
delete watermarks, or to correct hairlines.

The parameter Flags is a bit mask. Multiple flags can be combined with a binary or operator, e.g.
ofInMemory | ofScaleImage.

The flag ofScaleImages will be ignored if the parameter Parms is set to NULL.

Optimize() does not rebuild font subsets like CheckConformance(). The function is part of DynaPDF
Professional.

Usage

It is assumed that this function is called right before closing the PDF file. It is not allowed to call the
function twice for the same PDF file in memory.

Function Reference Page 602 of 854

After Optimize() was executed, close the file with CloseFile(), CloseFileEx(), or CloseAndSignFile()
for example.

If the flag ofInMemory is absent, then pages are directly written to the output file after optimization
to reduce the memory usage. If the PDF file was created in memory (this is the case if no ouput file
name was passed to CreateNewPDF()) then the output file must be opened with OpenOutputFile()
or OpenOutputFileEncrypted() beforehand. Note that it is not possible to sign the PDF file if the flag
ofInMemory is absent.

If the file should be signed too, then import the resulting PDF file again and sign it with
CloseAndSignFile() or CloseAndSignFileEx() for example.

Re-compressing 1 bit images with JBIG2

If the flag ofCompressWithJBIG2 is set, 1 bit images will be re-compressed with JBIG2 (if the image
was not already compressed with this filter). This can drastically reduce the file size since JBIG2
compression achieves much higher compression rates than any other 1 bit image filter that PDF
supports. The JBIG2 compression filter in DynaPDF is lossless, that means the original image quality
will be preserved.

Text to outline conversion

The function converts text to outlines if the flag ofConvTextToOutlines is set. The flattening algorithm
loads exactly the same fonts as the rendering engine would load and it scales fonts in the very same
way. What you see is what you get.

Outlines are scaled to a master size of 1000 units to achieve high quality output. It stores hinted
outlines with preserved curves. The resulting PDF files are much smaller in comparison to fully
flattened outlines and offer higher quality since curves stay smooth regardless of the zoom factor.

It is also possible to restrict the conversion to non-embedded fonts with the flag
ofConvNonEmbFontsOnly since these fonts are usually the problematic ones when printing on
Postscript devices.

Annotations and form fields are not affected by the conversion. In order to consider these objects too
it is possible to flatten all annotations and form fields before calling Optimize(). See FlattenAnnots()
for further information.

Color conversion

The function converts images, text, and vector graphics to a device color space if one of the flags
ofConvertToGray, ofConvertToRGB, or ofConvertToCMYK is set.

If color management is enabled (see InitColorManagement() for further information), make sure that
the destination color space is set to the same output color space as specified in the Optimize()
function call.

Function Reference Page 603 of 854

The optional array ExcludeCS can be used to define an array of color space handles which should be
excluded from color conversion.

ExcludeCSCount can be set to a negative number to reverse the meaning. That means convert these
color spaces and ignore all others.

Color conversion rules

The function does never convert gray objects into a higher color space. Image data is left unchanged
if the image uses an indexed color space and if scaling is not required. Only the indexed color space
is converted in this case.

Interactive objects like annotations and form fields are not converted to the destination color space
unless these objects would be flattened beforehand. Annotations and form fields can be flattened
with FlattenAnnots().

Overprinting

Objects that use overprinting can mostly not be converted to another color space without changing
the appearance of a page. To avoid issues with overprinted objects, the function can ignore such
objects, return with a fatal error, or convert them like any other object.

If overprinted objects should be excluded from color conversion, set the flag ofSkipOverprintedObj. If
the function should return with an error instead, set the flag ofFailOnOverprinting. If both flags are
absent then overprinted objects are converted to the specified color space.

Recommended compression filters

If PDF files are converterted to CMYK, e.g. for printing purposes, it is usually best to use loss-less
compression filters for all image types, e.g. JBIG2 for 1 bit images, and Flate for anything else. The
compression filters can be specified in the TOptimizeParams structure.

If no TOptimizeParams structure is provided, then images will be compressed with the same filter
that the original image used. The quality of JPEG and JPEG 2000 compressed images is taken from
the global property (see SetJPEGQuality()) in this case. Note that recompressing JPEG or JPEG 2000
images causes loss of quality.

Function Reference Page 604 of 854

Special compression filter flags:

The compression filter members of the structure TOptimizeParms can be combined with the flags
cfPresLosslessFilter and cfPresLossyFilter to preserve the original compression filter. If both flags are
set, the image is compressed with the original compression filter.

The flags can be combined with a compression filter constant with a binary or operator:

Example (C/C++):
p.FilterGray = (TCompressionFilter)(cfFlate | cfPresLossyFilter);

If no compression filter constant is set, cfFlate is used as alternate filter.

Image size check

The flag ofNoImageSizeCheck is implicitely set if a color conversion flag is set. This makes sure that
images can be converted to another color space also if the new image becomes larger. This is usually
always the case when converting images to CMYK from a lower color space.

Converting gray images to 1 bit (black & white)

Gray images will be converted to 1 bit b&w if the flag ofConvertGrayTo1Bit is set. The flag is
considered only if the flag ofCompressWithJBIG2 is set or if the parameter Parms and the flag
ofScaleImages is set. The conversion of gray images to b&w is mainly useful for scanned faxes since
many scanners create gray images for b&w input.

Image scaling

If the flag ofScaleImages is set, the function scales imported images according to the settings in the
TOptimizeParams structure. The function distuingishes between 1 bit, gray, and color images. The
minimum resolution of the original image that must be reached before scaling is applied can be set
for these three image types independently.

The minimum resolution of 1 bit images should be around 50% higher than the destination
resolution because scaling of 1 bit images can cause significant loss of quality if the original
resolution is near the destination resolution.

The minimum resolution of gray and color images can be freely chosen. 1 means scale all images.
The function scales images only if the minimum resolution is greater zero.

Spot color spaces

Images wich use a spot color space like Separation, DeviceN and NChannel are scaled only if the
flag ofConvertAllColors ist set.

Function Reference Page 605 of 854

Image size check

The function checks whether the new image is smaller as the original one (except if a color
conversion flag is set). If no size reduction can be achieved then the image is stored unchanged. The
size check can be disabled with the flag ofNoImageSizeCheck.

Images which were inserted with DynaPDF functions like InsertImage() will be ignored.

Masked images (color key masking)

Color key masking is a technique to make parts of an image transparent. This type of masking
depends on exact color values because a specific color is used to mask the transparent areas. If such
an image will be scaled, it is possible that the color of certain pixels will be changed due to color
interpolation and this can lead to visible differences which are maybe not acceptable.

To avoid issues with masked images it is recommended to set the flag ofSkipMaskedImages.

Hairline correction

If the member MinLineWidth of the structure TOptimizeParams is greater zero the line width of
stroked paths will be set to MinLineWidth if the scaled value was smaller. The function considers all
transformations of the coordinate system.

The line width is measured in PDF units. One PDF unit represents 1/72 inch.

The minimum line width should be smaller or equal 1.0. The maximum value is 10.0 units.

Depending on the used flags it is possible to correct real hairlines only (zero width lines), all lines
which are thinner than MinLineWidth, or all lines with exception of real hairlines (line width = 0).

Possible issues

Hairline correction does not always produce the expected result, e.g. lines which look like a stroked
path are in fact filled rectangles. It is also possible that a surrounding clipping path prevents a
visible change of the line width.

Special flags

The flag ofDeletePrivateData can be set to delete private data objects from pages, templates, and
images. Private data objects are created by several applications. For example, Adobe's Photoshop or
InDesign write the original images or PDF pages into private data structures (depending on the
settings in these applications).

A normal PDF viewer does not understand this data and ignores it. Because such objects are often
very large it is recommended to delete useless private data.

Recommendations

Optimize can do a lot but not anything. For example, the function does not perform a duplicate
check for images, templates, and so on. Such a duplicate check is available when importing a PDF

Function Reference Page 606 of 854

file but not after the file was already imported. In addition, the memory usage must be restricted.
Optimize() can flush pages away after optimization but it is also important to make sure that not too
much memory will be consumed before the function is called.

Therefore, the right flags must be used when importing a PDF file. Here are the default import flags
that should be used when optimizing PDF files:
pdfSetImportFlags(pdf, ifImportAll | ifImportAsPage);
pdfSetImportFlags2(pdf, if2UseProxy | if2DuplicateCheck);

The above flags avoid the conversion of pages to templates, the memory usage will be reduced, and
a duplicate check is applied.

Many other flags are available but the above flags can be used by default whenever a PDF file
should be optimized.

Error handling

This function adds warnings to the error log of DynaPDF. The error log can be accessed with
GetErrLogMessageCount() / GetErrLogMessage().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0. No PDF file is
in memory if the function fails. Therefore, it is not required to call FreePDF() on failure.

Function Reference Page 607 of 854

PageLink

Syntax:
SI32 pdfPageLink(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of bounding rectangle
 double PosY, // Y-Coordinate of bounding rectangle
 double Width, // Width of bounding rectangle
 double Height, // Height of bounding rectangle
 UI32 DestPage) // Destination page

The function adds a page link to the current open page. The parameter DestPage specifies the
destination page which should be opened (the page number). The function does not check whether
the destination page exists; it can be created later. If the destination page does not exist when the
document is closed it will be set to the first page.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
bounding rectangle. If the coordinate system is top-down it defines the upper left corner.

The border of the link annotation is drawn by using the current line width, stroke color and line
dash pattern. If the link should appear without a border set the line width to zero beforehand.

When clicking on a link annotation the rectangle is highlighted, that is a simple visual effect. Several
highlight modes are supported, see SetLinkHighlightMode() for further information.

Remarks:

The destination page is always opened at the top corner. More precise destinations can be created
with the function PageLinkEx(). Page links can also be used to execute an action. The destination
page is ignored in the latter case, the annotation works then like a button.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 608 of 854

PageLink2

Syntax:
SI32 pdfPageLink2(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of bounding rectangle
 double PosY, // Y-Coordinate of bounding rectangle
 double Width, // Width of bounding rectangle

double Height, // Height of bounding rectangle
UI32 NamedDest) // Handle of a named destination

The function adds a page link to the current open page by using a named destination as target.
Named destinations can be used if a destination should be accessible from another PDF file. The
parameter NamedDest must be a valid handle of named destination. See CreateNamedDest() for
further information.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
bounding rectangle. If the coordinate system is top-down it defines the upper left corner.

The border of the link annotation is drawn by using the current line width, stroke color and line
dash pattern. If the link should appear without a border set the line width to zero beforehand.

When clicking on a link annotation the rectangle is highlighted, that is a simple visual effect. Several
highlight modes are supported, see SetLinkHighlightMode() for further information.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

PageLink3

Syntax:
SI32 pdfPageLink3(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of bounding rectangle
 double PosY, // Y-Coordinate of bounding rectangle
 double Width, // Width of bounding rectangle

double Height, // Height of bounding rectangle
 const char* NamedDest); // Name of a named destination

The function adds a page link to the current open page by using a named destination as target. The
difference in comparison to PageLink2() is that the named destination can be defined as string.

This makes it possible to create the link, also if you don't have the required information to create the
named destination at this point. If the named destination does not exist when the file is closed then
the link does nothing. See also, CreateNamedDest().

Function Reference Page 609 of 854

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

PageLinkEx

Syntax:
SI32 pdfPageLinkEx(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of bounding rectangle
 double PosY, // Y-Coordinate of bounding rectangle
 double Width, // Width of bounding rectangle
 double Height, // Height of bounding rectangle
 TDestType DestType, // see below
 UI32 DestPage, // Destination page
 double a, // Various, depends on destination type
 double b, // Various, depends on destination type
 double c, // Various, depends on destination type
 double d) // Various, depends on destination type

typedef enum
{

dtXY_Zoom, // Three parameters (a, b, c) -> (X, Y, Zoom)
 dtFit, // No parameters
 dtFitH_Top, // One parameter (a)
 dtFitV_Left, // One parameter (a)
 dtFit_Rect, // Four parameters (left, bottom, right, top)
 dtFitB, // No parameters
 dtFitBH_Top, // One parameter (a)
 dtFitBV_Left // One parameter (a)
}TDestType;

The function adds a page link to the current open page. The parameter DestPage specifies the
destination page which should be opened (the page number). The function does not check whether
the destination page exists; it can be created later. If the destination page is not created before the
document is closed, it will be set to the first page of the document.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
bounding rectangle. If the coordinate system is top-down it defines the upper left corner.

The border of the link annotation is drawn by using the current line width, stroke color and line
dash pattern. If the link should appear without a border set the line width to zero beforehand.

When clicking on a link annotation the rectangle is highlighted, that is a simple visual effect. Several
highlight modes are supported, see SetLinkHighlightMode() for further information.

The destination created by this annotation allows jumping to a specific position in a document
instead of simply opening the page such as PageLink() does.

Function Reference Page 610 of 854

Destination type Description

dtXY_Zoom Display the page designated by page with the coordinates (left top) positioned
at the top-left corner of the window and the contents of the page magnified by
the factor zoom. A zero value for any of the parameters left top or zoom
specifies that the current value of that parameter is to be retained unchanged.

Example:
// The zoom factor is left unchanged
pdfPageLinkEx(pdf,150,50,150,20,2,dtXY_Zoom,50,750,0,0);

dtFit Display the page designated by page with its contents magnified just enough to
fit the entire page within the window both horizontally and vertically. If the
required horizontal and vertical magnification factors are different, use the
smaller of the two, centering the page within the window in the other
dimension. This destination type has no parameters.

dtFitH_Top Display the page designated by page with the vertical coordinate top
positioned at the top edge of the window and the contents of the page
magnified just enough to fit the entire width of the page within the window.

Example:
// The parameter a specifies the top coordinate
pdfPageLinkEx(pdf,150,50,150,20,2,dtFitH_Top,750,0,0,0);

dtFitV_Left Display the page designated by page with the horizontal coordinate left
positioned at the left edge of the window and the contents of the page
magnified just enough to fit the entire height of the page within the window.

Example:
// The parameter a specifies the left edge
pdfPageLinkEx(pdf,150,50,150,20,2,dtFitV_Left,50,0,0,0);

dtFitRect Display the page designated by page with its contents magnified just enough to
fit the rectangle specified by the coordinates left bottom right and top entirely
within the window both horizontally and vertically. If the required horizontal
and vertical magnification factors are different, use the smaller of the two,
centering the rectangle within the window in the other dimension.

Example:
pdfPageLinkEx(pdf,150,50,150,20,2,dtFit_Rect,150,550,450,
700);

The destination types dtFitB, dtFitBH_Top and dtFitBV_Left use the media box of the page to fit the
page into the window. All other destination types use the crop box if any.

Function Reference Page 611 of 854

The destination types are the same as for a go-to actions and the function creates in fact a go-to
action which is executed by the link annotation. However, the action is stored in a more compact
format and cannot be shared with other objects.

If a destination should be used with multiple objects such as bookmarks, create a go-to action
instead and add it to a normal page link (see PageLink()). The same action can then be added to
other objects.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 612 of 854

ParseContent

Syntax:
LBOOL pdfParseContent(

const PPDF* IPDF, // Instance pointer
const void* Data, // User defined pointer
struct TPDFParseInterface* Stack, // Parser interface
TParseFlags Flags) // See below

struct TPDFParseInterface
{

TApplyPattern* ApplyPattern;
TBeginPattern* BeginPattern;
TBeginTemplate* BeginTemplate;
TBezierTo1* BezierTo1;
TBezierTo2* BezierTo2;
TBezierTo3* BezierTo3;
TClipPath* ClipPath;
TClosePath* ClosePath;
TDrawShading* DrawShading;
TEndPattern* EndPattern;
TEndTemplate* EndTemplate;
TLineTo* LineTo;
TMoveTo* MoveTo;
TMulMatrix* MulMatrix;
TRectangle* Rectangle;
TRestoreGraphicState* RestoreGraphicState;
TSaveGraphicState* SaveGraphicState;
TSetCharSpacing* SetCharSpacing;
TSetExtGState* SetExtGState;
TSetFillColor* SetFillColor;
TSetFont* SetFont;
TSetLeading* SetLeading;
TSetLineCapStyle* SetLineCapStyle;
TSetLineDashPattern* SetLineDashPattern; // Obsolete -> Use SetLineDashPattern2 instead
TSetLineDashPattern2* SetLineDashPattern2;
TSetLineJoinStyle* SetLineJoinStyle;
TSetLineWidth* SetLineWidth;
TSetMiterLimit* SetMiterLimit;
TSetStrokeColor* SetStrokeColor;
TSetTextDrawMode* SetTextDrawMode;
TSetTextScale* SetTextScale;
TSetWordSpacing* SetWordSpacing;
void* Reserved001; // See comment below
void* Reserved002; // See comment below
TShowTextArrayW* ShowTextArrayW; // Preferred for text extraction
TInsertImage* InsertImage;
TShowTextArrayA* ShowTextArrayA; // Preferred for text searching
// Additional reserved members follow (must be set to NULL).

};

typedef UI32 TParseFlags;
#define pfNone 0x00000000 // Default
#define pfDecomprAllImages 0x00000002 // See description
#define pfNoJPXDecode 0x00000004 // See description
#define pfDitherImagesToBW 0x00000008 // Floyd-Steinberg dithering.
#define pfConvImagesToGray 0x00000010 // See description
#define pfConvImagesToRGB 0x00000020 // See description
#define pfConvImagesToCMYK 0x00000040 // See description
#define pfImageInfoOnly 0x00000080 // See description
// The following two flags are used internally by CheckConformance().
#define pfErrorCheckOnly 0x00000100 // If set, images are checked for decompression errors only.
#define pfFailOnError 0x80000000 // Fail on decompression errors.

Function Reference Page 613 of 854

The function parses the content stream of the current open page. The content parser can be used to
extract text, images, and vector graphics from a PDF file. The parameter Stack holds a set of callback
functions which are executed if corresponding operators were found in the content stream. The
parameter Data is a user defined pointer that is passed unchanged to the callback functions.

All callback functions are optional. Which callback functions must be set depends on the kind of
information that should be extracted. For example, an application that extracts images must at least
provide the callback function TInsertImage.

All callback functions which return an integer value can break processing if necessary. A return
value of zero indicates success and processing continues. A return value of 1 of the TBeginTemplate
or TBeginPattern callback functions indicates that the object should be skipped. The corresponding
content streams are not executed in this case. This can be useful when extracting images. Any other
return value breaks processing.

Notice:

It is allowed to write arbitrary objects into the page while the content parser is executed but it is
strongly required to check whether a fatal error occurred when writing something to the page.
The callback function must return a negative value in such a case to break processing. This is
required because the parser doesn't notice when a fatal error occurs. New objects will be
ignored when parsing a page.

ParseContent() is already part of DynaPDF since version 2.0.30 but it was never documented.
Because the function was undocumented, a few important changes were made in DynaPDF 2.5
which do not break backward compatibility. However, an application that uses the following
features must be slightly changed when it is recompiled:

• The flag pfTranslateStrings is no longer defined because the used callback function specifies
already whether strings should be converted to Unicode. The old constant 1 is ignored.

• Two additional callback functions TShowTextA and TShowTextW were defined at the
reserved fields Reserved0001 and Reserved0002. These callback functions are no longer
defined and no longer executed. These functions could be used in combination with
TShowTextArrayA or TShowTextArrayW only. DynaPDF processes now the entire text with
the array versions. So, existing applications will still work as expected.

The function supports several flags which are useful when extracting images from a PDF file. These
flags are meaningful only, if the TInsertImage callback function is set.

Function Reference Page 614 of 854

Flag Description
pfDecomprAllImages If set, all images are decompressed. Decompressing all images can

be useful if the images should be stored in a specific file format like
TIFF, PNG, or BMP.

If the flag is absent, images which are already stored in a valid file
format are returned as is. This can be useful if no conversion to a
specific image format is required. Images which can be stored
unchanged are Gray and RGB JPEG images, as well as JPEG 2000
compressed images.

pfNoJPXDecode Meaningful only if the flag pfDecomprAllImages is set. If set, JPEG
2000 images are not decompressed.

pfDitherImagesToBW This flag is considered only if an image is decompressed. If set,
decompressed images are converted to 1 bit black and white with
the Floyd-Steinberg dithering algorithm. 1 bit images are returned
unchanged.

pfConvImagesToGray This flag is considered only if an image is decompressed. If set,
decompressed images are converted to gray.

pfConvImagesToRGB This flag is considered only if an image is decompressed. If set,
decompressed images are converted RGB.

pfConvImagesToCMYK This flag is considered only if an image is decompressed. If set,
decompressed images are converted CMYK.

pfImageInfoOnly If set, images are not decompressed. This flag can be useful if no
further processing is required, e.g. if images should be enumerated.

Although the TDrawShading callback function is defined there is no way to process shadings at this
time. Shadings can only be rastered to an image to get a meaningful result. However, such a feature
is not available yet.

The content parser is not part of the Visual Basic interface due to the bad support for callback
functions. Preferred programming languages are C/C++, C#, Delphi, or VB .Net. These
programming languages offer optimal execution speed and the usage is relatively simple. Although
.Net languages support no pointers the execution speed is almost identically to C/C++ or Delphi.

The Graphics State

An application that uses the content parser must maintain an internal graphics state stack that stores
the current graphics state in a LIFO (last in first out) data structure. Depending on what kind of
information should be extracted only a few members of the graphics state maybe required. For
example, an application that extracts text from a PDF file can ignore path painting parameters like
the current line cap style, line width and so on.

Function Reference Page 615 of 854

A complete graphics state contains the following variables:

Parameter Type Initial Value
CharSpacing float 0.0f
Clipping Path Vector array Crop box or Media box
DashPattern float* NULL (Solid line)
DashPhase UI32 0
FillColor double[32] Black
FillColorSpace TExtColorSpace, IColorSpace* esDeviceGray, NULL
FillPattern IPattern* NULL
Font IFont* NULL
FontSize double 0.0
FontType TFontType -
Leading float 0.0f (Info only, see below)
LineCapStyle TLineCapStyle csButtCap
LineJoinStyle TLineJoinStyle jsMiterJoin
LineWidth float 1.0f
Matrix TCTM {1, 0, 0, 1, 0, 0}
MiterLimit float 10.0f
StrokeColor double[32] Black
StrokeColorSpace TExtColorSpace, IColorSpace* esDeviceGray, NULL
StrokePattern IPattern* NULL
TextDrawMode TDrawMode dmNormal
TextScale float 100.0f
WordSpacing float 0.0f

The current graphics state must be initialized with the above default values before parsing a new
page. Templates (Form XObjects in PDF terms) inherit the graphics state of the parent object that
paints the template.

The parameter Leading is provided for information only because it is already considered in the text
matrix of all text callback functions (see Coordinate Spaces for further information).

The variables which make up the graphics state are normally stored in a structure or class so that the
graphics state can be saved and restored if corresponding operators are executed.

If the TSaveGraphicState callback function is executed, the application must create a copy of the
current graphics state and push it onto the graphics state stack. In the corresponding
TRestoreGraphicState callback function, the last element of the graphics state stack must be popped
and copied to the current graphics state.

A correct handling of the graphics state is always required if the application needs to compute
coordinates of graphic objects.

Note also that the graphics state can be saved and restored very often. The maximum allowed
nesting level of save/restore graphics state operators in PDF is 28. The application should not
depend on this limit but it can be used for optimizations, e.g. to create a graphics state cache.

Function Reference Page 616 of 854

Coordinate Spaces

The coordinates of a page extend from left to right and from bottom to top (subject to alteration by
the orientation of the page (see GetOrientation()). Note that SetPageCoords() does not affect the
coordinates returned by the content parser.

The length of a unit in default user space is 1/72 inch. The visible area of a page is defined by the
crop box of the page, or if absent, by the media box (see GetBBox() for further information). The
media box represents the coordinate system in which the page is defined.

In addition to user space, PDF uses a variety of other coordinate spaces for specialized purposes:

• Text coordinates are defined in text space. The transformation from text space to user space
is defined by a text matrix which is provided in the text callback functions. PDF defines also
several text related positioning parameters in the graphics state. However, to make the usage
easier DynaPDF pre-computes the text transformation matrix so that no further calculations
are required to transform the text space to user space. Note that the current leading, which
specifies the distance between two text lines, is already considered in the text matrix. The
text matrix is always provided. To transform text space to user space the text matrix must be
multiplied with the one of the current graphics state.

• Images are defined in image space. An image in PDF is always one unit wide and one unit
high in user space, regardless of the number of samples in the image. The mapping to the
visible region in user space is achieved by temporarily altering the current transformation
matrix. The image position, as well as the width and height must be computed from the
current transformation matrix (take a look at the description of the TInsertImage callback
function for further information).

• Templates (Form XObjects in PDF terms) are defined in form space. The transformation from
form space to user space is defined by a form matrix that is provided in the TBeginTemplate
callback function. However, the matrix parameter of the callback function is optional and can
be set to NULL. Null means the matrix is set to the identity matrix. To transform form space
to user space the form matrix must be multiplied with the one of the current graphics state.

• Patterns are defined in pattern space. The transformation from pattern space to the initial
default user space of the object in which it is used is provided in the TBeginPattern callback
function. However, the matrix parameter of the callback function is optional and can be set
to NULL. Null means the matrix is set to the identity matrix. Note that patterns are treated
like a color. The TBeginPattern callback function starts the definition of the pattern and
activates it in the graphics state when the corresponding TEndPattern callback function is
executed. However, a pattern is applied when the next fill or stroke path operation occurs
and if the pattern was defined as fill or stroke color.

o If a pattern is used on a page, the pattern matrix maps pattern space to the default
(initial) coordinate space of the page. Changes to the page’s transformation matrix
that occur within the page’s content stream, such as rotation and scaling, have no

Function Reference Page 617 of 854

effect on the pattern; it maintains its original relationship to the page no matter where
on the page it is used. Similarly, if a pattern is used within a template, the pattern
matrix maps pattern space to the template's default user space (that is, the template
coordinate space at the time the template is painted). A pattern may be used within
another pattern; the inner pattern’s matrix defines its relationship to the pattern space
of the outer pattern.

Working with Transformation Matrices

Coordinate transformations in PDF are achieved with so called Affine Transformations. Affine
transformations can represent any linear mapping from one coordinate system to another.

Affine transformations work with transformation matrices which consist of 6 real numbers. A
transformation matrix describes the coordinate origin, scaling factors of the x- and y-axis, as well as
the rotation angle of the coordinate system. A transformation matrix represents essentially a
coordinate space in which graphical objects can be drawn. Two coordinate spaces can easily be
concatenated by multiplying the corresponding transformation matrices.

Coordinates of objects which use their own coordinate space, such a text, templates, or patterns,
must be transformed to user space before the coordinates can be used. How this must be done is
described later.

Transformation matrices in DynaPDF are stored in the structure TCTM that is defined as follows:
struct TCTM
{

double a;
double b;
double c;
double d;
double x;
double y;

};

The identity matrix is [1, 0, 0, 1, 0, 0] (a, b, c, d, x, y).

The following overview lists the most important matrix manipulations:

• Translations are specified as [1, 0, 0, 1, tx, ty] where tx and ty represent the distances to
translate the origin of the coordinate system in horizontal and vertical dimensions,
respectively.

• Scaling is achieved by [sx, 0, 0, sy, 0, 0]. This scales the coordinates so that 1 unit in the
horizontal and vertical dimensions of the new coordinate system is the same size as sx and
sy units, respectively, in the previous coordinate system.

• Rotations are achieved by [cos α, sin α, -sin α, cos α, 0, 0], which has the effect of rotating the
coordinate system axes by an angle α (measured in radians) counter clockwise.

• Skew is specified by [1, tan α, tan β, 1, 0, 0], which skews the x-axis by an angle α, and the y-
axis by an angle β (measured in radians).

Function Reference Page 618 of 854

All transformations above can occur in any combination in one transformation matrix.

Helper Functions

The following functions are helpful and some of them are required when working with
transformation matrices. To achieve maximum execution speed the source codes of the most
important functions are provided:
// Distance between two points
double CalcDistance(double x1, double y1, double x2, double y2)
{
 double dx = x2-x1;
 double dy = y2-y1;
 return sqrt(dx*dx + dy*dy);
}
// Rotation angle in radians
double GetRotationAngle(TCTM &M)
{
 double x1 = 0.0;
 double y1 = 0.0;
 double x2 = 1.0;
 double y2 = 0.0;
 Transform(M, x1, y1);
 Transform(M, x2, y2);
 return atan2(y2-y1, x2-x1);
}
// Overall scaling factor
double GetScaleFactor(TCTM &M)
{
 #define sin45 0.70710678118654752440084436210485
 double x = sin45 * M.a + sin45 * M.c;
 double y = sin45 * M.b + sin45 * M.d;
 return sqrt(x*x + y*y);
}
// Scaling factor of the x-axis
double GetScaleX(TCTM &M)
{
 double x1 = 0.0;
 double y1 = 0.0;
 double x2 = 1.0;
 double y2 = 0.0;
 Transform(M, x1, y1);
 Transform(M, x2, y2);
 if (x1 > x2)
 return -CalcDistance(x1, y1, x2, y2);
 else
 return CalcDistance(x1, y1, x2, y2);
}
// Scaling factor of the y-axis
double GetScaleY(TCTM &M)

Function Reference Page 619 of 854

{
 double x1 = 0.0;
 double y1 = 0.0;
 double x2 = 0.0;
 double y2 = 1.0;
 Transform(M, x1, y1);
 Transform(M, x2, y2);
 if (y1 > y2)
 return -CalcDistance(x1, y1, x2, y2);
 else
 return CalcDistance(x1, y1, x2, y2);
}
// Multiply two matrices. Note that matrix multiplications are not
// commutative. It is a difference whether the matrix M1 is multiplied
// with M2 or vice versa!
TCTM MulMatrix(TCTM &M1, TCTM &M2)
{
 TCTM retval;
 retval.a = M2.a * M1.a + M2.b * M1.c;
 retval.b = M2.a * M1.b + M2.b * M1.d;
 retval.c = M2.c * M1.a + M2.d * M1.c;
 retval.d = M2.c * M1.b + M2.d * M1.d;
 retval.x = M2.x * M1.a + M2.y * M1.c + M1.x;
 retval.y = M2.x * M1.b + M2.y * M1.d + M1.y;
 return retval;
}
// Transform a point with a matrix
void Transform(TCTM &M, double &x, double &y)
{
 double tx = x;
 x = tx * M.a + y * M.c + M.x;
 y = tx * M.b + y * M.d + M.y;
}

Text Coordinates and Metrics

As mentioned earlier text coordinates are defined in text space. The transformation from text space
to user space is achieved by multiplying the text matrix with the one of the current graphics state.
However, the graphics state contains several text related parameters which require some further
explanation. The following sub-clauses describe in detail in which coordinate space these
parameters are defined, how they can be transformed to user space, and how text metrics like the
text width must be interpreted.

Font Size

The current font size, which is a parameter of the graphics state, is defined in text space. The visible
font size is measured in user space, so, the value of the graphics state is not directly usable.

Function Reference Page 620 of 854

The transformation to user space can only be done in the used text callback function because the
mapping from text space to user space depends on the text matrix which is only available in a text
record.

The font size can be transformed to user space as follows:
// We must first transform the text matrix to user space. The text
// matrix is a parameter of the used text callback function. m_GState
// represents the current graphics state. The function GetScaleY() is
// described at Helper Functions.
TCTM m = MulMatrix(m_GState.Matrix, *Matrix);
double realFontSize = fabs(m_GS.FontSize * GetScaleY(m));

The above code is very simple but can be fairly optimized because the function GetScaleY() causes
some unnecessary overhead. When extracting text from a PDF file, the start point of the text must
always be calculated and the font size is always a positive value. The optimized code looks as
follows:
double x1 = 0.0;
double y1 = 0.0;
double x2 = 0.0;
double y2 = m_GState.FontSize;
// Transform the text matrix to user space
TCTM m = MulMatrix(m_GState.Matrix, *Matrix);
Transform(m, x1, y1); // Start point of the text record
Transform(m, x2, y2); // Second point to compute the font size
double realFontSize = CalcDistance(x1, y1, x2, y2);

The main difference to the first code is that the start point of the text record can be used for further
calculations and the real font size is already a positive value. Such optimizations are very important
especially when using more complex algorithms to construct text lines or logically sorted text
output.

Text Width

The text width, which is provided in all text callback functions, is calculated in text space. The
provided text width includes already the graphics state parameters Character Spacing, Word
Spacing, and Text Scaling. However, these parameters are still required if the width of a sub string
must be computed. The parameters must be available in the graphics state including the
corresponding callback functions which set the parameters.

The real text width measured in user space can be calculated as follows:
double x1 = 0.0;
double y1 = 0.0;
double x2 = Width; // Width is a parameter of the callback function
double y2 = 0.0;
// Transform the text matrix to user space
TCTM m = MulMatrix(m_GState.Matrix, *Matrix);
Transform(m, x1, y1); // Start point of the text record

Function Reference Page 621 of 854

Transform(m, x2, y2); // End point of the text record
double realTextWidth = CalcDistance(x1, y1, x2, y2);

The end point of a text record is usually required to determine whether the next record lies on the
same line. An algorithm that is able to construct text lines in arbitrary rotated coordinate systems is
provided in the example Text Extraction which is delivered with all DynaPDF versions.

Character Spacing

As described above the current character spacing is already considered in the text width that is
provided in all text callback functions. However, the value must be stored in the graphics state if the
width of a sub string must be computed. Character spacing is measured in unscaled font units. The
required transformation to text space is done in functions like GetTextWidth().

Word Spacing

Like character spacing, the current word spacing is already considered in the text width that is
provided in all text callback functions. However, word spacing applies to the space character of
simple fonts only.

An application that extracts text from PDF files maybe wants to preserve the original formatting of
the text. In this case, the distance between two words in the same text record must be known, e.g. to
insert a number of spaces to emulate the word spacing.

However, note that the current word spacing must be ignored if the font type is ftType0 (the font
type is a parameter of the graphics state and is set with the TSetFont callback function).

Another thing that must be considered is that word and character spacing are measured in unscaled
font units. The width of a space character including word spacing can be calculated with the
function GetTextWidth() that is part of the font API (the name is fntGetTextWidth() in C/C++).

An algorithm that considers word spacing must check whether the source string contains space
characters. If a space was found, the width of the sub string that occurs before must be calculated so
that the start and end point of the word can be calculated. Additional spaces can be skipped and the
cursor position is updated to the position behind the spaces. Processing continues until the entire
text of the record was processed.

An algorithm that processes text in this way calculates essentially the start and end coordinates of
every text part that is either separated by spaces or kerning space.

The required source code looks as follows (C++):
// The following code fragment uses the TShowTextArrayW callback function.
SI32 parseShowTextArrayW(const void* Data, const struct TTextRecordA*
Source, struct TCTM* Matrix, const struct TTextRecordW* Kerning, UI32
Count, double Width, LBOOL Decoded)
{

if (!Decoded) return 0;
 double x1 = 0.0;
 double y1 = 0.0;

Function Reference Page 622 of 854

 // Transform the text matrix to user space
 TCTM m = MulMatrix(m_GState.Matrix, *Matrix);
 Transform(m, x1, y1); // Start point of the text record
 // Word spacing applies to simple fonts only.

if (m_GState.FontType != ftType0)
{
 UI32 i, j, last;
 double x2 = 0.0;
 double y2 = 0.0;
 double textWidth = 0.0;

 for (i = 0; i < Count; i++)
 {

j = 0;
last = 0;
// Consider kerning space
if (Source[i].Advance != 0.0f)
{

textWidth -= Source[i].Advance;
x1 = textWidth;
y1 = 0.0;
// Update the cursor position
Transform(m, x1, y1);

}
// Scan for spaces
while (j < Source[i].Length)
{

if (Source[i].Text[j] != 32)
++j;

else
{

 // A space was found
if (j > last)
{

// The text must be taken from the Source array!
textWidth += fntGetTextWidth(m_GState.ActiveFont,

Source[i].Text + last,
j - last,
m_GState.CharSpacing,
m_GState.WordSpacing,
m_GState.TextScale);

x2 = textWidth;
y2 = 0.0;
// Calculate the end point.
Transform(m, x2, y2);
// We have now the exact start and end coordinate of the
// text's baseline. The text could now be written to a
// file or added to a list of text records depending on
// how the algorithm processes text. Note that the
// string length in the source and Unicode (Kerning)

Function Reference Page 623 of 854

// record can differ, e.g. if a source character is
// decomposed to two or more Unicode characters. In this
// case, the function fntTranslateString2() can be used
// to translate the sub string to Unicode because we
// don't know where we are in the already existing
// Unicode string.
/*AddText(x1, y1, // Start point

 x2, y2, // End point
 Source[i], // Source record
 Kerning[i], // Translated Unicode record
 last, // String offset
 j - last); // String length

*/
}
last = j++;
// Skip additional spaces
while (j < Source[i].Length && Source[i].Text[j] == 32)
{

++j;
}
textWidth += fntGetTextWidth(m_GState.ActiveFont,

Source[i].Text + last,
j - last,
m_GState.CharSpacing,
m_GState.WordSpacing,
m_GState.TextScale);

last = j;
x1 = textWidth;
y1 = 0.0;
// Update the cursor position.
// We are now behind the space(s).
Transform(m_Matrix1, x1, y1);

}
}
// All spaces in the string were processed. Do we have some
// remaining text?
if (j > last)
{

textWidth += fntGetTextWidth(m_GState.ActiveFont,
Source[i].Text + last,
j - last,
m_GState.CharSpacing,
m_GState.WordSpacing,
m_GState.TextScale);

x2 = textWidth;
y2 = 0.0;
Transform(m, x2, y2);
/*AddText(x1, y1,

 x2, y2,

Function Reference Page 624 of 854

 Source[i],
 Kerning[i],
 last,
 j - last);*/

// Update the cursor position. More text can follow.

 x1 = x2;
 y1 = y2;
 }
 }
 }
}

DynaPDF is delivered with several example projects which demonstrate how text coordinates must
be computed and how text can be extracted. The above code is a fragment of the example project
Text Coordinates which is delivered with all DynaPDF versions.

Text Scaling

Like character and word spacing the current text scaling is already considered in the text width that
is provided in all text callback functions. However, the value must be stored in the graphics state if
the width of a sub string must be computed. Text scaling is measured in percent of the original
unscaled text width.

Sub string coordinates

Sub string processing is somewhat more complicated because the width of a sub string cannot be
calculated from the Unicode string and one source character does necessarily correspond to one
Unicode character.

Simple fonts use one byte encodings where one source byte can be decoded to one or more Unicode
characters. CID fonts support also multi-byte encodings with fixed and variable code lengths. A
sequence of n source bytes can be decoded to m Unicode characters. So, there is no logical
relationship between the source and converted Unicode string.

If a text search algorithm should provide the coordinates of a found string, then it must be able to
find the position of the search text in the source string because it is not possible to calculate the
string width from the Unicode string. DynaPDF provides several helper functions to calculate the
width of a sub string or to convert an arbitrary source string manually to Unicode. It is always
possible to calculate the exact position of a string but the recommended strategy depends on the
used text callback function and on the kind of algorithm that should be developed:

• Text extraction algorithms require usually not the exact position of every character or word
in a string. Coordinates of sub strings are only required if word spacing must be considered
but word spacing refers to simple fonts only. Because the code length of a simple font is
always one byte the string width can be easily computed with fntGetTextWidth() and in
cases where the source string is shorter than the Unicode string the source string can be
manually converted to Unicode with TranslateRawString2() (the name is

Function Reference Page 625 of 854

fntTranslateRawString2() in C/C++). For this kind of algorithm the TShowTextArrayW
callback function should be used because it provides anything required to develop fast text
extraction algorithms. The example projects text_extraction and text_coordinates
demonstrate how text extraction algorithms can be developed.

• Text search algorithms could use the TShowTextArrayW callback function too but the usage
is much more complicated if strings of CID fonts must be processed. CID fonts support
encodings with arbitrary code lengths from one through four bytes per character. Because
the string width cannot be computed from the translated Unicode string the function must
be able to find the position in the source string. This is not easy especially if the search text
was stored in multiple text records.

To simplify the development of text search algorithms the content parser provides the
TShowTextArrayA callback function which returns the raw source strings. The conversion to
Unicode can be done with TranslateRawCode() (the name is fntTranslateRawCode() in
C/C++). The function converts a sequence of source bytes to Unicode and calculates the
width of that character. The advantage is that the exact position of every character in a string
can be easily calculated independent of the current font type. The overhead due to the call on
a per character basis is not large because the function is strongly optimized to improve
processing speed. The example text_search demonstrates how a text search algorithm can be
developed.

Using the Content Parser

The content parser can be used to extract text, vector graphics, and images from a PDF file. The
following sections describe which callback functions must set, what must be stored in the graphics
state, as well as other important aspects.

Note that DynaPDF is delivered with several example projects which demonstrate how the content
parser can be used. Before developing your own code take a look into the examples text_extraction,
text_search, or image_extraction.

Text Extraction or Text Search Algorithms

The following callback functions should be set to process PDF text:
TBeginTemplate
TEndTemplate // Optional
TMulMatrix
TSetCharSpacing
TSetFont
TSetLeading // Optional
TRestoreGraphicState
TSaveGraphicState
TSetFillColor // Optional
TSetStrokeColor // Optional
TSetTextDrawMode

Function Reference Page 626 of 854

TSetTextScale
TSetWordSpacing
TShowTextArrayA or // Preferred for text search algorithms
TShowTextArrayW // Preferred for text extraction algorithms

Which text callback function should be used depends on the requirements of the algorithm. If the
coordinates of arbirary sub strings must be computed the usage of the TShowTextArrayA callback
function in combination with TranslateRawCode() is recommended. If sub string processing not
required then TShowTextArrayW should be used.

Patterns, shadings, images, and vector graphics can be ignored when extracting text. So, it is not
required to set related callback functions.

The graphics state should contain these variables:

Parameter Type Initial Value
CharSpacing float 0.0f
FillColor UI32 (see comment below) Black (optional)
Font IFont* NULL
FontSize double 0.0
FontType TFontType -
Leading float 0.0f (optional)
Matrix TCTM {1, 0, 0, 1, 0, 0}
SpaceWidth float 0.0f
StrokeColor UI32 (see comment below) Black (optional)
TextDrawMode TDrawMode dmNormal
TextScale float 100.0f
WordSpacing float 0.0f

The text color is normally not required when extracting text. If it should be considered the current
fill and stroke color must be available in the graphics state and the corresponding callback functions
must be set. Whether the current fill or stroke color must be used as text color depends on the text
draw mode (see also SetTextDrawMode()).

Note that colors in PDF are represented by an array of double where each component ranges from
0.0 through 1.0 of the corresponding color space. However, colors are normally processed in a
unique device color space such as DevicedGray, DeviceRGB, or DeviceCMYK because applications
which use the content parser have normally no build-in support for PDF color spaces. Colors which
are set by the TSetFillColor and TSetStrokeColor callback functions should be converted to a device
color space with ConvColor(). The resulting device color must then be stored in the graphics state.

The TEndTemplate callback function is optional because no specific operation is required to be
executed when a template is leaved.

Unicode conversion

The extraction of human readable text requires a conversion to a well known encoding like Unicode
because PDF strings are not necessarily human readable.

Function Reference Page 627 of 854

Whether it is possible to convert a PDF string to Unicode depends on whether the required
encoding information is available. This is always the case if a font uses a predefined encoding like
WinAnsi or MacRoman or if the glyph names of Type1 fonts are available in the Adobe Glyph List
or ZapfDingbats encoding.

Fonts which use a symbol encoding can provide a ToUnicode CMap which offers the required
mapping to Unicode. However, this CMap is optional and is not necessarily available. If a symbol
font does not contain a ToUnicode CMap the strings are converted to the code page 1252.

External CMaps

A widely used technique to reduce the amount of data that must stored in a PDF file is the usage of
non embedded CID fonts. CID fonts, whether embedded or not, can depend on external CMap files
which offer the required mapping to Unicode.

To process strings of such fonts correctly, DynaPDF must be able to load required CMap files if
necessary. Therefore, DynaPDF is delivered with the most important CMap files which are provided
by Adobe Systems. These CMaps can be found in the DynaPDF installation directory at
/Resource/CMap/. Applications which extract text from PDF files should include these CMaps so
that they can be loaded at runtime.

The search path to external CMaps must be set with SetCMapDir() before executing ParseContent()
the first time. The function creates a CMap cache that is hold in memory until the PDF instance will
be deleted. The search path(s) to external CMap files should be set only one time per PDF instance
and one PDF instance should be used to process so many PDF files as possible. This can significantly
improve processing speed.

If a required CMap is absent the Decoded parameter of the TShowTextArrayW callback function is
set to false and the string should be ignored in this case because no meaningful values can be
returned.

Inside the Callback Functions

The following sub-clauses describe important operations which must be executed in the callback
functions to achieve correct results.

Function Reference Page 628 of 854

TBeginTemplate

This callback function is executed when a Form XObject in PDF terms is painted (we call this object
type template in DynaPDF). The parameter BBox specifies the template's bounding box or visible
area measured in form space. The required mapping from form space to user space is specified by
the Matrix parameter (see also Coordinate Spaces). The Matrix parameter is optional and can be set
to NULL. In the latter case, the form matrix is set to the identity matrix.

If the form matrix is present then it must be multiplied with the current transformation matrix of the
graphics state as follows:
// m_GState represents the current graphics state
if (Matrix)
{

m_GState.Matrix = MulMatrix(m_GState.Matrix, *Matrix);
}

The corresponding TEndTemplate callback function is executed if the contents of a template were
fully processed. The definition of this callback function is optional because no specific code is
required to be executed.

Return values:

• 0 indicates success and processing continues.
• 1 means that the template should be skipped.
• Any other return value breaks processing.

TMulMatrix

The TMulMatrix callback function is executed if the current transformation matrix must be
multiplied with a new one. When using the function MulMatrix() the matrix must be multiplied
with the one of the graphics state as follows:
// m_GState represents the current graphics state
m_GState.Matrix = MulMatrix(m_GState.Matrix, *Matrix);

The parameter Matrix is always set; it is not required to check whether the parameter is set to NULL.

TSetFont

The TSetFont callback function activates a font in the graphics state. The following variables of the
graphics state must be set when the callback function is executed:
m_GState.ActiveFont = Font;
m_GState.FontSize = FontSize;
m_GState.FontType = Type;
m_GState.SpaceWidth = (float)(fntGetSpaceWidth(Font, FontSize) * 0.5);

The space width is required to construct text lines. It is usually best to use the half space width to
determine whether a space must be inserted at a specific position because many PDF fonts do not

Function Reference Page 629 of 854

contain a space character and the function fntGetSpaceWidth() returns just a default width in this
case (the function name is GetSpaceWidth() in C#, Delphi, and VB .Net).

The space width is measured in text space like the member Advance of a kerning record. However,
the distance between two text records is measured in user space! So, the space width must be
transformed to user space before it can be compared with the distance between two text records. See
the description of the TShowTextArrayW callback function for further information.

TRestoreGraphicState

As the name of the function suggests the graphics state must be restored when the callback function
is executed. The graphics state stack is a LIFO (last in first out) data structure that stores copies of
the graphics state. The last element from the graphics state stack must be popped and the values
must be copied to the current graphics state.

It is guaranteed that this function is not executed without a preceeding TSaveGraphicState call.
Invalid restore graphics state operators are trated as an error. The parser breaks processing when it
encounters such an error.

The return value of the function must be zero. Any other return value breaks processing.

TSaveGraphicState

As the name suggests the current graphics state must be saved when the callback function is
executed. As already described at TRestoreGraphiState the graphics state stack is a LIFO (last in first
out) data structure that stores copies of the graphics state. The application must create a copy of the
current graphics state and push it onto the graphics state stack.

It is not guaranteed that all saved graphics states will be restored until the page was fully parsed.
The application must make sure that remaining copies of the graphics state will be released before
parsing the next page or terminating the application.

The return value of the function must be zero. Any other return value breaks processing.

TShowTextArrayA

This is the preferred callback function to develop text search algorithms. See also Sub string
coordinates for further information. The function returns the source strings which can be converted
to Unicode with TranslateRawCode(). TranslateRawCode() converts the source string on a per
character basis and calculates the width of that character in one pass.

The parameter Width represents the width of the entire text record. The source array provides also
the displacement vector Advance. Advance is a vector also if only coordinate is given; the y-
coordinate is always zero. Positive values of Advance move the cursor to the left; negative values
move it to the right in a non-rotated coordinate system. The string widths and the displacement
vector are measured in text space.

Function Reference Page 630 of 854

The displacement vector is often used to apply kerning between two characters but it can also be
used to emulate spaces or to move the cursor to an arbitrary position on the x-axis of the text line.
Because CID fonts do not support word spacing, spaces are very often emulated with the
displacment vector.

The source strings are not null-terminated. The array can also contain strings with zero length. In
this case only the displacement vector Advance must be considered.

DynaPDF is delivered with the example text_search which demonstrates how a text search
algorithm can be developed. This project should be used as basis to develop your own code.

TShowTextArrayW

This is the preferred callback function to develop text extraction algorithms. See also Sub string
coordinates for further information.

The arrays Source and Kerning contain the source and translated Unicode strings of a text record.
Both arrays contain always the same number of elements (parameter Count).

The parameter Width represents the width of the enitre text record. The kerning array provides also
the width of each sub record and the displacement vector Advance. Advance is a vector also if only
coordinate is given; the y-coordinate is always zero. Positive values of Advance move the cursor to
the left; negative values move it to the right in a non-rotated coordinate system. The string widths
and the displacement vector are measured in text space.

The displacement vector is often used to apply kerning between two characters but it can also be
used to emulate spaces or to move the cursor to an arbitrary position on the x-axis of the text line.
Because CID fonts do not support word spacing, spaces are very often emulated with the
displacment vector.

The source strings are required if the width of a sub string must be calculated. Note that it is not
possible to calculate the the width of a sub string from the Unicode string.

It is possible that one or more sub records contain strings with a zero length. In this case, only the
displacment vector Advance must be considered.

DynaPDF is delivered with the examples text_extraction and text_coordinates which demonstrate
how text extraction algorithms can be developed and how text coordinates must be calculated. One
of these projects should be used as basis to develop your own code.

Image Extraction

The following callback functions should be set to extract images:
TBeginTemplate
TEndTemplate // Optional
TInsertImage
TMulMatrix // Optional
TRestoreGraphicState // Optional
TSaveGraphicState // Optional

Function Reference Page 631 of 854

TSetFillColor // Optional

It is possible to extract images without a graphics state. The destination width and height, the
output resolution, and the parallelogram into which the image would be drawn are already pre-
computed and can be taken from the sructure TPDFImage.

1 bit images require a special processing if the image is drawn as an image mask. This is the case if
no color table is present and if the member Transparent of the TPDFImage structure is set to true.
Non-zero pixels are are rendered in the current fill color while zero pixel values produce no output.
To simply processing the current fill can be taken from the structure TPDFImage.

The provided fill color is already converted to the specified device color space if one of the color
conversion flags is set (pfConvImagesToGray, pfConvImagesToRGB, or pfConvImagesToCMYK),
or it was converted to the nearest device color space.

If a graphics state is used then it should contain at least these variables:

Parameter Type Initial Value
FillColor double[32] or UI32 Black (0)
FillColorSpace TExtColorSpace, IColorSpace* esDeviceGray, NULL (optional)
Matrix TCTM {1, 0, 0, 1, 0, 0}

The fill color can be stored as array of double if the original values are of interest or as unsigned
integer if colors are converted to a device space with ConvColor().

The visible size of an image, measured in user space, can be calculated from the current
transformation matrix as follows:
double x1 = 0.0;
double y1 = 0.0;
double x2 = 1.0;
double y2 = 0.0;
double x3 = 0.0;
double y3 = 1.0;
// m_GState represents the current graphics state
Transform(m_GState.Matrix, x1, y1); // lower left corner
Transform(m_GState.Matrix, x2, y2); // lower right corner
Transform(m_GState.Matrix, x3, y3); // upper left corner
// CalcDistance() is described at Helper Functions.
double w = CalcDistance(x1, y1, x2, y2); // Width in user space
double h = CalcDistance(x1, y1, x3, y3); // Height in user space

The above values are already pre-computed and can be taken from the structure TPDFImage.

An image can be used several times in a document, e.g. if it represents a logo or other repeating
contents. To avoid the extraction of unnecessay duplicates a duplicate check should be performed
before extracting an image. If the image is not an inline image, the member ObjectPtr of the structure
TPDFImage represents a unique pointer to the image object.

Function Reference Page 632 of 854

Inline images are fully defined in the content stream and cannot be used repeatly. A duplicate check
is not required for these images. The only way to compare two inline images is to compare the
image data.

A duplicate check should also be performed for templates. Templates are normally used for
repeating contents such as fixed page backgrounds, logos and so on. To skip a template the
TBeginTemplate calback function must return 1.

Physical organization of images

The visible appearance and the physical structure how an image is stored in a PDF file is sometimes
somewhat confusing. Images can be split into bands or tiles. There are various reasons why this can
be done but if an image was split into smaller pieces then it is very difficult to restore the original
image. DynaPDF does not provide algorithms which try to identify pieces of a larger image.

It is usually best to ignore images which are less than two units high. For example, applications like
Microsoft Word split images often into separate scan lines or smaller pieces if the image contained
transparent areas. The resulting PDF file contains then hundreds or thousands of very small images.
Because such small pieces are not really meaningful when viewed alone, the application can either
try to reconstruct the original image, or if this is not possible, such images should be skipped.

If the content parser returns lots of very small images then it is usually best to provide a fallback
that renders the entire page with RenderPage() or RenderPageToImage().

Image coordinate space

An image occupies a rectangle in image space w units wide and h units high, where w and h are the
width and height of the image in samples or pixels. Each sample occupies one square unit. The
coordinate origin (0, 0) is at the upper-left corner of the image, with coordinates ranging from 0 to w
horizontally and 0 to h vertically.

The image’s sample data is ordered by row, with the horizontal coordinate varying most rapidly.
The upper-left corner of the first sample is at coordinates (0, 0), the second at (1, 0), and so on
through the last sample of the first row, whose upper-left corner is at (0, 0) and whose upper-right
corner is at (w - 1, 0). The next samples after that are at coordinates (0, 1), (1, 1), and so on to the final
sample of the image, whose upper-left corner is at (0, 0) and whose lower-right corner is at (w-1, h-
1).

The correspondence between image space and user space is constant: the unit square of user space,
bounded by user coordinates (0, 0) and (1, 1), corresponds to the boundary of the image in image
space. Following the normal convention for user space, the coordinate (0, 0) is at the lower-left
corner of this square, corresponding to coordinates (0, h) in image space. The implicit
transformation from image space to user space, if specified explicitly, would be described by the
matrix [1/w, 0, 0, -1/h, 0, 1].

An image can be placed on the output page in any position, orientation, and size by modifying the
current transformation matrix to map the unit square of user space to the rectangle or parallelogram

Function Reference Page 633 of 854

in which the image shall be painted. Typically, this is done within a pair of save/restore graphics
state operators to isolate the effect of the transformation, which can include translation, rotation,
reflection, and skew.

Please note that the content parser returns images as is. It is maybe required to mirror an image on
the x- or y-axis or to rotate it according to the current transformation matrix. DynaPDF does not
provide functions to manipulate images.

Helper functions

When extracting images it is usually required to create some kind of image file from the raw image
data that is returned by the content parser. The following helper functions can be used to create
image files:

• CreateImage()

• AddImage()

• CloseImage()

CreateImage() supports the creation of single and multi-page images (TIFF only). To create a multi-
page image the function must be called before ParseContent() or before parsing the first page. If all
images should be stored in the image file the flag pfDecomprAllImages must be set.

The function converts images that use a complex color space to the nearest device color space by
default. It is also possible to convert images to a specific device color space by setting one of the
flags pfConvImagesToGray, pfConvImagesToRGB, or pfConvImagesToCMYK.

Also if a color conversion flag is set, 1 bit images and gray images are never converted into a higher
color space.

JPEG and JPEG 2000 images are already stored in valid file formats in PDF. If the creation of a multi-
page TIFF image is not required then it is usually best to extract these image formats as is. In this
case the flag pfDecomprAllImages must be absent.

16 bit images

Images which use 16 bits per component are supported by these encoders:

• JPEG 2000
• PNG
• TIFF

All other encoders do not yet support 16 bit images. Note also that 16 bit CMYK images are not
supported by most image viewers.

DynaPDF is delivered with the demo project image_extraction that demonstrates how images can be
extracted.

Function Reference Page 634 of 854

Vector Graphics

To extract vector graphics the following callback functions should be set:
TBeginPattern
TEndPattern // Optional
TBeginTemplate
TBezierTo1
TBezierTo2
TBezierTo3
TClipPath
TClosePath
TEndTemplate // Optional
TLineTo
TMoveTo
TMulMatrix
TRectangle
TRestoreGraphicState
TSaveGraphicState
TSetExtGState // Optional
TSetFillColor
TSetLineCapStyle
TSetLineDashPattern
TSetLineJoinStyle
TSetLineWidth
TSetMiterLimit
TSetStrokeColor

The graphics state should contain these variables:

Parameter Type Initial Value
Clipping Path Vector array Crop box or Media box
DashPattern double* NULL (Solid line)
DashPhase UI32 0
FillColor double[32] Black
FillColorSpace TExtColorSpace, IColorSpace* esDeviceGray, NULL
FillPattern IPattern* NULL
LineCapStyle TLineCapStyle csButtCap
LineJoinStyle TLineJoinStyle jsMiterJoin
LineWidth float 0.0f
Matrix TCTM {1, 0, 0, 1, 0, 0}
MiterLimit float 10.0f
StrokeColor double[32] Black
StrokeColorSpace TExtColorSpace, IColorSpace* esDeviceGray, NULL
StrokePattern IPattern* NULL

If vector graphics should be processed in a unique device color space then it is usually best to
convert PDF colors directly to the device color space with ConvColor() and to store the device color
then in the graphics state. The data type of the members FillColor and StrokeColor must then be
changed to unsigned int (UI32). There is no need to store the fill and stroke color space in the
graphics state in this case.

Function Reference Page 635 of 854

Vector graphics are defined in page or form space depending on the object type in which the
graphics are stored. The mapping to user space is achieved by tranforming the coordinate pairs with
the current transformation matrix of the graphics state.

For example, if the TMoveTo callback function would be executed the application must transform
the provided coordinates to user space as follows:
// x and y are the parameters of the TMoveTo callback function
Transform(m_GState.Matrix, x, y);

Vector graphics in PDF are always defined as paths. A path is invisible until it will be filled or
stroked. PDF supports primitive path painting operators like bezier curves, lines, and rectangles
only. Circles and ellipses are always drawn with bezier curves in PDF.

Once a path was fully defined it is normally consumed by a TClosePath() or TClipPath() callback
function call. If this is not the case the path must be deleted when the page was fully processed.

When a path must be filled, stroked, or discarded the TClosePath callback function is executed. The
parameter Mode of the callback function specifies what must be done with the path:
fmFillNoClose // Fill the path (Winding)
fmFillEvOddNoClose // Fill the path (Even Odd)
fmFillStroke // Close, fill and stroke the path (Winding)
fmFillStrokeEvOdd // Close, fill and stroke the path (Even Odd)
fmFillStrokeNoClose // Fill and stroke the path (Winding)
fmFillStrokeEvOddNoClose // Fill and stroke the path (Even Odd)
fmStrokeNoClose // Stroke the path
fmStroke // Close and stroke the path
fmNoFill // Discard the path
fmClose // Close the path with a straight line segment

A normal path is not part of the graphics state. Once a path was drawn it must be deleted.

The TClipPath callback function supports the same modes than TClosePath but the required actions
that must be executed are different. A clipping path is part of the graphics state. If the graphics state
contains already a clipping path, the existing path must be intersected with new one. The resulting
clipping path must then be stored in the graphics state.

If the path must also be filled or stroked, it is important to hold an unmodified version of the path in
memory so that the required path painting operation can be executed. The previously created
clipping region must of course be considered.

The mode fmNoFill has the meaning create the clipping region, but do not fill or stroke the path. So,
after the clipping region was created the path can be deleted from memory. This is the default
behavior. The combination of a path painting operator with a clipping path occurs seldom.

Function Reference Page 636 of 854

PlaceImage

Syntax:
LBOOL pdfPlaceImage(
 const PPDF* IPDF, // Instance pointer
 SI32 ImgHandle, // Image handle
 double PosX, // X-Coordinate of destination rectangle
 double PosY, // Y-Coordinate of destination rectangle
 double ScaleWidth, // Scaled width of destination rectangle
 double ScaleHeight) // Scaled height of destination rectangle

Images can be used multiple times on different positions and with different sizes. This function
places an image onto a page or template that was already inserted beforehand by an image function.

The image can be placed in the same way as by every other image function. However, if the size of
the image will be changed, the image is not rescaled physically to the current resolution. Insert the
largest version of an image first to avoid up-scaling.

The width and height can be calculated as follows:

• If ScaleWidth or ScaleHeight is -1 the function uses the original width or height from the
image. If both parameters are -1 the image will be inserted with a resolution 72 DPI.

• If ScaleWidth or ScaleHeight is 0, the missing value is calculated in relation to the given value
of ScaleHeight or ScaleWidth to preserve the image's aspect ratio. The resulting output is an
image with exact proportions relative to its original size.

• If ScaleWidth and ScaleHeight are 0, the original size is used (same effect as -1).

• A negative value of Width or Height mirrors the image on the x- and or y-axis.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

PlaceSigFieldValidateIcon

Syntax:
LBOOL pdfPlaceSigFieldValidateIcon(

const PPDF* IPDF, // Instance pointer
UI32 SigField, // Handle of a signature field
double PosX, // X-Coordinate of the icon
double PosY, // Y-Coordinate of the icon
double Width, // Icon width
double Height) // Icon height

The function places the validation icon within a signature field to the wished position. By default,
the validation icon is scaled to the width or height of the signature field and it is horizontally and
vertically centered. When creating a user defined appearance for a signature field it is sometimes

Function Reference Page 637 of 854

required to place the validation icon on another position within the signature field so that no
important contents will be overdrawn.

The unscaled size of the validation icon is 100 x 100 units. It can be scaled to every size you want but
it is usually best to preserve the aspect ratio. The icon should normally be placed fully inside the
signature field. If the validation icon should not be shown then place it outside the signature field.

The demo package of DynaPDF contains the project signature_ap that demonstrates the usage of the
function as well as the creation of a user defined signature appearance. See also CreateSigFieldAP().

Remarks:

Please note that the position of the validation icon is no property that can be stored in the PDF file.
The position and size that you set with this function can only be considered if the file will be signed
later with DynaPDF (see CloseAndSignFile(), CloseAndSignFileEx(), or CloseAndSignFileExt() for
further information).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

PlaceTemplate

Syntax:
LBOOL pdfPlaceTemplate(

const PPDF* IPDF, // Instance pointer
SI32 TmplHandle, // Template handle
double PosX, // X-Coordinate
double PosY, // Y-Coordinate
double ScaleWidth, // Scaled width
double ScaleHeight) // Scaled height

The function places a template on a page, another open template, or pattern. The parameter
TmplHandle must be a valid template handle that was returned by BeginTemplate(), ImportPage() or
ImportPageEx().

Templates can be used multiple times on different pages or positions and with different sizes.
Unlike images, a template can be scaled without losing quality as far as the template contains vector
graphics and text objects only.

The calculation of the width and height is the same as for images:

• If Width or Height is -1 the function uses the mirrored original width or height from the
template.

• If Width or Height is 0, the missing value is calculated in relation to the given value of Height
or Width to preserve the template's aspect ratio. The resulting output is a template with exact
proportions relative to its original size.

Function Reference Page 638 of 854

• If Width and Height are 0, the original size is used (same effect as -1 but the template is not
mirrored).

• A negative value of Width or Height mirrors the template on the x- or y-axis.

Notice:

Imported pages can contain non-normalized bounding boxes and the page can be rotated. The
coordinate origin, crop box, and rotation angle of a page must be considered when placing a
template on a page because templates do not support features like a crop box or individual
orientation. The required calculations to find the correct coordinate origin to de-rotate a
template are relatively complex. Therefore, DynaPDF provides the function PlaceTemplateEx()
which considers the coordinate origin, orientation, and crop box automatically.
PlaceTemplateEx() greatly simplifies the handling of templates. If possible, this function should
be used when working with imported pages.

Remarks:

A template is invisible as long it was not placed on a page, template, or pattern.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

PlaceTemplateEx

Syntax:
LBOOL pdfPlaceTemplateEx(

const PPDF* IPDF, // Instance pointer
SI32 TmplHandle, // Template handle
double PosX, // X-Coordinate
double PosY, // Y-Coordinate
double ScaleWidth, // Scaled width
double ScaleHeight) // Scaled height

The function places a template on a page, another open template, or pattern. The parameter
TmplHandle must be a valid template handle that was returned by BeginTemplate(), ImportPage() or
ImportPageEx().

The function was specifically designed to work with templates which were created from imported
pages. A PDF page is converted to a template if it was imported with ImportPage() or
ImportPageEx() outside of an open page.

The calculation of the width and height is the same as for images:

• If Width or Height is -1 the function uses the mirrored original width or height from the
template.

Function Reference Page 639 of 854

• If Width or Height is 0, the missing value is calculated in relation to the given value of Height
or Width to preserve the template's aspect ratio. The resulting output is a template with exact
proportions relative to its original size.

• If Width and Height are 0, the original size is used (same effect as -1 but the template is not
mirrored).

• A negative value of Width or Height mirrors the template on the x- or y-axis.

A template does not support a crop box or orientation angle. When placing a template on a page
that was created from an imported PDF page, the coordinate origin must be adjusted according to
the original media or crop box. In addition, the template must maybe be drawn into a clipping path
(if the original page contained a crop box), and the template must maybe also be rotated so that the
original orientation can be preserved.

All these considerations complicate the handling of imported templates. To make the usage easier
the function considers the coordinate origin, it draws the template automatically into a clipping
rectangle if required, and it rotates the template according to the original page orientation.

The only thing that must be considered is that the original size of the template must be calculated
from the crop box if present. In addition, the so computed width and height must be exchanged if
the original page orientation was 90, -90, 270, or -270 degrees. See example below.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (C++)

The following code collects 6 imported pages on one destination page. The imported pages are
placed horizontally and vertically centered into a fixed destination rectangle.
// This is our error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode,
const char* ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}

// This function places a template horizontally and vertically centered
// into a destination rectangle
SI32 PlaceCenteredEx(const void* PDF, // Instance pointer
 SI32 Tmpl, // Template handle
 double SrcWidth, // Logical page width
 double SrcHeight, // Logical page height
 double DestX, // Destination x-coordinate
 double DestY, // Destination y-coordinate
 double DestWidth, // Destination width
 double DestHeight) // Destination height
{

double x, y, w, h, sx;
sx = DestWidth / SrcWidth; // Compute the scaling factor

 // Which side must be centered?

Function Reference Page 640 of 854

if (SrcHeight * sx <= DestHeight)
{

w = SrcWidth * sx;
h = SrcHeight * sx;
x = DestX + (DestWidth - w) * 0.5;
y = DestY + (DestHeight - h) * 0.5;
pdfPlaceTemplateEx(PDF, Tmpl, x, y, DestWidth, 0.0);

}else
{

sx = DestHeight / SrcHeight;
w = SrcWidth * sx;
h = SrcHeight * sx;
x = DestX + (DestWidth - w) * 0.5;
y = DestY + (DestHeight - h) * 0.5;
pdfPlaceTemplateEx(PDF, Tmpl, x, y, 0.0, DestHeight);

}
// We draw the destination rectangle on the page so that we can check
// whether the position was correctly calculated.
pdfSetLineWidth(PDF, 0.5);
return pdfRectangle(PDF, DestX, DestY, DestWidth, DestHeight, fmStroke);

}

// The PDF instance must be created outside the function
LBOOL TestTemplates(const void* PDF)
{

bool newPage = true;
SI32 i, tmpl, orientation = 0;
TPDFRect mediaBox, cropBox;
double w, h;
// Create a new PDF file
pdfCreateNewPDF(PDF, "cppout.pdf");
pdfSetPageCoords(PDF, pcTopDown);
// Open an existing PDF file

 pdfOpenImportFile(PDF, "c:/PDFs/test.pdf", ptOpen, NULL);

 double x = 50.0;
 double y = 50.0;

 SI32 count = pdfGetInPageCount(PDF);
 for (i = 1; i <= count; i++)
 {
 // Get the page format and orientation angle of the source page.
 // We need the original page format to center the template into the

// destination rectangle.
pdfGetInBBox(PDF, i, pbMediaBox, mediaBox);
pdfGetInBBox(PDF, i, pbCropBox, cropBox);
orientation = pdfGetInOrientation(PDF, i);
// Import the page as a template
tmpl = pdfImportPage(PDF, i);
// Calculate the logical width and height of the page.
w = cropBox.Right - cropBox.Left;
h = cropBox.Top - cropBox.Bottom;
if (w < 1.0)
{

w = mediaBox.Right - mediaBox.Left;
h = mediaBox.Top - mediaBox.Bottom;

}
// Exchange the widht and height if necessary
switch(orientation)
{

case 90:

Function Reference Page 641 of 854

case -90:
case 270:
case -270:
{

double t = w;
w = h;
h = t;

 }
 }
 if (newPage)
 {
 x = 50.0;
 y = 50.0;
 pdfAppend(PDF);
 PlaceCenteredEx(PDF, tmpl, w, h, 50.0, 50.0, 227.5, 227.3);
 x += 247.5;
 newPage = false;
 }else
 {
 PlaceCenteredEx(PDF, tmpl, w, h, x, y, 227.5, 227.3);
 x += 247.5;
 if (x > 500.0)
 {
 x = 50.0;
 y += 247.3;
 }
 if (y > 700.0)
 {
 pdfEndPage(PDF);
 newPage = true;
 }
 }
 }
 // Close the last open page
 if (!newPage) pdfEndPage(PDF);
 return pdfCloseFile(PDF);
}

PlaceTemplByMatrix

Syntax:
LBOOL pdfPlaceTemplByMatrix(

const PPDF* IPDF, // Instance pointer
SI32 TmplHandle) // Template handle

This is an internal debug function which is used to test the content parser of DynaPDF. The function
uses the current transformation matrix to place a template on the page.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 642 of 854

PolygonAnnot

Syntax:
SI32 pdfPolygonAnnot(
 const PPDF* IPDF, // Instance pointer
 struct TFltPoint* Vertices, // At least two vertices must be provided
 UI32 NumVertices, // Number of vertices in the array
 double LineWidth, // Line width
 UI32 FillColor, // Fill color or NO_COLOR = transparent
 UI32 StrokeColor, // Stroke color or NO_COLOR = transparent
 TPDFColorSpace CS, // Color space of the color values
 const char* Author, // Optional author
 const char* Subject, // Optional subject
 const char* Content) // Optional content or comment

The function creates a Polygon Annotation. The vertices are connected by straight lines. The path is
always closed before it will be drawn. It is not required to close the path explicitly. At least two
vertices must be provided.

The coordinates of the vertices are interpreted in current user space. Any transformation that was
applied on the coordinate system will be taken into account.

The stroke or fill color can be set to the special constant NO_COLOR to fill or stroke the polygon. It
is not allowed to set both colors to NO_COLOR since this would result in an invisible annotation.

This annotation type has an associated PopUp annotation that displays the string Content in a
floating window. The initial window state of the associated PopUp annotation is closed by default
but the state can be changed with SetAnnotOpenState() if necessary.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 643 of 854

PolyLineAnnot

Syntax:
SI32 pdfPolyLineAnnot(
 const PPDF* IPDF, // Instance pointer
 struct TFltPoint* Vertices, // At least two vertices must be provided
 UI32 NumVertices, // Number of vertices in the array
 double LineWidth, // Line width
 TLineEndStyle Start, // Line end style of the start point
 TLineEndStyle End, // Line end style of the end point
 UI32 FillColor, // Fill color or NO_COLOR = transparent
 UI32 StrokeColor, // Stroke color or NO_COLOR = transparent
 TPDFColorSpace CS, // Color space of the color values
 const char* Author, // Optional author
 const char* Subject, // Optional subject
 const char* Content) // Optional content or comment

typedef enum
{
 leNone,
 leButt,
 leCircle,
 leClosedArrow,
 leDiamond,
 leOpenArrow,
 leRClosedArrow,
 leROpenArrow,
 leSlash,
 leSquare
}TLineEndStyle;

The function creates a PolyLine Annotation. The vertices are connected by straight lines. At least
two vertices must be provided.

The coordinates of the vertices are interpreted in current user space. Any transformation that was
applied on the coordinate system will be taken into account.

The parameter FillColor is only used if the line end style of the start or end point has an interior that
can be filled. The special constant NO_COLOR represents a transparent interior.

The stroke color is required and must not be set to NO_COLOR.

This annotation type has an associated PopUp annotation that displays the string Content in a
floating window. The initial window state of the associated PopUp annotation is closed by default
but the state can be changed with SetAnnotOpenState() if necessary.

The parameter LineWidth must be in the range 0 through 12 units. Values outside the valid range
will be adjusted to the nearest allowed value. A zero line width produces a 1 pixel wide line.

The line end styles can be changed if necessary with SetAnnotLineEndStyle().

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Function Reference Page 644 of 854

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

PrintPage

Syntax:

LBOOL pdfPrintPage(
 const PPDF* IPDF, // Instance pointer
 UI32 PageNum, // The page that should be printed
 const char* DocName, // Optional document name (default value "out")
 const void* DC, // Required, a printer device context
 TPDFPrintFlags Flags, // Various flags (see PrintPDFFile() below)
 struct TRectL* Margin, // Optional additional margins (in Pixels)
 struct TPDFPrintParams* Parms); // See description in PrintPDFFile()

The function prints the page PageNum to the specified device context. The first page is denoted by
one. At time of publication the function is implemented on Windows only and pages are printed as
image.

The function parameters are described in detail at PrintPDFFile().

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

PrintPDFFile

Syntax:
LBOOL pdfPrintPDFFile(
 const PPDF* IPDF, // Instance pointer
 const char* TmpDir, // Ignored, defined for future use
 const char* DocName, // Optional document name (default value "out")
 const void* DC, // Required, a printer device context
 TPDFPrintFlags Flags, // See below
 struct TRectL* Margin, // Optional additional margins (in Pixels)
 struct TPDFPrintParams* Parms) // Optional print parameters, see below

typedef enum
{
 pffDefault = 0, // Gray printing
 pff1Bit = 1, // Recommended for b&w printers
 pffColor = 2, // Color printing
 pffAutoRotateAndCenter = 4, // Rotate and center pages if necessary
 pffPrintAsImage = 8, // Default on Windows
 pffShrinkToPrintArea = 16, // Useful if a page contains no margins
 pffNoStartDoc = 32, // Do not call StartDoc on Windows
 pffNoStartPage = 64, // Do not call StartPage on Windows

Function Reference Page 645 of 854

 pffNoEndDoc = 128, // Do not call EndDoc on Windows
 pffPrintPageAsIs = 256, // Do not scale or rotate a page to fit into the printable area

pffAutoRotate = 512, // Rotate the page if necessary
 pffAutoCenter = 1024 // Center the page
}TPDFPrintFlags;

struct TPDFPrintParams
{
 UI32 StructSize; // Must be set to sizeof(TPDFPrintParams).
 LBOOL Compress; // Meaningful only for image output. If true, compressed images
 // are send to the printer.
 TCompressionFilter FilterGray; // Meaningful only for image output. Supported filters on
 // Windows: cfFlate and cfJPEG.
 TCompressionFilter FilterColor; // Meaningful only for image output. Supported filters on
 // Windows: cfFlate and cfJPEG.
 UI32 JPEGQuality; // JPEG Quality in percent (1..100). Zero == Default == 60%.
 UI32 MaxRes; // Maximum print resolution. Zero == Default == 600 DPI.
 LBOOL IgnoreDCSize; // If true, PageSize is used to calculate the output format.
 TIntRect PageSize; // Considered only, if IgnoreDCSize is set to true.
};

The function prints the PDF file that is currently in memory. At time of publication the function is
implemented on Windows only and pages are printed as image.

The parameter DocName is optional but should be set if possible. The document name is set to "out"
if no name is provided.

Output color format

It is possible to determine which color formats a printer supports as input, but it is not possible to
determine whether a printer outputs black & white, gray shades, or color. The default should be set
to gray or 1 bit but the user should be able to configure the color format.

Progress callback functions

The function calls the progress callback functions if set (see SetProgressProc() for further
information). TInitProgressProc is called with ProgType set to ptPrintPage and MaxCount is set to the
number of pages.

The progress callback function is called right before the next page is send to the printer (right before
StartPage() is called). The progress callback function must return zero to continue processing. Any
other return value breaks processing.

Print flag pffNoStartPage

If the flag pffNoStartPage is set, the function behaves as follows:

• The Windows function StartPage() must be called inside the progress callback function. The
progress callback function is required if the flag pffNoStartPage ist set! The progress callback
functions can be set with SetProgressProc().

• If ActivePage is greater 1, the Windows function EndPage() must be called.

• If the return value of the progress callback function should be non-zero to break processing,
the function must still call EndPage() if ActivePage is greater 1.

Function Reference Page 646 of 854

• If the flag pffNoEndDoc is absent, the function calls EndPage() for the last page. If the flag
pffNoEndDoc is set too, EndPage() is not called for the last page.

If you want to print a watermark or something similar on top of all pages, the flag pffNoEndDoc
should be set too, otherwise it is not possible to print additional contents on the last page.

Maximum output resolution

The default maximum output resolution is 600 DPI to restrict the memory usage and to reduce the
amount of data that must be send to the printer. The output resolution can be adjusted if necessary
with printing parameters, see blow.

Print parameters

The optional parameter Parms can be used to adjust certain default print settings. The member
StructSize must be set to sizeof(TPDFPrintParams).

If Compress is set to true, the function tries to send compressed images to the printer. The function
checks first whether the printer supports compressed images. If compressed images are not
supported then the function restarts the print job and sends uncompressed images to the printer (a
warning is added to the error log in this case (see GetErrLogMessage() for further information)).

JPEG compression is recommended for color print jobs and PNG compression for gray or black &
white output.

Note that many printer support JPEG compression but Flate compression is often not supported
(PNG images). It is usually best to check with ExtEscape() whether PNG images are supported
before this compression filter is set. If JPEG compression is used then the JPEG quality should not be
lower than 60% for text documents to avoid visible compression artifacts.

Visual Basic 6 interface

Because VB6 has no direct support of optional structure parameters, the parameter Parms is defined
as optional parameter of type long.

The structure TPDFPrintParams can be passed to the function as follows:
Dim r As TRectL, p As TPDFPrintParams
p.StructSize = LenB(p)
p.Compress = True
p.FilterGray = cfFlate
p.FilterColor = cfFlate
p.MaxRes = 150
Call pdf.PrintPDFFile(vbNullString, FileName, Printer.hDC, pffDefault, r, VarPtr(p))

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 647 of 854

ReadImageFormat (obsolete)

Syntax:
LBOOL pdfReadImageFormat(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to image
 UI32 ADDR Width, // Width of the image in pixel
 UI32 ADDR Height, // Height of the image in pixel
 SI32 ADDR BitsPerPixel,// Color depth
 SI32 ADDR UseZip) // If true, Flate compression should be used

The function retrieves the most important properties of an image file. All parameters of the function
must not be NULL. The function reads the image header only to improve processing speed. The
parameter UseZip determines whether Flate compression produces better compression ratios for this
image format. If the parameter BitsPerPixel is 32 the image is a CMYK image. Note that TIFF images
support color depths up to 64 bits per pixel.

Remarks:

This function is marked as obsolete, please use ReadImageFormat2() whenever possible.
ReadImageFormat2() will be renamed to ReadImageFormatFromFile() in DynaPDF 3.0.

Return values:

If the function succeeds the return value is 1 and the parameters are filled with values. If the
function fails the return value is 0.

Function Reference Page 648 of 854

ReadImageFormat2

Syntax:
LBOOL pdfReadImageFormat2(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to image
 UI32 Index, // Image index of multi-page image
 UI32 ADDR Width, // Width of the image in pixel
 UI32 ADDR Height, // Height of the image in pixel
 SI32 ADDR BitsPerPixel, // Color depth
 SI32 ADDR UseZip) // If true, Flate compression should be used

The function retrieves the most important properties of an image file. All parameters of the function
must not be NULL. The function reads only the image header to improve processing speed. The
parameter UseZip determines whether Flate compression produces probably better compression
results for this image format. If the parameter BitsPerPixel is 32, the image is a CMYK image. Note
that TIFF images support color depths up to 64 bits per pixel. The parameter Index specifies the
array index of a multi-page image that should be read in; numbering starts at 1. The parameter is
ignored for non-multi-page image formats. Use GetImageCount() to determine the number of
images in an image file.

1 bit images

1 bit images use sometimes different resolutions for the x- and y-axis. This function returns the
logical size of the image taking the image resolution into account but note that this adjustment is
done for 1 bit images only. All functions to insert an image consider this adjustment in the very
same way. So, you can work with the image as if the resolution for the x- and y-axis would be
identically.

However, sometimes we need the physical size of the image and this size can be calculated as
follows:
SI32 bits, useZip;
UI32 resX = 0, resY = 0, physHeight, physWidth, w, h;

pdfReadImageFormat2(pdf, "test.tif", 1, w, h, bits, useZip);
pdfReadImageResolution(pdf, "test.tif", 1, resX, resY);
if (resX != resY && resX > 0 && resY > 0){
 if (resX > resY){
 physWidth = w;
 physHeight = h / (resX / resY);
 }else{
 physWidth = w / (resY / resX);
 physHeight = h;
 }
}else{
 physHeight = h;
 physWidth = w;
}

Note that the above calculation uses integer arithmetic. It is meaningful for 1 bit images only.

Function Reference Page 649 of 854

Return values:

If the function succeeds the return value is 1 and the parameters are filled with values. If the
function fails the return value is 0.

ReadImageFormatEx

Syntax:
LBOOL pdfReadImageFormatEx(
 const PPDF* IPDF, // Instance pointer
 void* hBitmap, // HBITMAP handle
 UI32 ADDR Width, // Width of the image in pixel
 UI32 ADDR Height, // Height of the image in pixel
 SI32 ADDR BitsPerPixel, // Color depth
 SI32 ADDR UseZip) // If true, Flate compression should be used

The function retrieves the most important properties of a memory bitmap. All parameters of the
function must not be NULL. The function uses the GDI function GetObject() to retrieve the bitmap
parameters. This function is available on Windows only. Please consider the special treatment of 1
bit images. See ReadImageFormat2() for further information.

Return values:

If the function succeeds the return value is 1 and the parameters are filled with values. If the
function fails the return value is 0.

ReadImageFormatFromBuffer

Syntax:
LBOOL pdfReadImageFormatFromBuffer(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // Pointer to image buffer
 UI32 BufSize, // Buffer size
 UI32 Index, // Image index of multi-page image
 UI32 ADDR Width, // Width of the image in pixel
 UI32 ADDR Height, // Height of the image in pixel
 SI32 ADDR BitsPerPixel, // Color depth
 SI32 ADDR UseZip) // If true, Flate compression should be used

The function retrieves the most important properties of an image in the same way as
ReadImageFormat2(), but accepts an image buffer as input. See ReadImageFormat2() for further
information.

Return values:

If the function succeeds the return value is 1 and the parameters are filled with values. If the
function fails the return value is 0.

Function Reference Page 650 of 854

ReadImageResolution

Syntax:
LBOOL pdfReadImageResolution(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File path to image
 UI32 Index, // Image index of multi-page image
 UI32 ADDR ResX, // Horizontal resolution
 UI32 ADDR ResY) // Vertical resolution

The function retrieves the horizontal and vertical resolution of an image file. The image resolution is
a user defined value that can be stored in certain image formats such as Bitmap or TIFF.

The function sets the variables ResX and ResY to zero if the image format does not support a
resolution record or if no values are stored in the image file, the image resolution is then 72 DPI.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ReadImageResolutionEx

Syntax:
LBOOL pdfReadImageResolutionEx(
 const PPDF* IPDF, // Instance pointer
 const void* Buffer, // Pointer to image buffer
 UI32 BufSize, // Buffer size
 UI32 Index, // Image index of multi-page image
 UI32 ADDR ResX, // Horizontal resolution
 UI32 ADDR ResY) // Vertical resolution

The function retrieves the horizontal and vertical resolution of an image file in the same way as
ReadImageResolution() but accepts an image buffer as input. The image resolution is a user defined
value that can be stored in certain image formats such as Bitmap or TIFF.

The function sets the variables ResX and ResY to zero if the image format does not support a
resolution record or if no values are stored in the image file, the image resolution is then 72 DPI.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 651 of 854

Rectangle
LBOOL pdfRectangle(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of rectangle
 double PosY, // Y-Coordinate of rectangle
 double Width, // Width of the rectangle
 double Height, // Height of the rectangle
 TPathFillMode FillMode) // Fill mode

This function draws a rectangle.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
rectangle. If the coordinate system is top-down it defines the upper left corner.

The draw direction can be changed with the function SetDrawDirection().

A rectangle is a closed path that can be filled, stroked or both. It is also possible to draw a rectangle
invisible to apply the filling rules nonzero winding number or even-odd. The filling rules are
described under ClipPath(). The parameter FillMode is ignored if the rectangle is drawn inside a
clipping path. The fill modes are described under ClosePath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Redraw (Rendering Engine)

Syntax:
void rasRedraw(
 IRAS* RasPtr, // Pointer of the rasterizer
 const void* DC, // Handle of a Windows Device Context (HDC)
 SI32 DestX, // Destination x-coordinate
 SI32 DestY) // Destination y-coordinate

Because there is no direct access to the internal DIB Sesction when rendering into a device context,
this function can be used to redraw the bitmap on the device context. If RenderPageEx() was called
in a separate thread then this function can be called after the thread returned. While the thread is
running you can change the position by directly manipulating the coordinate variables which were
passed to RenderPageEx().

The function calls the system function SetDIBitsToDevice() to copy the image into the device
context.

Function Reference Page 652 of 854

ReEncryptPDF

Syntax:
SI32 pdfReEncryptPDF(
 const PPDF* IPDF, // Instance pointer
 const char* FileName, // File to encrypt
 TPwdType PwdType, // Kind of password see below
 const char* InPwd, // Password to open the PDF file
 const char* NewOpenPwd, // New open password (can be NULL)
 const char* NewOwnerPwd, // New owner password (can be NULL)
 TKeyLen NewKeyLen, // Key length for RC4 encryption
 TRestrictions Restrict) // Restrictions

This function encrypts an already encrypted or unencrypted PDF file. The file is recompressed
during import; this reduces the file size in most cases.

By using specific import flags (see SetImportFlags()), it is also possible to remove unwanted objects
from the PDF file, such as annotations, form fields, bookmarks and so on.

If the input file contains a compressed object structure, it will be converted back to a normal PDF
file.

The input PDF file will be replaced with the new one if no error occurred during import. If an error
occurred the file is left unchanged.

It is not possible to change the file except removing specific objects by using specific import flags.
However, the document info entries are changed to new values if they were set beforehand. See
SetDocInfo() for further information.

The encryption flags are described in detail under CloseFileEx().

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Unicode version is
supported by Windows NT systems only. The file path is converted back to Ansi if the Unicode
version is used under Linux or UNIX.

Return values:

If the function succeeds the return value is 0. If the function fails the return value is a negative error
code. The returned error code can be used to determine whether a password is required to open the
file. Pass the return value to the macro PDF_WRONG_PWD(), if the macro returns true a password
is required to open the file.

Function Reference Page 653 of 854

RenameSpotColor

Syntax:
SI32 pdfRenameSpotColor(

const PPDF* IPDF, // Instance pointer
const char* Colorant, // UTF-8 colorant name to change
const char* NewName) // New name or NULL (see description)

The function renames the spot color Colorant to NewName in all Separation, DeviceN, and NChannel
color spaces in which the colorant can be found. If the parameter NewName is set to NULL, the
function renames the colorant to the special value None which produces no visible output.

The representation of the colorant in the alternate color space is left unchanged, also if the colorant
is set to the special value None or All. Note that the colorant names must be UTF-8 encoded Unicode
strings. If the strings are preceeded with a BOM (Byte Order Mark) then the BOM will be removed.

Return values:

The function returns the number of color spaces in which the colorant has been changed. If the
function fails the return value is a negative error code.

RenderAnnotOrField

Syntax:
SI32 pdfRenderAnnotOrField(
 const PPDF* IPDF, // Instance pointer.
 UI32 Handle, // Annotation or field handle.
 LBOOL IsAnnot, // If false, Handle must be a field handle.
 TButtonState State, // The state that should be rendered.
 struct TCTM* Matrix, // PageSpace of TPDFRasterImage structure.
 TRasterFlags Flags, // As used with RenderPage().
 TPDFPixFormat PixFmt, // The pixel format.
 TCompressionFilter Filter, // Only used if CreateImage() was called
 // beforehand.
 struct TPDFBitmap* Out) // Required, see below.

struct TPDFBitmap
{
 UI32 StructSize; // Must be set to sizeof(TPDFBitmap)
 BYTE* Buffer; // Raw image buffer
 UI32 BufSize; // Buffer size in bytes
 SI32 DestX; // x-coordinate in the main image (the rendered page)
 SI32 DestY; // y-coordinate in the main image (the rendered page)
 UI32 Height; // Image height in pixels
 SI32 Stride; // Scanline length in bytes
 UI32 Width; // Image width
};

The function renders an annotation or field independent of the page. The page must be rendered
with RenderPage() or RenderPageEx() beforehand since these functions calculate also the required
mapping from user space to device space. The member PageSpace of the TPDFRasterImage structure
represents this mapping and must be passed to the parameter Matrix.

Function Reference Page 654 of 854

The function must be called within an open page and with the same Flags which were used in the
RenderPage() or RenderPageEx() call. The flags to exclude annotations or form fields from
rendering will be ignored.

To render the annotations and fields from a page, open the wished page with EditPage() and call
GetPageAnnotCount(). Now you can loop over the annotations from 0 to GetPageAnnotCount() - 1
with GetPageAnnotEx(). A form field is an annotation of the type atWidget.

The member StructSize of the structure TPDFBitmap must be set to sizeof(TPDFBitmap) before the
function can be called.

The members DestX, DestY define the destination position on the rendered page image. The position
is returned in top down coordinates and measured in pixels. Note that annotations and form fields
can occur outside the visible area of a page.

If the coordinates of the page were translated, this is the case if the x or y members of the matrix
were non-zero when rendering the page, then this offset must be added to the returned destination
coordinates:
out.DestX += (SI32)img.Matrix.x;
out.DestY += (SI32)img.Matrix.y;

Since the matrix is already defined in device coordinates, no further math is required to calculate the
correct destination position.

Note that annotations and form fields can contain transparent areas. The pixel format should
contain an alpha channel so that it can be correctly blended on the page image.

The Button State (parameter State)

Only form fields support different appearance states. Annotations use always the up state. If no
appearance stream is defined for a specific state then the normal appearance will be returned. Check
boxes contain mostly four different appearance streams: two for the up state and two for the down
state. The function selects the appearance stream for a specific state depending on the field value.
Therefore, all four appearances can only be rendered, if the field value will be changed from
checked to unchecked or vice versa.

Raw image output

By default, annotations or form fields are rendered into a raw memory buffer that is returned in the
TPDFBitmap structure. The image buffer can be released with FreeImageBuffer() when it is no
longer needed. It is not required to release the image buffer every time before the next annotation or
field can be rendered but previously returned pointers become invalid once the next image was
rendered. After the last annotation was rendered, the image buffer should be released with
FreeImageBuffer().

Note that the return value of the function must be zero, otherwise no image will be returned. See
Return values at the end of the function description.

Function Reference Page 655 of 854

How to create image files

It is also possible to create image files from rendered annotations or fields. To achieve this, create a
new image with CreateImage() beforehand and call RenderAnnotOrField() afterwards. The
rendered image is passed to AddRasImage() internally. If the output format is TIFF, more than one
image can be added to the output image. The parameter Filter is only used if CreateImage() was
called beforehand. The output image must finally be closed with CloseImage(). If the image was
created in memory call GetImageBuffer() as usual.

Example (C++):
void RenderPDFPage(const PPDF* PDF, const char* InFile, UI32 PageNum, const char* OutDir)
{

UI32 w, h;
TPDFBitmap out;
char path[MAX_PATH]; TPDFRasterImage img; TPDFAnnotationEx annot;

// We do not create a PDF file in this example
pdfCreateNewPDF(PDF, NULL);

pdfSetImportFlags(PDF, ifImportAll | ifImportAsPage);
pdfSetImportFlags2(PDF, if2UseProxy);

if ((retval = pdfOpenImportFile(PDF, InFile, ptOpen, NULL)) < 0) return retval;
pdfAppend(PDF);
 pdfImportPageEx(PDF, PageNum);
pdfEndPage(PDF);

memset(&img, 0, sizeof(img));
img.StructSize = sizeof(img);
img.DefScale = psFitBest;
img.Flags = TRasterFlags(rfInitBlack | rfExclFormFields | rfExclAnnotations);
img.InitWhite = true;
img.Matrix.a = 1.0;
img.Matrix.d = 1.0;

IPGE* page = pdfGetPageObject(PDF, 1);
rasCalcPagePixelSize(page, psFitBest, 1.0, 2500, 2500, rfDefault, &w, &h);

BYTE* buffer = (BYTE*)malloc(w * 4 * h);

IRAS* ras = rasCreateRasterizer(PDF, NULL, buffer, w, h, w * 4, pxfRGBA);

pdfRenderPage(PDF, page, ras, &img);

 sprintf(path, "%s/page.png", OutDir);

pdfCreateImage(PDF, path, ifmPNG);
pdfAddRasImage(PDF, ras, cfFlate);

pdfCloseImage(PDF);

rasDeleteRasterizer(&ras);

free(buffer);

pdfEditPage(PDF, 1);

SI32 i, count = pdfGetPageAnnotCount(PDF);
out.StructSize = sizeof(out);

for (i = 0; i < count; i++)
{

 pdfGetPageAnnotEx(PDF, i, annot);

 sprintf(path, "%s/annot_%2d.png", OutDir, i);
 // We store the result as PNG image in this example

Function Reference Page 656 of 854

 pdfCreateImage(PDF, path, ifmPNG);
 pdfRenderAnnotOrField(PDF,

annot.Handle,
annot.Type != atWidget,
bsUp,
&img.PageSpace, // RenderPage() calculated the matrix
rfDefault,
pxfRGBA,
cfFlate,
&out);

 pdfCloseImage(PDF);
}

pdfEndPage(PDF);

pdfFreePDF(PDF); // Release the PDF in memory
}

Return values:

• 0 The annotation or field was successfully rendered.
• 1 The annotation is hidden. No image was returned. In order to render hidden

 annotations remove first the hidden flag with SetAnnotFlags() or SetFieldFlags().
• 2 The annotation or field contains no appearance stream. No image was returned.
• < 0 An error occurred. No image was returned.

RenderPage (Rendering Engine)

Syntax:
LBOOL pdfRenderPage(
 const PPDF* IPDF, // Instance pointer
 IPGE* PagePtr, // Page pointer
 IRAS* RasPtr, // Pointer of the rasterizer
 struct TPDFRasterImage* Img) // See below

struct TPDFRasterImage
{
 UI32 StructSize; // Must be set to sizeof(TPDFRasterImage)
 TRasterFlags Flags; // See below
 TPDFPageScale DefScale; // Specifies how the page should be scaled.

 LBOOL InitWhite; // If true, the image buffer is initialized to white before
 // rendering. When a clipping rectangle is set, only the area
 // inside the clipping rectangle is initialized to white.

 struct TIntRect ClipRect; // Optional clipping rectangle defined in device coordinates
 // (Pixels), default 0,0,0,0 (no clipping)
 struct TCTM Matrix; // Optional transformation matrix. Initialize the variable to
 // the identity matrix (1,0,0,1,0,0) if you don't need it. The
 // matrix can be used to move and scale the page.
 struct TCTM PageSpace; // Out -> The matrix represents the mapping from page space to
 // device space. This matrix is required when further objects
 // should be drawn on the page, e.g. form fields or annotations
 // if rendered separately.

 LBOOL DrawFrameRect; // If true, the area outside the page's bounding box is filled
 // with the frame color. InitWhite can still be used, with or
 // without a clipping rectangle.
 UI32 FrameColor; // Must be defined in the color space of the pixel format but in
 // the natural component order, e.g. RGB.

 TOnUpdateWindow* OnUpdateWindow; // Optional, UpdateOnPathCount and UpdateOnImageCoverage define
 // when the function should be called

Function Reference Page 657 of 854

 void* OnInitDecoder; // Not yet defined
 void* OnDecodeLine; // Not yet defined
 const void* UserData; // A pointer that should be passed to the callback function

 UI32 UpdateOnPathCount;

// Optional -> Call OnUpdateWindow when the limit was reached. Clipping paths increment the
// number too. Only full paths are considered, independent of the number of vertices they
// contain. The value should be between 3000 and 10.000. Values between 3000 and 5000 produce
// best results. DynaPDF fires an update event when either 100.000 vertices were rendered or when
// the UpdateOnPathCount limit was reached, whatever occurs first.

 float UpdateOnImageCoverage;
 // Optional -> UpdateOnImageCoverage specifies a factor that is multiplied with a master area
 // of 1,000,000 pixels. So, when the factor is set to 1.0 then the update event is fired when
 // 1,000,000 unscaled source pixels were processed.

 // Statistics...
 UI32 NumAnnots; // Out
 UI32 NumBezierCurves; // Out
 UI32 NumClipPaths; // Out
 UI32 NumFormFields; // Out
 UI32 NumGlyphs; // Out
 UI32 NumImages; // Out
 UI32 NumLineTo; // Out
 UI32 NumPaths; // Out
 UI32 NumPatterns; // Out
 UI32 NumRectangles; // Out
 UI32 NumRestoreGState; // Out
 UI32 NumSaveGState; // Out
 UI32 NumShadings; // Out
 UI32 NumSoftMasks; // Out
 UI32 NumTextRecords; // Out
};

typedef enum
{
 psFitWidth, // Scale the page to the width of the image
 psFitHeight, // Scale the page to the height of the image
 psFitBest, // Scale the page so that it fits fully into the image
 psFitZoom // Should be used when zooming into a page to avoid
 // adjustments on the transformation matrix
}TPDFPageScale;

typedef enum
{
 rfDefault = 0x00000000,
 rfScaleToMediaBox = 0x00000001,
 rfIgnoreCropBox = 0x00000002,
/*
 The art, bleed, or trim box is first intersected with the media box
 or crop box if present since these boxes represent the maximum extend
 of the page. If the flag rfIgnoreCropBox is set, the boxes are
 intersected with the media box. The page is scaled to the media or crop
 box depending on the above flags. By default a page is scaled to the
 crop box if present.
*/
 rtClipToArtBox = 0x00000004,
 rtClipToBleedBox = 0x00000008,
 rtClipToTrimBox = 0x00000010,
 rtExclAnnotations = 0x00000020,
 rtExclFormFields = 0x00000040,
 rfSkipUpdateBG = 0x00000080, // Skip the update event after initializing the background
 rfRotate90 = 0x00000100, // Rotate the page by 90 degress
 rfRotate180 = 0x00000200, // Rotate the page by 180 degress
 rfRotate270 = 0x00000400, // Rotate the page by 270 degress
 rfInitBlack = 0x00000800, // Initialize the image buffer to black
 // before rendering. This flag is not
 // meaningful if the pixel format has

Function Reference Page 658 of 854

 // no alpha channel.
 rfCompositeWhite = 0x00001000, // Composite the image with a white
 // background after rendering. This
 // flag is meaningful only for pixel
 // formats with an alpha channel.
 rfExclPageContent = 0x00002000, // If set, only annotations and form fields will be rendered
 rfExclButtons = 0x00004000, // Exclude push buttons
 rfExclCheckBoxes = 0x00008000, // Exclude check boxes
 rfExclComboBoxes = 0x00010000, // Exclude combo boxes
 rfExclListBoxes = 0x00020000, // Exclude list boxes
 rfExclTextFields = 0x00040000, // Exclude text fields
 rfExclSigFields = 0x00080000, // Exclude signature fields
 // ---------------------------------
 rfScaleToBBox = 0x00100000, // Meaningful only, if rfClipToArtBox, rfClipToBleedBox, or
 // rfClipToTrimBox is set. If set, the picture size is set to the
 // size of the wished bounding box.

 rfDisableAAClipping = 0x00200000, // Disable Anti-Aliasing for clipping paths. This flag is
 // the most important one since clipping paths cause often
 // visible artefacts in PDF files with flattened
 // transparency.
 rfDisableAAText = 0x00400000, // Disable Anti-Aliasing for text.
 rfDisableAAVector = 0x00800000, // Disable Anti-Aliasing for vector graphics.
 // Fully disable Anti-Aliasing.
 rfDisableAntiAliasing = rfDisableAAClipping | rfDisableAAText | rfDisableAAVector,
 rfDisableBiLinearFilter = 0x01000000, // Disable the BiLevel filter for images. Sometimes useful
 // if sharp images are needed, e.g. for barcodes.
 rfClipBoxMask = rfClipToArtBox | rfClipToBleedBox | rfClipToTrimBox // Internal flags
 rfRenderInvisibleText = 0x02000000, // If set, treat text rendering mode Invisible as Normal.
 rfEnableBlendCS = 0x10000000 // If set, the page is rendered in the color space of the
 // page group, soft proof color space, or output intent (if
 // set), and finally converted to the destination color
 // space.
 rfRenderPrintState = 0x20000000, // If set, the print state of layers, annotations, and form
 // fields will be rendered.
 rfForceInterpolation = 0x40000000 // If set, image interpolation will be applied.
}TRasterFlags;

typedef SI32 PDF_CALL TOnUpdateWindow(const void* Data, TIntRect Area);

Special flags (see description at "The OnUpdateWindow Event"):

#define SKIP_INIT_SCREEN 0x10000000 // Do not initialize the screen before rendering begins
#define SKIP_UPDATE_SCREEN 0x20000000 // Do not finally update the screen after the page was rendered

The function renders a PDF page into an image buffer. This function was mainly designed to render
PDF pages in a viewer application but it can also be used for other purposes where fast rendering
into an image buffer is required. It is also possible to render pages into a device context, see
RenderPageEx() for further information.

Before rendering the first page the application should set the path from which external CMaps can
be loaded (see SetCMapDir()). Set the path with the flag lcmDelayed so that the files will only be
loaded if necessary.

Rendering speed can be improved by enabling the image cache. See EnableImageCache() for further
information.

It is also strongly recommended to initialize color management before rendering the first page (see
InitColorManagement()) and to set the screen resolution (see SetScreenRes()). The output intent (if
any) is loaded automatically before the page will be rendered if color management is enabled.

Function Reference Page 659 of 854

Minimal initialization

A few members of the the structure TPDFRasterImage must be correctly initialized, otherwise
nothing can be rendered:
 TPDFRasterImage img;

memset(&img, 0, sizeof(img));
img.StructSize = sizeof(img);
img.Matrix.a = 1.0; // Identity matrix
img.Matrix.d = 1.0; // Identity matrix (1.0, 0.0, 0.0, 1.0, 0.0, 0.0)

The structure size is used to identify different versions of the structure. The a and d members of the
transformation matrix represent the scaling factors. If these factors are set to zero, then nothing can
be rendered! The matrix should be set to the identity matrix, unless DefScale is set to psFitZoom.

The members Flags and DefScale should be set to appropriate values too. Note that the structure
contains also many output fields. Especially the member PageSpace is sometimes important since this
matrix represents the mapping from user space to device space.

Basics

The function requires three pointers: the instance pointer of the PDF instance, a pointer of a
rasterizer object (see CreateRasterizer()), and finally a pointer of the page object that should be
rendered (returned by GetPageObject()). All three pointers must be valid and and not NULL.

Before a page can be rendered the caller must create a rasterizer with CreateRasterizer(). The
rasterizer is normally created when the application is initialized and deleted when the application is
terminated.

The size of the image buffer can be changed at runtime, e.g. when the window size must be
changed, without creating a new rasterizer. Simply attach the new buffer with AttachImageBuffer().

The pixel format cannot be changed at runtime but it is possible to use multiple rasterizers if
necessary.

The rasterizer and the rendering functions use the error log of the PDF instance to output errors and
warnings. An error that occurs during rendering does normally not affect the PDF file in memory.
This is also the case for fatal errors. The rendering engine can be seen as a separate modul that is not
allowed to interact directly with the PDF instance from which pages were rendered.

However, it is not always possible to isolate errors during rendering from the PDF instance. For
example, when a font resource must be decompressed and if an out of memory exception occurs
during decompression, then this will also cause an out of memory exception when trying to finish
the file, e.g. with CloseFile() or similar functions.

Keep in mind that the rasterizer contains a reference of the error log of the PDF instance.
Therefore, it is not allowed to delete the PDF instance without deleting the rasterizer. The
rasterizer should also be deleted before the PDF instance.

It is allowed to use one rasterizer with different PDF instances but note that errors will be reported
into the error log of the PDF instance that is associated with the rasterizer. To avoid multi-threading

Function Reference Page 660 of 854

issues it is usually best to create a separate rasterizer for each PDF instance that is used to render
PDF pages.

Pixel Formats

PDF uses a transparent imaging model, that means many objects depend on the availability of an
alpha channel. To achieve optimal results the image buffer should contain an alpha channel. If the
pixel format contains an alpha channel then DynaPDF produces an image with pre-multiplied alpha
since this is what most operating systems expect.

The image buffer must be initialized with zero or black if the pixel format contains an alpha channel.
It is also possible to set InitWhite to true and to set the flag rfInitBlack so that an image buffer with
an alpha channel can be correctly initialized. The flag rfInitBlack is only considered if the pixel
format contains an alpha channel. If the flag rfInitBlack is absent then the image buffer will be
initialized to white but the alpha channel is set to zero for each pixel.

The internal blend functions consider this initialization so that blend functions produce still correct
results. This kind of initialization can be useful if the image should be copied into the video buffer
with a function that doesn't support alpha blending, e.g. SetDIBitsToDevice(). However, to achieve
correct results the flag rfCompositeWhite must be set too. This flag makes sure that the image will
be composited with a white background after the page was fully rendered. The result is a fully
opaque image. The advantage is that it is not required to clear the background with white before the
image can be drawn. This technique is ued by the page cache and by the viewer examples if the
pixel format is set to pxfBGRA.

An opaque image buffer must be initialized with 255 or fully white. You can also set InitWhite to
true to make sure that the image buffer will be correctly initialized before rendering.

Rendering into an opaque image buffer produces mostly the same result but not always. Differences
can occur when a blend function is used. Since the background is opaque, anti-alisasing artifacts can
occur since anti-aliased pixels are rendered toward white and not to fully transparent as it would be
the case when the image contains an alpha channel.

The difference can be seen in the pictures below. The three circles were drawn with the blend mode
bmExclusion. The RGBA version contains no anti-aliasing artifacts but the RGB version contains an
ugly border where the circles overlap.

 RGBA RGB

Differences can also occur when compositing a transparency group with the background. This
occurs seldom but differences are possible.

Function Reference Page 661 of 854

Blending Color Spaces

Pages and isolated transparency groups can specify the blending color space in which the group
must be rendered to achieve correct results. This is important because blend modes produce
completely different results for additive and subtractive color spaces.

Blending color spaces can be enabled with the flag rfEnableBlendCS. They are not enabled by default
because much more memory and processing time is required to render a page in this way since the
page must first be rendered in the blending color space and finally converted back to the destination
color space.

Rendering PDF Pages

Most members of the structure TPDFRasterImage are meaningful when pages are rendered in a
viewer application. For other purposes most members can be set to their defaults.

RenderPage() renders a PDF page according to the page's orientation and bounding boxes. When a
crop box is present the page is scaled and clipped into the crop box. When no crop box is present the
media box is used instead. This is the default behaviour in viewer applications.

DefScale specifies how the page should be scaled into the image buffer. If the width and height of the
image buffer corresponds with the scaled width and height of the page, psFitWidth, psFitHeight,
and psFitBest produce all the same result (see enum TPDFPageScale). If the width or height are
different, the page is scaled into the image according to DefScale.

The mode psFitZoom should be used when zooming into a page since it avoids adjustments on the
transformation matrix.

When a page is scaled into the destination image it is usually best to draw the page into a frame
rectangle. The frame rectangle represents the area outside the page's bounding box but inside the
optional clipping rectangle.

Function Reference Page 662 of 854

Example:

Whether a frame rectangle should be drawn or not depends on the way how a page is rendered into
the destination window. If the viewer processes mainly simple PDF files then it is possible to render
pages simply on demand. The page can then directly be scaled into the destination image and in this
case it is usually best to draw the page into a frame rectangle.

However, scrolling and zooming becomes too slow when more complex pages must be rendered. To
achieve optimal processing speed as well as smoth and flicker free scrolling the viewer should
render the page into an image in the size of the scaled page format so that the finish image can be
scrolled. The background or the frame rectangle must be drawn by the viewer application in this
case.

To calculate the required image size in pixels the rendering engine provides helper functions to
access the page's bounding boxes as well as the page orientation fast as possible (see GetPageBBox()
and GetPageOrientation()).

The image size can be calculated as follows (C++):
...
UI32 w = 0, h = 0;
UI32 fw = 2540, fh = 1440; // Size of output rectangle in pixels
// Get a pointer of the page object to enable fast access to the page
// properties.
IPGE* pagePtr = pdfGetPageObject(m_PDF, pageNum);
// CalcPagePixelSize() returns the height of the image in this example.
// RenderPage() calculates the image size in the exact same way when
// called with the same parameters.
rasCalcPagePixelSize(pagePtr,psFitWidth,1.0f,fw,fh,rfDefault,&w,&h);

Page area

Frame rectangle filled with an
arbitrary color.

Page area

Without the frame rectangle there
is no way to determine where the

page contents starts or ends.

Function Reference Page 663 of 854

// Now you can allocate the image buffer or check whether the existing
// one is large enough.
if (w != lastWidth || h != lastHeight)
{
 ...
}

...

Calculating the size of the image buffer is easy, and scrolling is easy too when the zoom factor is
100%. The handling of other zoom factors is the most complex part in a viewer application. For
zoom factors between 10% and 200% it is usually best to render the entire page as described above
but larger zoom factors cannot be handled in this way because at some point the image becomes too
large and the rendering time would become too long.

For larger zoom factors it is mostly better to render the page directly with the required zoom factor
into the client rectangle since the rasterizer can then skip invisible objects to speed up processing.

The Transformation Matrix

The transformation matrix can be used to scroll the page up and down, and to scale it with an
arbitrary zoom factor, or to rotate it if necessary. The matrix must be defined in device space, that is
the coordinate space of the image buffer. This makes it very easy to scroll and zoom into the page
since you don't need to consider the coordinate space of the PDF page.

The coordinate space of the rendering engine is top down and not bottom up like the native PDF
coordinate space. So, negative y-coordinates move the PDF image to the top direction of the
window and positive values move it to the opposite direction.

Example:
// This matrix scrolls the PDF image 120 pixels down
img.Matrix.a = 1.0;
img.Matrix.b = 0.0;
img.Matrix.c = 0.0;
img.Matrix.d = 1.0;
img.Matrix.x = 0.0;
img.Matrix.y = -120.0;

Zooming into the page is very easy too. Simply set the zoom factor to the a and d coefficients of the
transformation matrix:
img.Matrix.a = m_Zoom;
img.Matrix.b = 0.0;
img.Matrix.c = 0.0;
img.Matrix.d = m_Zoom;
img.Matrix.x = m_x;
img.Matrix.y = m_y;

Function Reference Page 664 of 854

The zoom factor should take the page format into account and not simply multiply the device
coordinates with a specific factor. The zoom factor must be restricted so that no number overflow
occurs. A suitable limit is around 32 or 64 (6400%).

The OnUpdateWindow Event

When rendering complex PDF pages in a viewer it is strongly recommended to update the window
from time to time with the portion of contents that was already rendered. To achieve this, the
structure TPDFRasterImage supports two variables which specify when the window should be
updated as well as a corresponding callback function that is executed if one of the limits were
reached.

Please note that when the TOnUpdateWindow callback function is set, it is not required to draw
the image into the window after RenderPage() was called!

When the callback function is set, RenderPage() fires at least one update event that covers the entire
imageble area. In the best case, the page was already fully rendered at this point. Calling
SetDIBitsToDevice() or similar system functions after RenderPage() is not required and causes just
unnecessary overhead!

This behaviour can be adjusted if necessary with the flags SKIP_INI_SCREEN, and
SKIP_UPDATE_SCREEN. These flags can be combined with the member StructSize of the
TPDFRasterImage structur as follows:
TPDFRasterImage img;
img.StructSize = sizeof(img) | SKIP_INIT_SCREEN | SKIP_UPDATE_SCREEN.

 As the name suggessts the flag SKIP_INIT_SCREEN omits the initial screen initialisation before
rendering starts. SKIP_UPDATE_SCREEN disables the final update screen event after the page was
fully rendered.

The update area

The callback function returns the area that must be updated. It is strongly recommended to update
only this area. This can drastically speed up processing and the application can process more update
events with less overhead. The first call covers the entire imageble area when InitWhite or
DrawFrameRect was set to true. Further calls occur only when the page was not already fully
rendered at this point.

UpdateOnPathCount limit

The member UpdateOnPathCount specifies the number of paths which must be drawn before the
callback function should be executed. The value should not be too small to avoid too many update
events. When the value is too large then too few update events occur and you cannot see how the
page is drawn.

The test containers use a limit of 5000. This is a good compromise between speed and the number of
update events on faster computer systems. DynaPDF counts also the number of vertices which were

Function Reference Page 665 of 854

already rendered. The update event is fired when either the UpdateOnPathCount limit was reached
or when more than 100.000 vertices were rendered, whatever occurs first. This makes sure that the
window becomes updated from time to time when very large but few paths were rendered.

UpdateOnImageCoverage limit

The member UpdateOnImageCoverage specifies a factor that is multiplied with a master area of
1,000,000 pixels. So, when the factor is set to 1.0 then the update event is fired when 1,000,000
unscaled source pixels were processed. This calculation makes sure that small images cause not too
many update events and the coverage area doesn't depend on the size of the destination image that
is rendered. The bit depth of images is also taken into account since rendering 1 bit or gray scale
images is much faster than rendering RGB or CMYK images.

In addition to the coverage limit DynaPDF counts also the number of images which were already
rendered. The update event is fired when either the coverage limit was reached or when more than
3000 images were rendered, whatever occurs first. This makes sure that the window becomes
updated from time to time when many small images were rendered.

The image scaler cannot produce an update event during scaling at this time. The event occurs
always after an image was fully scaled. This behaviour will be changed as soon as possible…

The return value

The TOnUpdateWindow callback function can break processing if necessary. The return value must
be zero to continue processing. Negative values break processing. However, the return value must
be either 0 or -1. Other return values are not permitted and can cause unwanted side effects. The
TOnUpdateWindow callback function is not the only way to break processing. When the page is
rendered in a separate thread then use the function Abort() to break processing. See next section.

Multi-Threading strategies

PDF pages can be very large and complex; hence, it is not always possible to render pages in just a
few milliseconds. When the rendering engine is used in a viewer application then it is usually best
to render pages in a separate thread so that the main thread becomes not blocked. A good viewer
implementation must also be able to stop rendering as fast as possible whenever necessary, e.g.
when the user requests to change the view area, zoom factor, page position or other things.

To achieve this, the rendering engine provides the function Abort() (rasAbort() in C/C++). This
function works of course only if RenderPage() is executed asynchronously. The one and only stable
and reasonable way to do this is to execute the function RenderPage() in a separate thread.

The development of a stable multi-threaded viewer requires a few design considerations to avoid
unnecessary multi-threading issues. Before we can render a PDF page we must usually import a
page or create it with DynaPDF functions.

One thing that you must consider is that it is generally not allowed to import a page in a separate
thread. However, importing a PDF page is very fast and there is generally no need to do so. Future

Function Reference Page 666 of 854

versions will also support specific flags to further improve the access time to external pages. So,
don't load PDF pages in a separate thread!

Notice:

DynaPDF is thread-safe but the condition is that every thread uses its own PDF instance and
anything that should be done must then be done in this thread. When we render pages in a
viewer then we must work with one instance in different threads. This tiny difference is very
important since it is a huge difference whether a library must protect all functions from
competing access or whether it must only isolate its data from one instance to another.

A viewer should only load the page from an external PDF file that should now be rendered. So,
don't call a function like ImportPDFFile() to import the entire file when it is opened. Instead, load
pages on demand as follows:

• When the user requests to open a PDF file then open it with OpenImportFile().
• Call GetInPageCount() to determine the number of pages in it.
• Create an array of pointers that holds the pointers of pages which were already loaded.

Initialize the array with NULL so that it can be used to perform a duplicate check.
• Initialize the scroll bars, zoom factor and so on, and create the image buffer so that the first

page can be displayed.
• When a page should be displayed then import it first in the main thread if necessary as

follows:

if (m_Pages[m_PageNum-1] == NULL)
{
 // Important: Use EditPage() and not Append() to keep the pages
 // sorted! Holes are filled with empty pages by EditPage().
 pdfEditPage(m_PDF, m_PageNum);
 pdfImportPageEx(m_PDF, PageNum, 1.0, 1.0);
 pdfEndPage(m_PDF);
 // Store the page pointer in the duplicate array
 m_Pages[m_PageNum-1] = pdfGetPageObject(m_PDF, m_PageNum);
}

• Inititialize the structure TPDFRastertImage and create a new thread in the priority lower or
normal.

• Now you can start the thread. The thread executes only the function RenderPage(), finish!
The window must be updated via the TOnUpdateWindow callback function.

• When the user requests to load another page or PDF file then call rasAbort(m_RasPtr); from
the main thread (m_RasPtr represents the instance pointer of the rasterizer), wait until the
thread returns and delete it.

• Now you can load another file, page, or change the zoom settings and so on.

Make sure that you don't execute non-thread-safe code in the TOnUpdateWindow callback function
or in the error callback function.

Especially the error callback function should not directly add the error message to a list component
or something similar when the component is not thread-safe. Note that such components try to

Function Reference Page 667 of 854

render the text when it is added to the list. Such an action is critical when performed from another
thread. It is mostly better to copy the message into an array and to add it to the list component when
the error form is displayed. Such details can avoid a lot of possible multi-threading issues which are
very often difficult to reproduce.

In the previous description there is only one thread running at a time. The current implementation
of RenderPage() does definitely not allow the usage in multiple threads simultaneously. If possible
this limitation will be removed in future versions but due to the many possible collusions it is
currently not sure whether this makes sense. There are also not many situations in which it would
be useful to render pages in background since you don't know what the user wants to do next. In
most cases additional threads waste processing time and memory and the application becomes often
slower and not faster.

How to save the image on disk?

DynaPDF contains a few helper functions to store the rendered image in a proprietary image format
when necessary. These functions are CreateImage(), AddRasImage(), CloseImage(), and
GetImageBuffer(). These functions support the creation of single- and multi-page images, as well as
in-memory or file output.

The image buffer should be created in the correct pixel format because AddRasImage() performs no
color conversion. For example, Windows Bitmaps support the pixel formats BGR and BGRA but no
RGB or RGBA. All other image formats require pixels in the natural component order, e.g. RGB or
RGBA.

AddRasImage() accepts also image buffers in a wrong component order but the caller is responsible
to convert the buffer if necessary before calling the function.

The entire PDF file can be converted to an arbitrary image format with RenderPDFFile().

Remarks:

The function outputs errors and warnings into the error log of the corresponding PDF instance. The
caller should check for errors by calling GetErrLogMessageCount() when the function returns. The
error log can be cleared when the messages were processed with ClearErrorLog().

Return values:

When the page was fully rendered the return value is 1. When the page was not fully processed, e.g.
due to errors, the return value is 0.

Example (C#):
int PDFError(IntPtr Data, int ErrCode, IntPtr ErrMessage, int ErrType)
{
 MessageBox.Show(System.Runtime.InteropServices.Marshal.PtrToStringAnsi(ErrMessage));
 return 0;
}

private void Form1_Paint(object sender, PaintEventArgs e)
{
 m_PDF.SetOnErrorProc(IntPtr.Zero, new TErrorProc(PDFError));

Function Reference Page 668 of 854

 // We don't create a PDF file in this example
 m_PDF.CreateNewPDF(null);

 m_PDF.SetPageCoords(TPageCoord.pcTopDown);
 m_PDF.Append();
 m_PDF.SetFont("Arial", TFStyle.fsRegular, 20.0, false, TCodepage.cpUnicode);
 m_PDF.WriteFTextEx(50.0,
 50.0,
 495.0,
 -1.0,
 TTextAlign.taCenter,
 "A small example that shows how RenderPage() can be used...");
 m_PDF.EndPage();

 // Get the page object
 IntPtr pagePtr = m_PDF.GetPageObject(1);

 int w = pictureBox1.Width; // The picture box was placed on the form.
 int h = pictureBox1.Height;

 // Calculate the image size
 m_PDF.CalcPagePixelSize(pagePtr,
 TPDFPageScale.psFitBest,
 1.0f,
 w,
 h,
 TRasterFlags.rfDefault,
 ref w,
 ref h);

 // Create a bitmap in this size
 Bitmap bmp = new Bitmap(w, h, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
 System.Drawing.Imaging.BitmapData bd = bmp.LockBits(
 new Rectangle(0, 0, w, h),
 System.Drawing.Imaging.ImageLockMode.WriteOnly,
 System.Drawing.Imaging.PixelFormat.Format32bppRgb);

 // Create a rasterizer for the bitmap
 IntPtr ras = m_PDF.CreateRasterizer(IntPtr.Zero,
 bd.Scan0,
 w,
 h,
 bd.Stride,
 DynaPDF.TPDFPixFormat.pxfBGRA);

 TPDFRasterImage img = new DynaPDF.TPDFRasterImage();
 img.StructSize = System.Runtime.InteropServices.Marshal.SizeOf(img);
 img.InitWhite = 1;
 img.DefScale = TPDFPageScale.psFitBest;
 // A 32 bit image has a transparent background. The flag rfCompositeWhite makes sure that the
 // image gets pre-blended with a white background.
 img.Flags = TRasterFlags.rfInitBlack | TRasterFlags.rfCompositeWhite;
 img.Matrix.a = 1.0; // Identity matrix
 img.Matrix.d = 1.0; // Identity matrix

 // Render the page
 m_PDF.RenderPage(pagePtr, ras, ref img);

 bmp.UnlockBits(bd);
 pictureBox1.Image = bmp;
 pictureBox1.SizeMode = PictureBoxSizeMode.CenterImage;

 m_PDF.DeleteRasterizer(ref ras);
 m_PDF.FreePDF();
}

Function Reference Page 669 of 854

RenderPageEx (Rendering Engine)

Syntax:
LBOOL pdfRenderPageEx(
 const PPDF* IPDF, // PDF Instance pointer
 const void* DC, // Handle of a device context (HDC)
 SI32* DestX, // Destination x-coordinate to blend the image
 SI32* DestY, // Destination y-coordinate to blend the image
 IPGE* PagePtr, // Page pointer
 IRAS* RasPtr, // Pointer oft he rasterizer
 TPDFRasterImage* Img) // see RenderPage()

The function renders a PDF page into an image buffer in the same way as RenderPage(), but instead
of using a callback function to update the destination window, the function blends the image
directly into a device context. This function is mainly provided for programming languages in
which the usage of callback functions is too complicated or too slow, e.g. C#, VB .Net, VB 6, FoxPro
and so on.

The function calls internally the system function SetDIBitsToDevice() to copy the image buffer into
the device context. This function depends on the correct creation of the image buffer. Therefore, the
rendering engine provides additional helper functions to allocate and resize the image buffer if
necessary as well as to redraw the bitmap arbitrary often:

• CreateRasterizerEx() creates the rasterizer and a corresponding DIB Section that is
compatible to the device context. The function supports the pixel formats pxf1Bit, pxfGray,
pxfBGR, and pxfBGRA. The default pixel format on Windows is pxfBGR. The rasterizer is
the owner of the image buffer; it will be released when the rasterizer will be deleted.

• ResizeBitmap() can be used to change the size of the pixel buffer that was created with
CreateRasterizerEx(). This function is normally called in the OnResize() event of the form or
component into which the image is drawn.

• Redraw() can be used to redraw the image on an arbitrary position. This function is required
to achieve flicker free scrolling when CreateRasterizerEx() was used to create the image
buffer.

It is of course also possible to allocate the image manually and to attach it to a rasterizer that was
created with CreateRasterizer(). However, the image buffer should be created with the system
function CreateDIBSection() because SetDIBitsToDevice() fails sometimes when the buffer was
allocated with malloc or new.

The parameters DestX and DestY are passed to SetDIBitsToDevice() when the window is updated.
The coordinates can be changed at runtime when RenderPageEx() is executed in a separate thread.
This makes it possible to move the image aroud while it is rendered. Each time the position was
changed the function updates the entire window to avoid artifacts on screen. The destination
coordinates can be set to NULL if not required. The destination coordinate are assumed to be 0, 0 in
this case.

Function Reference Page 670 of 854

The OnUpdateWindow() callback function is never excuted when rendering into a device context.
However, the members UpdateOnPathCount and UpdateOnImageCoverage should be initialized as
usual so that the window becomes updated from time to time. See RenderPage() for further
information.

Remarks:

At time of publication the function can be used on Windows only.

Return values:

When the page was fully rendered the return value is 1. When the page was not fully processed, e.g.
due to errors, the return value is 0.

RenderPageToImage (Rendering Engine)

Syntax:
LBOOL pdfRenderPageToImage(
 const PPDF* IPDF, // PDF Instance pointer
 UI32 PageNum, // Page number (numbering starts at 1)
 const char* OutFile, // Output file name or NULL
 UI32 Resolution, // Output resolution or 0
 SI32 Width, // Output width, 0, or -maxWidth
 SI32 Height, // Output height, 0, or -maxHeight
 TRasterFlags Flags, // See RenderPage()
 TPDFPixFormat PixFmt, // Output pixel format
 TCompressionFilter Filter, // See below
 TImageFormat Format) // See below

typedef enum
{
 cfFlate = 0, // TIFF output
 cfJPEG = 1, // TIFF or JPEG output

cfCCITT3 = 2, // TIFF output, see 1 Bit Rendering
 cfCCITT4 = 3, // TIFF output, see 1 Bit Rendering
 cfLZW = 4, // TIFF output
 cfLZWBW = 5, // TIFF, see 1 Bit Rendering
 cfFlateBW = 6, // BMP, PNG, TIFF, see 1 Bit Rendering
 cfJP2K = 7 // JPEG 2000 output
 cfNone = 255, // TIFF output only
 // These flags can be combined with cfCCITT3/4, cfFlate, and cfLZW.
 cfDitherFloydSteinberg = 0x00001000, // Floyd Steinberg dithering.

cfConvGrayToOtsu = 0x00002000, // The Otsu filter is a special filter to produce black &
 // white images. It is very useful if an OCR scan should be
 // applied on the resulting 1 bit image. The flag will be
 // considered if the pixel format was set to pxfGray.
cfOrderedDithering = 0x00004000 // Ordered dithering. The difference in comparison to the
 // pixel format pxf1Bit is that we render into a GrayA
 // buffer instead of a native 1 bit buffer since this one
 // produces incorrect results in certain transparency
 // calculations.

}TCompressionFilter;

typedef enum
{
 pxf1Bit, // BMP, PNG, or TIFF output
 pxfGray, // BMP, PNG, JPEG, JPEG 2000, or TIFF output
 pxfGrayA, // PNG or TIFF output

Function Reference Page 671 of 854

 pxfRGB, // PNG, JPEG, JPEG 2000, or TIFF output
 pxfBGR, // BMP
 pxfRGBA, // BMP, PNG, TIFF
 pxfBGRA, // BMP
 pxfARGB, // Unsupported
 pxfABGR, // Unsupported
 pxfCMYK, // TIFF, JPEG
 pxfCMYKA // TIFF, JPEG
}TPDFPixFormat;

typedef enum
{
 ifmTIFF, // 1 bit, gray, RGB, CMYK, CMYKA, CCITT 3/4, JPEG, Flate, LZW
 ifmJPEG, // Gray, RGB, CMYK, CMYKA, JPEG compression
 ifmPNG, // 1 bit, gray, RGB, Flate compression
 ifmReserved, // Reserved for future extensions
 ifmBMP, // 1 bit, gray, RGB, uncompressed
 ifmJPC // 1 bit, gray, RGB, JPEG 2000 compression
}TImageFormat;

The function renders a PDF page to an image. The page that should be rendered must be closed
(Append() or EditPage() open a page and EndPage() closes a page).

If the parameter OutFile is set to NULL the image is created in memory. In this case call
GetImageBuffer() to get the image buffer and call finally FreeImageBuffer() to release it.

Before rendering the first page the application should set the path from which external CMaps can
be loaded (see SetCMapDir()). Set the path with the flag lcmDelayed so that the files will only be
loaded if necessary.

Rendering speed can be improved by enabling the image cache. See EnableImageCache() for further
information.

It is also possible to create the output image beforehand with CreateImage(). In this case the image
will be added to this image encoder and the parameter OutFile will be ignored. This can be useful
when creating multi-page TIFF images because the compression filter can be changed on every page
if necessary.

The output image size can be calculated in different ways:

• Resolution > 0 and Width == 0 and Height == 0

Pages are rendered according to the given resolution. Note that PDF pages can be very large.
Therefore, it is maybe not possible to render the page in the wished resolution.

• Resolution > 0 and Width < 0 and or Height < 0

Pages are rendered according to the given resolution. Negative values of Width and Height
are interpreted as maximum width or height if Resolution is greater zero. Since PDF pages
can be very large, it is recommended to set the maximum width and height to a value that is
low enough so that no out of memory exception occurs, e.g. 5000 x 5000 pixels.

• Resolution == 0 and Width > 0 or Height > 0

Pages are scaled to the given Width or Height. If Width and Height are greater zero then pages
are scaled to that size independent of the original page format (not recommended). It is

Function Reference Page 672 of 854

usually best to set the width or height to zero so that the function can calculate the missing
value to preserve the aspect ratio.

The pixel format and the output image format must be compatible. Because TIFF is the only image
format that supports different compression filters, the parameter Filter will be ignored for all other
output formats if the pixel format is not set to pxfGray. For gray images, the filter is also used to
determine whether the Floyd-Steinberg dithering algorithm should be applied (see 1 Bit Rendering).

If Resolution is greater zero the image size will be calculated as follows:
imageWidth = pageWidth * Resolution / 72.0
imageHeight = pageHeight * Resolution / 72.0

The page width and height is calculated according to the bounding boxes and orientation. When
rendering PDF pages to a specific resolution it is recommended to set also the maximum width and
height (as negative values) so that the image size can be restricted. This makes it possible to render
arbitrary PDF files in high resolutions without further considerations.

1 Bit Rendering

If the pixel format pxf1Bit is used, the page will be rendered with a simple 1 bit ordered dither
matrix algorithm. This kind of rendering is fast but not very accurate. Since this pixel format has no
alpha channel (which is sometimes required), the output can be wrong if the file uses transparency.

Dithering

To avoid issues with transparency it is recommended to render into a gray pixel format (pxfGray or
pxfGrayA) and to apply a dithering algorithm on the result. This can be achieved by combining the
compression filter with one of the available dithering algorithms:

• cfOrderedDithering -> Simple ordered dithering

• cfDitherFloydSteinberg -> Floyd-Steinberg dithering

• cfConvGrayToOtsu -> Optimal filter for OCR engines

In order to compress the image with CCITT Fax 4, for example, and to apply a simple ordered
dithering algorithm, combine the compression filter and dithering flag with a binary or operator,
e.g. TCompressionFilter(cfCCITT4 | cfOrderedDithering).

Anti-Aliasing should be disabled when creating 1 bit images to avoid anti-aliasing artifacts.

The Otsu filter is useful if an OCR scan should be applied on the resulting 1 bit image. Most OCR
engines produce best results with this filter.

If the output format is Bitmap (BMP) the compression filter is used only to determine whether a
dithering algorithm should be applied. The compression filter can be set to any of the above values.

Remarks:

This function is available in an Ansi and Unicode compatible version. Unicode file paths are
converted to UTF-8 on non-Windows operating systems.

Function Reference Page 673 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 674 of 854

RenderPDFFile (obsolete)

Syntax:
LBOOL pdfRenderPDFFile(
 const PPDF* IPDF, // PDF Instance pointer
 const char* OutFile, // File name or directory
 UI32 Resolution, // Resolution in DPI
 TRasterFlags Flags, // Optional flags
 TPDFPixFormat PixFmt, // Output pixel format
 TCompressionFilter Filter, // Compression filter for TIFF output
 TImageFormat Format) // Output image format

This function is obsolete and should no longer be used. New applications should use
RenderPDFFileEx() instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

RenderPDFFileEx

Syntax:
LBOOL pdfRenderPDFFileEx(
 const PPDF* IPDF, // PDF Instance pointer
 const char* OutFile, // File name or directory
 UI32 Resolution, // Resolution in DPI
 SI32 Width, // or output width
 SI32 Height, // or output height
 TRasterFlags Flags, // Optional flags
 TPDFPixFormat PixFmt, // Output pixel format
 TCompressionFilter Filter, // Compression filter for TIFF output
 TImageFormat Format) // Output image format

The function renders all PDF pages which are currently in memory and stores the result in a
proprietary image format. The pages in memory could be imported from one or more external PDF
files, e.g. with ImportPDFFile(), created with DynaPDF functions, or a combination of both.

The parameter OutFile can be a path to an existing directory or the file name of the output image.
The latter type can be used with TIFF images because this format supports multi-page output. When
a file path is used with a single page image format only the first page will be rendered.

The function calls the Ansi C function stat() to determine whether the path is a directory or a file
name. A path to a directory must not end with a slash or backslash because stat() cannot identify a
directory in this case.

RenderPDFFile() and RenderPageToImage() use internally the same code and support therefore the
same features. Please read also the description of RenderPageToImage().

The function can render pages in a specific resolution, or scale them to a given width or height.
Depending on which parameters are set the image size is calculated as follows:

Function Reference Page 675 of 854

• Resolution > 0 and Width == 0 and Height == 0

Pages are rendered according to the given resolution. Note that PDF pages can be very large.
Therefore, it is maybe not possible to render all pages in the wished resolution.

• Resolution > 0 and Width < 0 and or Height < 0

Pages are rendered according to the given resolution. Negative values of Width and Height
are interpreted as maximum width or height if Resolution is greater zero. Since PDF pages
can be very large, it is recommended to set the maximum width and height to a value that is
low enough so that no out of memory exception occurs, e.g. 5000 x 5000 pixels.

• Resolution == 0 and Width > 0 or Height > 0

Pages are scaled to the given Width or Height. If Width and Height are greater zero then pages
are scaled to that size independent of the original page format (not recommended). It is
usually best to set the width or height to zero so that the function can calculate the missing
value to preserve the aspect ratio.

On a 32 bit system it is possible to render PDF pages in RGB with up to around 1200 DPI, depending
on the page format and available memory. The resolution of gray images can be higher but the
encoder must be able to handle such large images. The PNG and bitmap encoders accept images in
almost arbitrary resolutions but all other encoders can fail if the resolution is larger than about 2000
DPI.

Remarks:

The function calls the TInitProgressProc() callback function, if set, to initialize a progress bar. The
parameter ProgType is set to ptWritePage. The TProgressProc() callback function is executed before a
page is rendered. The function breaks processing if the return value of the progress callback
function is non-zero. See SetProgressProc() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ReplaceFont

Syntax:

SI32 pdfReplaceFont(
 const PPDF* IPDF, // Instance pointer
 const PFNT* PDFFont, // Parameter of the OnFontNotFount callback
 const char* Name, // Family or Postscript name of the font
 TFStyle Style, // Font style to load
 LBOOL NameIsFamilyName) // If true, Name is a Family name

The function replaces a PDF font with another one. The function can be called in the
OnFontNotFound callback function of the function CheckConformance(). The return value of the
callback function should be the return value of this function. The parameter PDFFont is a parameter
of the callback function. The pointer is required and must be passed unchanged to the function.

Function Reference Page 676 of 854

On Linux or Unix system fonts must be loaded with AddFontSearchPath() before this function can
be called. This should be done before the first PDF file is imported.

Return value:

If the function succeeds the return value is zero. If the function fails the return value is a negative
error code.

ReOpenImportFile

Syntax:

LBOOL pdfReOpenImportFile(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // File handle

The function re-opens a PDf file so that further contents can be imported from it. The parameter
Handle must be a valid file handle that OpenImportFile() or OpenImportBuffer() returned.

When the file is no longer needed close the parser instance with CloseImportFileEx().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ReplaceFontEx

Syntax:
SI32 pdfReplaceFontEx(
 const PPDF* IPDF, // Instance pointer
 const PFNT* PDFFont, // Parameter of the OnFontNotFount callback
 const char* FontFile, // Path of the font file to be loaded
 LBOOL Embed) // Must be true when creating PDF/A files

The function replaces a PDF font with another one. The font file can be loaded directly. It is not
required to install the font on the system. The function can be called in the OnFontNotFound
callback function of the function CheckConformance(). The return value of the callback function
should be the return value of this function. The parameter PDFFont is a parameter of the callback
function. The pointer is required and must be passed unchanged to the function.

Return value:

If the function succeeds the return value is zero. If the function fails the return value is a negative
error code.

Function Reference Page 677 of 854

ReplaceICCProfile

Syntax:
SI32 pdfReplaceICCProfile(

const PPDF* IPDF, // Instance pointer
UI32 ColorSpace, // Color space handle
const char* ICCFile) // File path to an ICC profile

This function is used to dynamically create ICC based color spaces within the callback function
OnReplaceICCProfile of CheckConformance().

The parameter Type of the callback function contains the profile type that must be inserted. At time
of publication only Gray, RGB and CMYK profiles are requested. Because ICC profiles for grayscale
color spaces are rarely available a RGB profile can be used instead.

Notice:

The callback function OnReplaceICCProfile should return the value of this function!

Remarks:

This function is available in an Ansi and Unicode compatible version. Because UTF-16 Unicode file
paths are not supported under Linux or UNIX the file path is converted to UTF-8 before trying to
open the file on such operating systems. However, the usage of the Ansi version with an UTF-8
string is recommended on non-Windows operating systems.

Return values:

If the function succeeds the return value is zero. If the function fails the return value is a negative
error code.

ReplaceICCProfileEx

Syntax:
SI32 pdfReplaceICCProfileEx(
 const PPDF* IPDF, // Instance pointer
 UI32 ColorSpace, // Color space handle
 const void* Buffer, // File buffer of an ICC profile
 UI32 BufSize) // Buffer size in bytes

The function replaces an ICC profile exactly in the same way as ReplaceICCProfile() but accepts a
file buffer as input.

Return values:

If the function succeeds the return value is zero. If the function fails the return value is a negative
error code.

Function Reference Page 678 of 854

ReplaceImage

Syntax:
LBOOL pdfReplaceImage(
 const PPDF* IPDF, // Instance pointer
 const PIMG* Source, // Pointer of the image object
 const char* Image, // Path of the new image
 UI32 Index, // The first image is denoted by 1
 TExtColorSpace CS, // Image color space
 SI32 CSHandle, // Color space handle or -1 for device spaces
 TReplaceImageFlags Flags) // See below.

typedef enum
{
 rifDefault = 0, // Nothing special to do.
 rifDeleteAltImages = 1, // Delete all alternate images if any.
 rifDeleteMetadata = 2, // Delete the meta data that was associated with the image.
 rifDeleteOCG = 4, // Delete the Optional Content Group if any. This changes the visibility
 // state of the image. Normally the OCG should be left as is.
 rifDeleteSoftMask = 8 // An image can contain a soft mask that acts as an alpha channel. This
 // mask can be deleted or left as is. The mask will always be deleted if
 // the new image contains an alpha channel.
}TReplaceImageFlags;

The function replaces an image with another image.

The parameter Source must be a valid pointer of an image object. This pointer is part of the
TPDFImage structure (member ObjectPtr) which is retrieved by functions like GetImageObj() or
ParseContent().

The resolution, aspect ratio, color space and so on can be freely chosen. However, note that this
function does not change the output position or size. If the aspect ratio of the new image is different,
then it will be stretched or shrunk to fit into the output rectangle.

The parameter CS specifies the destination color space into which the image should be converted or
saved, if the image is already defined in that color space. CSHandle must be the handle of that color
space if a non-device space is used. The will be ignored for devices spaces.

The function works in the very same way as InsertImageEx() with the following differences:

• The color of an image mask cannot be set or changed because this would require changes on
the content stream in which the image is used. An image mask will be created if the image
color depth is 1 bit and if color key masking is enabled (see SetUseTransparency()).
SetUseTransparency() should normally be set to false before calling this function.

• The image will never be downscaled, independent of the current resolution, because the size
of the output rectangle is not known.

If the image that should be replaced is a soft mask of another base image, then make sure that the
destination color space is set to esDeviceGray, CalGray, or to a one channel ICC based color space
because a soft mask must not contain more than one color channel.

Function Reference Page 679 of 854

The flags gfUseImageColorSpace, gfIgnoreICCProfiles, gfRealPassThrough, and gfNoBitmapAlpha
are all supported. See SetGStateFlags() for further information.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Unicode paths are
converted to UTF-8 on non-Windows operating systems.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ReplaceImageEx

Syntax:
LBOOL pdfReplaceImageEx(
 const PPDF* IPDF, // Instance pointer
 const PIMG* Source, // Pointer of the image object
 const void* Buffer, // Pointer to image buffer
 UI32 BufSize, // Buffer size in bytes
 UI32 Index, // The first image is denoted by 1
 TExtColorSpace CS, // Image color space
 SI32 CSHandle, // Color space handle or -1 for device spaces
 TReplaceImageFlags Flags) // See below.

The function replaces an image with a new image exactly like ReplaceImage() but accepts a file
buffer as input. See ReplaceImage() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ReplacePageText

Syntax:
LBOOL pdfReplacePageText(
 const PPDF* IPDF, // Instance pointer
 const char* NewText, // The text or NULL to delete the string
 struct TPDFStack* Stack) // Operation stack

The function deletes or replaces a text string of a content stream that was found by the function
GetPageText() beforehand. If NewText is NULL the string will be deleted. The deletion of strings is
possible independent of the used font format.

However, if you want to replace a string with a new one you must check the members Embedded and
CIDFont of the structure TPDFStack to determine whether the font is not embedded and that no CID
font is in use. Because the function does not more than replacing the original string value with the
new one, it is recommended that the used font is not embedded. Embedded fonts are usually stored
as subset; only the used characters are embedded. If the new string contains characters which are

Function Reference Page 680 of 854

not included in the font, the string looks misplaced and unsupported characters will be replaced
with the .notdef character when viewing the file.

Strings of CID fonts cannot be replaced with this function because such strings are binary strings
which cannot be created outside of the library.

However, it is usually best to use this function to delete the original string if necessary. The new text
can be written with the function WriteTextMatrixEx() or use ReplacePageTextEx() instead.

If a text record consists of more than one kerning record, it is possible to preserve an arbitrary
number of kerning records from deletion. This can be archieved by setting the member
DeleteKerningAt of the structure TPDFStack to the wished kerning record number before calling this
function. All kerning records above this number will be deleted. Note that the parameter NewText is
ignored in this case.

DynaPDF is delivered with the example edit_text which demonstrates how texts can be replaced in
a document. If you want to develop a text replacement algorithm please take a look into this
example.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ReplacePageTextEx

Syntax:
LBOOL pdfReplacePageTextEx(
 const PPDF* IPDF, // Instance pointer
 const char* NewText, // New text or NULL to delete the string
 struct TPDFStack* Stack) // Operation stack

The function deletes or replaces a text string of a content stream that was found by the function
GetPageText() beforehand. The function requires a font that must be set with SetFont() or
SetFontEx() before calling this function. The new text is internally written with the function
WriteTextMatrixEx().

This function changes certain members of the graphics state such as the fill and stroke color, the
color space and the text draw mode. If further contents must be written to the file make sure that the
color space, text draw mode, and the wished fill and stroke color is initialized with the wished
values before writing new contents to the file.

DynaPDF is delivered with the example edit_text which demonstrates how texts can be replaced in
a document. If you want to develop a text replacement algorithm please take a look into this
example.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Function Reference Page 681 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ResetAnnotAP

Syntax:
LBOOL pdfResetAnnotAP(
 const PPDF* IPDF, // Instance pointer
 SI32 Handle) // Annotation handle or -1

The function forces a rebuild of the appearance stream of the specified annotation. If Handle is set to
-1 all annotation appearances will be rebuild. This function be useful if an imported annotation has
an invalid or empty appearance stream.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ResetEncryptionSettings

Syntax:
LBOOL pdfResetEncryptionSettings(
 const PPDF* IPDF) // Instance pointer

The function resets the encryption settings which were imported from an external PDF file so that
the PDF file in memory can be saved unencrypted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ResetLineDashPattern

Syntax:
LBOOL pdfResetLineDashPattern(
 const PPDF* IPDF) // Instance pointer

The function resets a previously defined line dash pattern to its default value (straight line). A line
dash pattern can also be removed or reset with the following function call:
SetLineDashPattern(pdf, NULL, 0);

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 682 of 854

ResizeBitmap (Rendering Engine)

Syntax:
LBOOL rasResizeBitmap(
 IRAS* RasPtr, // Pointer of the rasterizer
 const void* DC, // Device Context (HDC)
 UI32 Width, // New width in pixels
 UI32 Height) // New height in pixels

The function changes the size of the internal image buffer that was created with
CreateRasterizerEx(). The function should be called in the OnResize() event of the form or
component into which the page is rendered.

The new width and height must greater zero.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

RestoreGraphicState

Syntax:
LBOOL pdfRestoreGraphicState(
 const PPDF* IPDF) // Instance pointer

The function restores a previously saved graphics state. A PDF viewer application maintains an
internal data structure called the graphics state that holds current graphics control parameters. These
parameters define the global framework within which the graphics operators execute.

A well-structured PDF document typically contains many graphical elements that are essentially
independent of each other and sometimes nested to multiple levels. The graphics state stack allows
these elements to make local changes to the graphics state without disturbing the graphics state of
the surrounding environment. The stack is a LIFO (last in, first out) data structure in which the
contents of the graphics state can be saved and later restored using the following functions:

• SaveGraphicState() pushes a copy of the entire graphics state onto the stack.
• RestoreGraphicState() restores the entire graphics state to its former value by popping it

from the stack.

These functions can be used to encapsulate a graphical element so that it can modify parameters of
the graphics state and later restore them to their previous values.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 683 of 854

RotateCoords

Syntax:
LBOOL pdfRotateCoords(
 const PPDF* IPDF, // Instance pointer
 double alpha, // Angle alpha in degrees
 double OriginX, // Origin of the x-axis
 double OriginY) // Origin of the y-axis

The function rotates the coordinate system at the point OriginX, OriginY by applying a
transformation matrix. It is highly recommended to save the graphics state beforehand, otherwise it
is very difficult or impossible to restore the coordinate system later.

After the coordinate system was changed by the function, bottom-up coordinates are active. It is not
possible to use top-down coordinates with a rotated coordinate system.

A rotation is internally calculated as follows:
TCTM M; // Transformation matrix, the data type is declared in dynapdf.h
double si, co;
si = sin(alpha * PI / 180.0);
co = cos(alpha * PI / 180.0);
M.a = co;
M.b = si;
M.c = -si;
M.d = co;
M.x = OriginX;
m.y = OriginY;

Note that the origin of the rotation must be set to that position where the coordinates should be
rotated. Consider also the new coordinate origin when printing objects into the rotated coordinate
system.

Example:
pdfSaveGraphicState(pdf);
pdfRotateCoords(pdf, 30.0, 150.0, 450.0); // Set the wished origin
// We don't want to move the rectangle inside the rotated coordinate
// system; the rectangle must be printed at 0, 0 because the origin was
// already set
pdfRectangle(pdf, 0.0, 0.0, 200.0, 100.0, fmStroke);
pdfRestoreGraphicState(pdf);

Remarks:

If the graphics state was not saved beforehand the function sets a warning but the transformation is
applied.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 684 of 854

RoundRect

Syntax:
LBOOL pdfRoundRect(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of rectangle
 double PosY, // Y-Coordinate of rectangle
 double Width, // Width of the rectangle
 double Height, // Height of the rectangle
 double Radius, // Radius of rounded corners
 TPathFillMode FillMode) // Fill mode

The function draws a rectangle with rounded corners. The radius must not be greater than the half
with or height of the rectangle.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
rectangle. If the coordinate system is top-down it defines the upper left corner.

The draw direction can be changed with the function SetDrawDirection().

A rectangle is a closed path that can be filled, stroked or both. It is also possible to draw a rectangle
invisible to apply the filling rules nonzero winding number or even-odd. The filling rules are
described under ClipPath(). The parameter FillMode is ignored if the rectangle is drawn inside a
clipping path. The fill modes are described under ClosePath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example:

Function Reference Page 685 of 854

RoundRectEx

Syntax:
LBOOL pdfRoundRectEx(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of rectangle
 double PosY, // Y-Coordinate of rectangle
 double Width, // Width of the rectangle
 double Height, // Height of the rectangle
 double rWidth, // Width of an elliptical corner
 double rHeight, // Height of an elliptical corner
 TPathFillMode FillMode) // Fill mode

The function draws a rectangle with elliptical corners. The parameter rWidth must not be greater
than the half width of the rectangle and the parameter rHeight must not be greater than the half
height of the rectangle.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
rectangle. If the coordinate system is top-down it defines the upper left corner.

The draw direction can be changed with the function SetDrawDirection().

A rectangle is a closed path that can be filled, stroked or both. It is also possible to draw a rectangle
invisible to apply the filling rules nonzero winding number or even-odd. The filling rules are
described under ClipPath(). The parameter FillMode is ignored if the rectangle is drawn inside a
clipping path. The fill modes are described under ClosePath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example:

Function Reference Page 686 of 854

SaveGraphicState

Syntax:
LBOOL pdfSaveGraphicState(
 const PPDF* IPDF) // Instance pointer

The function saves the current graphics state. A saved graphics state must be restored before the
page, template or pattern will be closed.

DynaPDF maintains an internal data structure called the graphics state that holds current graphics
control parameters. These parameters define the global framework within which the graphics
operators execute.

A well-structured PDF document typically contains many graphical elements that are essentially
independent of each other and sometimes nested to multiple levels. The graphics state stack allows
these elements to make local changes to the graphics state without disturbing the graphics state of
the surrounding environment. The stack is a LIFO (last in, first out) data structure in which the
contents of the graphics state can be saved and later restored using the following functions:

• SaveGraphicState() pushes a copy of the graphics state onto the stack.
• RestoreGraphicState() restores the graphics state to its former value by popping it from the

stack.

These functions can be used to encapsulate a graphical element so that it can modify parameters of
the graphics state and later restore them to their previous values.

The maximum allowed nesting level is 28 in PDF 1.7. This is not a limit as such, but arises from the
fact that the corresponding q and Q operators are implemented by the PostScript gsave and grestore
operators when generating PostScript output.

The graphics state consists of the following variables:

Parameter Data type Initial Value
CharSpacing float 0.0f
Clipping Path Vector array Crop box or Media box
DashPattern double* NULL (Solid line)
DashPhase UI32 0
FillColor BYTE[32] Black
FillColorSpace TExtColorSpace, IColorSpace* esDeviceRGB, NULL
FillPattern IPattern* NULL
Font IFont* NULL
Leading float 0.0f
LineCapStyle TLineCapStyle csButtCap
LineJoinStyle TLineJoinStyle jsMiterJoin
LineWidth float 1.0f
Matrix TCTM {1, 0, 0, 1, 0, 0}
MiterLimit float 10.0f
StrokeColor BYTE[32] Black
StrokeColorSpace TExtColorSpace, IColorSpace* esDeviceRGB, NULL

Function Reference Page 687 of 854

Parameter Data type Initial Value
StrokePattern IPattern* NULL
TextDrawMode TDrawMode dmNormal
TextScale float 100.0f
WordSpacing float 0.0f

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

ScaleCoords

Syntax:
LBOOL pdfScaleCoords(
 const PPDF* IPDF, // Instance pointer
 double sx, // Scale factor of the x-axis
 double sy) // Scale factor of the y-axis

The function scales the coordinate system by applying a transformation matrix. It is highly
recommended to save the graphics state beforehand, otherwise it is very difficult or impossible to
restore the coordinate system later.

After scaling the coordinate system, bottom-up coordinates are active. It is not possible to use top-
down coordinates inside a scaled coordinate system.

The parameters sx and sy are set directly to a and d members of the transformation matrix:
TCTM M; // Transformation matrix, the data type is declared in dynapdf.h
M.a = sx;
M.b = 0.0;
M.c = 0.0;
M.d = sy;
M.x = 0.0;
M.y = 0.0;

The parameters sx and sy must not be zero.

Remarks:

If the graphics state was not saved beforehand the function produces a warning but the
transformation is applied.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 688 of 854

SelfTest

Syntax:
LBOOL pdfSelfTest(
 const PPDF* IPDF) // Instance pointer

The function checks the size of all required data types and checks whether the endian configuration
of the library is correct. The test results are printed to stderr. The function prints also a MD 5 hash
which must be the same as under Windows.

This function can be used under Linux and UNIX operation systems to check whether the library
was correctly compiled. Precompiled libraries are available for the most important operating
systems. The makefiles for a specific OS are always delivered by DynaForms with the source code
license for this OS. Send a mail to support@dynaforms.com for further information.

Set3DAnnotProps

Syntax:
LBOOL pdfSet3DAnnotProps(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
T3DActivationType ActType, // Activation type
T3DDeActivateType DeActType, // Deactivation type
T3DInstanceType InstType, // Instantiation type
T3DDeActInstance DeInstType, // De-instantiation type
LBOOL DisplToolbar, // Display the 3D toolbar?
LBOOL DisplModelTree) // Display the model tree?

// Activation type
typedef enum
{

at3D_AppDefault, // Use the default of the viewer
at3D_PageOpen, // Activate it when the page is opened.
at3D_PageVisible, // Activate it if the page becomes visible.
at3D_Explicit, // Inactive until explicitly activated (default).

}T3DActivationType;

// Deactivation type
typedef enum
{

dt3D_AppDefault, // Use the default of the viewer
dt3D_PageClosed, // As soon as the page is closed.
dt3D_PageInvisible, // When the page becomes invisible (default).
dt3D_Explicit // Until explicitly deactivated.

}T3DDeActivateType;

// What should be done with the instance when the annotation becomes
// deactivated?
typedef enum
{
 di3D_AppDefault, // Use the default of the viewer
 di3D_UnInstantiated, // The annotation will be uninstantiated (default)
 di3D_Instantiated, // The annotation is left instantiated
 di3D_Live // Animations stay live
}T3DDeActInstance;

mailto:support@dynaforms.com

Function Reference Page 689 of 854

// How instantiate the annotation?
typedef enum
{
 it3D_AppDefault, // Use the default of the viewer
 it3D_Instantiated, // Instantiated but animations are disabled.
 it3D_Live // Instantiated, animations are enabled (default).
}T3DInstanceType;

// This flag can be combined with the annotation handle
#define TRANSP_3D_ANNOT 0x40000000

The function sets or changes several important properties of a 3D annotation. The parameter Handle
must be a valid handle of a 3D annotation.

Extensions:

Adobe introduced an extension in PDF 1.7, Extension Level 3, to enable the creation of 3D
annotations with a transparent background. This extension has been reflected in the parameter
Annot. To create a 3D annotation with a transparent background combine the annotation handle
with the flag TRANSP_3D_ANNOT with a binary or operator, e.g. annotHandle |
TRANSP_3D_ANNOT.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 690 of 854

Set3DAnnotScript

Syntax:
LBOOL pdfSet3DAnnotScript(

const PPDF* IPDF, // Instance pointer
UI32 Annot, // Handle of a 3D annotation
const char* Value, // JavaScript that should be executed
UI32 Len) // Length of the script

The function assigns a JavaScript to a 3D annotation. JavaScripts which are assigned with a 3D
annotation have direct access to the 3D context. Global JavaScripts have only limited access to the
3D context of a 3D annotation but it is possible to execute a script that is assigned with the
annotation. Note that such JavaScripts must be accessed over the annotation:
annot = getAnnots3D(0)[0].context3D; // Get the annotation context
// This function must be defined in the JavaScript of the 3D annotation.
annot.Test();

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAllocBy

Syntax:
LBOOL pdfSetAllocBy(
 const PPDF* IPDF, // Instance pointer
 SI32 Value) // Value in KB

The function sets the size of the memory blocks in kilo bytes, which will be allocated if memory
must be allocated for page content streams. Memory allocation is slow, especially re-allocation of
memory by using realloc(). Because of this all content streams are buffered by DynaPDF to avoid too
much memory allocation calls. The property AllocBy defines the size of memory that is allocated
each time when more memory must be allocated.

The processing speed depends heavily on memory allocation. The default size of pre-allocated
memory for content streams is 16 KB. It can be set to a larger value if necessary to improve
processing speed.

However, if too much memory is allocated at runtime, processing speed will be slower and an out of
memory exception can occur. If the size is too small, processing speed is slower too because of the
many memory allocation calls.

In most cases, it is not required to change the property AllocBy.

Function Reference Page 691 of 854

SetAltFonts

Syntax:
LBOOL pdfSetAltFonts(
 const PPDF* IPDF, // Instance pointer
 UI32 ListHandle, // Handle returned by CreateAltFontList().
 struct char** List, // Array of font names
 UI32 Count) // Number of values in the array

The function fills an alternate font list created by CreateAltFontList() with data. Alternate font list
are tested if one more glyphs were not found in the current font. Since the fonts in the list are used
as fallback they should be compatible to the active font in regard to properties like serif, sans serif,
proportional or fixed pitch, and so on.

The names in a font list must be Family Names since DynaPDF must be able to load different styles
of a font.

A list should be sorted by priority and not by name. That means index 0 should contain a font name
that is most probably the best match. If this one was not available or incompatible then the next font
in the list will be tested until the end of the list was reached. If no suitable font was found then
system fonts are tested.

The fonts in the list should support the language that must be output. Otherwise, the fonts can
never be selected. An alternate font list can be arbitrary large but it is usually best to restrict the
number fonts in a list to speed up processing.

A list can contain font names which are not available on the system. This causes no error. Non
existing fonts are simply ignored. This makes it possible to define suitable alternate font lists
statically. Such lists can then be loaded on demand.

After a list was filled with data it can be activated with ActivateAltFontList(). If a list is no longer
needed delete it with DeleteAltFontList().

Remarks:

This function is implemented in an Ansi and Unicode compatible variant. Since font names are
Unicode strings, the Unicode variant is preferred.

Please note that alternate font lists are used only, if complex text layout was enabled. This can be
done by setting the flag gfComplexText with SetGStateFlags().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 692 of 854

SetAnnotBorderEffect

Syntax:
LBOOL pdfSetAnnotBorderEffect(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation handle
 TBorderEffect Value) // See below

typedef enum
{

beSolid, // Default
 beCloudy1, // Circle diameter 9 units
 beCloudy2 // Circle diameter 17 units
}TBorderEffect;

The function sets or changes the border effect of a Square, FreeText, or Polygon annotation.

Circle annotations support the cloudy border effect too but this is not yet implemented.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotBorderStyle

Syntax:
LBOOL pdfSetAnnotBorderStyle(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
TBorderStyle Style) // Border style

typedef enum
{
 bsSolid = 0, // Solid border
 bsBevelled = 1, // Bevelled border
 bsInset = 2, // Inset border
 bsUnderline = 3, // Underline only
 bsDashed = 4, // Dashed border
 bsUserDefined = 5 // Not allowed
}TBorderStyle;

The function sets or changes the border style of an annotation. Note that the border style has no
effect if the border width is set to zero or if the border color is set to NO_COLOR (see
SetAnnotColor(), SetAnnotBorderWidth()).

Note also that not all styles are meaningful for all annotation types. For example, while link
annotations support all border styles, FreeText annotations support the styles bsSolid and bsDashed
only. File Attach, Sound, Stamp, or Text annotations for example support no border style because
these annotation types contain no appearance on which a border style could be applied.

Setting the border style to an unsupported value causes no error; the value will be ignored instead.

Function Reference Page 693 of 854

Remarks:

When changing the border style of a Free Text annotation DynaPDF must rebuild the appearance
stream of the annotation. The text position can slightly change especially if the border width was
changed too. See also FreeTextAnnot().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotBorderWidth

Syntax:
LBOOL pdfSetAnnotBorderWidth(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
double LineWidth) // Line width of the border or zero

The function sets or changes the border width of an annotation. Although the line width can be set
to any positive floating point number, it should be set to full integer values between 0 through 12.

If no border should be drawn set the line width to zero.

Remarks:

When changing the border width of a Free Text annotation DynaPDF must rebuild the appearance
stream of the annotation. The text position depends on the line width of the border. Changing the
border width changes also the position of the text. See also FreeTextAnnot().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 694 of 854

SetAnnotColor

Syntax:
LBOOL pdfSetAnnotColor(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
TAnnotColor ColorType, // Color to be change
TPDFColorSpace CS, // Color space
UI32 Color) // Color to be set

typedef enum
{

fcBackColor = 0, // Link annotations support no background color!
 fcBorderColor = 1,
 fcTextColor = 2 // Free Text annotation's only
}TFieldColor, TAnnotColor;

The function sets or changes the color of an annotation. The color can be defined in any device color
space. However, at time of publication the function converts the color back to DeviceRGB.

Note that not all annotation types support a background or border color. For example, link
annotations support a border color but no background or text color.

Remarks:

When changing a color of a Free Text annotation DynaPDF must rebuild the appearance stream of
the annotation. This can cause slightly changes in the text position. See also FreeTextAnnot().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotFlags

Syntax:
LBOOL pdfSetAnnotFlags(
 const PPDF* IPDF, // Instance pointer
 TAnnotFlags Flags) // Flags see below

typedef UI32 TAnnotFlags;
#define afNone 0x00000000 // No flags are set
#define afInvisible 0x00000001 // see below
#define afHidden 0x00000002 // see below
#define afPrint 0x00000004 // Annotation is printable
#define afNoZoom 0x00000008 // Do not zoom the annotation
#define afNoRotate 0x00000010 // Do not rotate the annotation
#define afNoView 0x00000020 // See description below
#define afReadOnly 0x00000040 // Changes are not allowed
#define afLocked 0x00000080 // See description below
#define afToggleNoView 0x00000100 // See description below
#define afLockedContents 0x00000200 // See description below

The function sets the default flags used for new annotations. The parameter Flags is a bit mask;
multiple flags can be set with a binary or operator (e.g. afPrint | afReadOnly). It is also possible to
add each flag separately; the previous flags are only deleted if afNone is used.
pdfSetAnnotFlags(pdf, afPrint | afReadOnly);

Function Reference Page 695 of 854

// or set each flag separately, the result is the same
pdfSetAnnotFlags(pdf, afPrint);
pdfSetAnnotFlags(pdf, afReadOnly);

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Flag Description

afNone No flags are set.
afInvisible If set, do not display the annotation if it does not belong to one of the

standard annotation types and no annotation handler is available.
afHidden (PDF 1.2) If set, do not display or print the annotation or allow it to

interact with the user, regardless of its annotation type or whether an
annotation handler is available.

afPrint (PDF 1.2) If set, print the annotation when the page is printed. If clear,
never print the annotation, regardless of whether it is displayed on the
screen. This can be useful, for example, for annotations representing
interactive pushbuttons, which would serve no meaningful purpose on
the printed page.

afNoZoom (PDF 1.3) If set, do not scale the annotation’s appearance to match the
magnification of the page. The location of the annotation on the page
(defined by the upper-left corner of its annotation rectangle) remains
fixed, regardless of the page magnification.

afNoRotate (PDF 1.3) If set, do not rotate the annotation’s appearance to match the
rotation of the page. The upper-left corner of the annotation rectangle
remains in a fixed location on the page, regardless of the page rotation.

afNoView (PDF 1.3) If set, do not display the annotation on the screen or allow it to
interact with the user. The annotation may be printed (depending on the
setting of the afPrint flag), but should be considered hidden for purposes
of on-screen display and user interaction.

afReadOnly (PDF 1.3) If set, do not allow the annotation to interact with the user. The
annotation may be displayed or printed (depending on the settings of the
afNoView and afPrint flags), but should not respond to mouse clicks or
change its appearance in response to mouse motions.

afLocked (PDF 1.4) If set, do not allow the annotation to be deleted or its properties
(including position and size) to be modified by the user. However, this
flag does not restrict changes to the annotation’s contents.

Function Reference Page 696 of 854

afToggleNoView (PDF 1.5) If set, invert the interpretation of the NoView flag for certain
events.

afLockedContents (PDF 1.7) If set, do not allow the contents of the annotation to be
modified by the user. This flag does not restrict deletion of the
annotation or changes to other annotation properties, such as position
and size.

SetAnnotFlagsEx

Syntax:
LBOOL pdfSetAnnotFlagsEx(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
SI32 Flags) // New Flags

The function sets or changes the flags of an annotation. The available flags are described in detail at
SetAnnotFlags().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotHighlightMode

Syntax:
LBOOL pdfSetAnnotHighlightMode(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Link annotation handle
THighlightMode Mode) // New highlight mode

The function sets or changes the highlight mode of a link annotation. The highlight mode is applied
when clicking with the mouse on the annotation. Only link annotations support a highlight mode.
However, setting the mode to other annotation types causes no error; the value will be ignored
instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 697 of 854

SetAnnotIcon

Syntax:
LBOOL pdfSetAnnotIcon(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Text annotation handle
TAnnotIcon Icon) // New icon

typedef enum
{

aiComment,
aiHelp,
aiInsert,
aiKey,
aiNewParagraph,
aiNote,
aiParagraph,
aiUserDefined // Not usable

}TAnnotIcon;

The function sets or changes the icon of a text annotation. The parameter Handle must be a valid
handle of a Text annotation. See also TextAnnot().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotLineEndStyle

Syntax:
LBOOL pdfSetAnnotLineEndStyle(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Handle of a Line or PolyLine annotation
 TLineEndStyle Start, // End line style of the start point
 TLineEndStyle End) // End line style of the end point

typedef enum
{
 leNone,
 leButt,
 leCircle,
 leClosedArrow,
 leDiamond,
 leOpenArrow,
 leRClosedArrow,
 leROpenArrow,
 leSlash,
 leSquare
}TLineEndStyle;

The function sets or changes the line end styles of a Line or PolyLine annotation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 698 of 854

SetAnnotLineDashPattern

Syntax:
LBOOL pdfSetAnnotLineDashPattern(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation handle
 const float* Dash, // Dash array or NULL
 UI32 NumValues) // Number of array values (can be zero)

The function sets or deletes the line dash pattern of an annotation. The following annotation types
support line dash patterns:

• atCircle

• atInk

• atLine

• atPolygon

• atPolyLine

• atSquare

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotMigrationState

Syntax:
SI32 pdfSetAnnotMigrationState(
 const PPDF* IPDF, // Instance pointer
 UI32 Annot, // Handle of a markup annotation
 TAnnotState State, // See below
 const char* User) // The user who sets the state

typedef enum
{
 asNone,
 asAccepted,
 asRejected,
 asCancelled,
 asCompleted,
 asCreateReply
}TAnnotState;

The function adds a migration state or a reply to a markup annotation. All annotation types with
exception of 3D, Link, Movie, Screen, PrinterMark, TrapNet, and Watermark are markup
annotations.

Migration states are stored in text annotations as reply to the base annotation. Further states are
stored as reply to the last reply and so on; the result is a single linked list. Because the base
annotation contains no reference to the last reply or migration state the function must search for it.
To speed up processing the function returns the handle of the text annotation so that the next state
can directly be added to this annotation. This handle is also required if a reply should be created.

Function Reference Page 699 of 854

A reply contains usually a comment or text from a user. This string can be set with SetAnnotString()
(the string Content must be set).

Example (C++):
SI32 annot, reply;
PPDF* pdf = pdfNewPDF();
if (!pdf) return -1;

pdfCreateNewPDF(pdf, "out.pdf");
pdfSetPageCoords(pdf, pcTopDown);
pdfAppend(pdf);
 annot = pdfSquareAnnot(pdf, 50.0, 50.0, 200.0, 100.0, 1.0, NO_COLOR,
 255, csDeviceRGB, "Jim", "Test", "Just test...");
 reply = pdfSetAnnotMigrationState(pdf, annot, asCreateReply, "Harry");
 pdfSetAnnotString(pdf, reply, asContent, "This is a reply!");
pdfEndPage(pdf);

pdfCloseFile(pdf);
pdfDeletePDF(pdf);

Remarks:

This function is implemented in an Ansi and Unicode compatible variant. A migration state or
annotation reply is defined since PDF 1.5. The function adjusts the PDF version automatically if it is
lower than PDF 1.5.

Return values:

If the function succeeds the return value is the handle of the text annotation, a value greater or equal
zero. If the function fails the return value is a negative error code.

SetAnnotOpacity

Syntax:
LBOOL pdfSetAnnotOpacity(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation handle
 double Value) // New value must be in the range 0.0..1.0.

The function changes the opacity of a markup annotation. The function GetAnnotEx() or
GetPageAnnotEx() can be used to determine whether an annotation is a markup annotation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 700 of 854

SetAnnotOpenState
LBOOL pdfSetAnnotOpenState(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Markup or PopUp annotation handle
LBOOL Open) // New state

The function sets the open state of a markup or PopUp annotation. Markup annotations can be
connected with a PopUp annotation that displays additional comments in a window (like a Text
annotation). The open state can only be changed if the base annotation is connected with a PopUp
annotation. If the base annotation contains no PopUp annotation or if the handle refers to a non-
markup annotation the function does nothing.

All annotation types with exception of 3D, Link, Movie, Screen, PrinterMark, TrapNet, and
Watermark are markup annotations.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotOrFieldDate

Syntax:
LBOOL pdfSetAnnotOrFieldDate(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation or field handle
 LBOOL IsField, // If true, Handle is a field handle
 TDateType Type, // See below
 UI32 DateTime) // Number of seconds elapsed since January 1, 1970

typedef enum
{

dtCreationDate, // Markup annotations only
 dtModDate // Annotations or form fields
}TDateType;

The function sets or changes the creation or modification date of an annotation or form field. If the
parameter IsField is set to true, a valid field handle must be passed to the parameter Handle. An
annotation handle is expected otherwise.

Annotations and form fields support a modification date but a creation date is supported by
markup annotations only.

The function GetAnnotEx() or GetPageAnnotEx() can be used to determine whether an annotation is
a markup annotation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 701 of 854

x2,y2
x1,y1

x3,y3
x4,y4

SetAnnotQuadPoints

Syntax:
LBOOL pdfSetAnnotQuadPoints(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Annotation handle
 struct TFltPoint* Value, // Array of 4 x n points
 UI32 Count) // Number of points

The function sets or changes the quad points definition of a Highlight, Link, Redakt, Squiggly,
StrikeOut, or Underline annotation. The function must be called within an open page.

Independent of the used coordinate system (bottom up or top down), the points must be defined in
the following order:

The coordinates of the vertices are interpreted in current user space. Any transformation that was
applied on the coordinate system will be taken into account.

The number of points must be 4 or a multiple of 4.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotString

Syntax:
LBOOL pdfSetAnnotString(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
TAnnotString StringType, // String type that should be changed
const char* Value) // The new value or NULL to delete it

typedef enum
{

asAuthor,
asContent,
asName,
asSubject,

 asRichStyle, // Default style string. -> FreeText annotations only.
 asRichText // Rich text string. -> Supported by markup annotations.
}TAnnotString;

The function sets, changes, or deletes a string of an annotation. The string RichText or RichStyle must
be set after the annotation content was changed because these strings will be deleted when changing

Function Reference Page 702 of 854

the contents of an annotation. Note also that DynaPDF does not use the rich text to create the
appearance stream. However, the rich text should still coincide with the annotations content.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetAnnotSubject

Syntax:
LBOOL pdfSetAnnotSubject(

const PPDF* IPDF, // Instance pointer
UI32 Handle, // Annotation handle
const char* Value) // The subject to be set

The function sets or changes the optional subject string of an annotation. The subject is defined since
PDF 1.5. The function adjusts the PDF version automatically if it is lower than PDF 1.5.

The annotation types atFileLink, atPageLink, atPopUp, and atWebLink do not support a subject
string. The function returns with an error when trying to set the subject on these annotation types.

If the parameter Value is NULL or if it contains an empty string the subject string is deleted in the
annotation.

Remarks:

This function is implemented in an Ansi and Unicode compatible variant.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetBBox

Syntax:
LBOOL pdfSetBBox(

const PPDF* IPDF, // Instance pointer
TPageBoundary Boundary, // Bounding box
double LeftX, // lower left x
double LeftY, // lower left y
double RightX, // upper-right x
double RightY) // upper-right y

typedef enum
{

pbArtBox, // Art box
pbBleedBox, // Bleed box
pbCropBox, // Crop box
pbTrimBox, // Trim box
pbMediaBox // Media box

}TPageBoundary;

The function sets a specific bounding box of the current open page. A PDF page may be prepared
either for a finished medium, such as a sheet of paper, or as part of a prepress process in which the

Function Reference Page 703 of 854

content of the page is placed on an intermediate medium, such as film or an imposed reproduction
plate.

In the latter case, it is important to distinguish between the intermediate page and the finished page.
The intermediate page may often include additional production-related content, such as bleeds or
printer marks that falls outside the boundaries of the finished page. To handle such cases, a PDF
page can define as many as five separate boundaries to control various aspects of the imaging
process.

A bounding box is defined as rectangle giving the coordinates of a pair of diagonally opposite
corners. The media box of a page is normally expressed in a normalized form where the coordinates
of the lower-left point are set to zero.

A normalized bounding box can be easily defined as follows:
pdfSetBBox(pdf, pbMediaBox, 0, 0, 612, 792);

The parameters RightX, RightY represent the width and height of the media box (this is the paper
format if no crop box is present). The media box should normally be defined in the normalized form
because the bounding box defines also the coordinate origin of the page. Predefined paper formats
can also be set with the function SetPageFormat().

It is also possible to change the bounding box of a template or pattern with this function. These
object types support the media box only; the other bounding boxes are ignored. Note that the
coordinates of the objects inside a page, template or pattern depends on the coordinate origin of the
media box.

The crop box crops the page as the name suggests. The crop box represents also the paper format if
present.

If the width of a bounding box is less than 1 unit the function deletes the bounding box from the
object. The media box is required, it cannot be deleted.

The minimum page size is 3 x 3 Units; the maximum is 14,400 x 14,400 Units. The minimum size of a
template or pattern is 1 x 1 Units and the maximum is 14,400 x 14,400 Units.

If a page with more than 14,400 Units should be created then it is possible to scale the page format
with SetUserUnit(). A User Unit is an additional scaling factor that is used to calculate the page
format. This makes it possible to create extremely large page formats without exceeding the limits of
the page coordinate system.

Remarks:

No bounding box of a page should be larger than the media box.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 704 of 854

Bounding boxes:

 Media Box

Bleed Box
Headline

Trim Box

4

3
2 1

Art Box

Function Reference Page 705 of 854

SetBidiMode

Syntax:
LBOOL pdfSetBidiMode(
 const PPDF* IPDF, // Instance pointer
 TPDFBidiMode Mode) // Bidirectional mode

typedef enum
{

bmLeftToRight = 0, // Apply the bidi algorithm in Left to Right layout
bmRightToLeft = 1, // Apply the bidi algorithm in Right to Left layout
bmNone = 2 // Default -> do not apply the bidi algorithm

}TPDFBidiMode;

The function sets or changes the bidirectional mode. When using a bidirectional 8 bit code page the
bidirectional algorithm is applied by default in Left to Right mode also if the bidi mode is set to
bmNone (default). This mode produces identical results in comparison to applications like Edit or
WordPad from Microsoft Windows.

If the current font was loaded with the code page cpUnicode the bidirectional algorithm is applied
only if the bidi mode is not set to bmNone.

Remarks:

DynaPDF uses internally the Reference Bidi Algorithm of the Unicode Consortium to process
bidirectional strings. The algorithm supports the entire UCS-2 range and it is used by many
applications. However, the Right to Left mode produces different results in comparison to
Microsoft's Uniscribe. If you need the same result in Right to Left mode as Uniscribe would produce
then you must pre-process the strings with this library and output the resulting Unicode strings
with disabled bidirectional algorithm. The font must be loaded with the code page cpUnicode in this
case.

Notice:

The bidi mode is ignored during EMF conversion. To enable the bidirectional algorithm during EMF
conversion you must set the flag mfApplyBidiAlgo with SetMetaConvFlags().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 706 of 854

SetBookmarkDest
Syntax:

LBOOL pdfSetBookmarkDest(
 const PPDF* IPDF, // Instance pointer
 SI32 ABmk, // Bookmark handle
 TDestType DestType, // see below
 double a, // Various, depends on destination type
 double b, // Various, depends on destination type
 double c, // Various, depends on destination type
 double d) // Various, depends on destination type

typedef enum
{

dtXY_Zoom, // Three parameters (a, b, c) -> (X, Y, Zoom)
 dtFit, // No parameters
 dtFitH_Top, // One parameter (a)
 dtFitV_Left, // One parameter (a)
 dtFit_Rect, // Four parameters (left, bottom, right, top)
 dtFitB, // No parameters
 dtFitBH_Top, // One parameter (a)
 dtFitBV_Left // One parameter (a)
}TDestType;

The function sets or changes the destination of a bookmark. The parameter ABmk must be a valid
bookmark handle. The destination page will not be changed by this function it must be set correctly
with the function AddBookmark(). If it should be changed use the function ChangeBookmark().

The destination created by this function allows jumping to a specific position in a document instead
of simply opening a page such as a normal bookmark does.

Destination types Description

dtXY_Zoom Display the page designated by page with the coordinates (left top)
positioned at the top-left corner of the window and the contents of the page
magnified by the factor zoom. A zero value for any of the parameters left top
or zoom specifies that the current value of that parameter is to be retained
unchanged.

Example:
// The zoom factor is left unchanged
SetBookmarkDest(pdf, bmk, dtXY_Zoom, 50, 750, 0, 0);

dtFit Display the page designated by page with its contents magnified just enough
to fit the entire page within the window both horizontally and vertically. If
the required horizontal and vertical magnification factors are different, use
the smaller of the two, centering the page within the window in the other
dimension. This destination type has no parameters, the values of a, b, c, d are
ignored.

Function Reference Page 707 of 854

dtFitH_Top Display the page designated by page with the vertical coordinate top
positioned at the top edge of the window and the contents of the page
magnified just enough to fit the entire width of the page within the window.

Example:
// The parameter a specifies the top coordinate
pdfSetBookmarkDest(pdf, bmk, dtFitH_Top, 750, 0, 0, 0);

dtFitV_Left: Display the page designated by page with the horizontal coordinate left
positioned at the left edge of the window and the contents of the page
magnified just enough to fit the entire height of the page within the window.

Example:
// The parameter a specifies the left edge
pdfSetBookmarkDest(pdf, bmk, dtFitV_Left, 50, 0, 0, 0);

dtFit_Rect Display the page designated by page with its contents magnified just enough
to fit the rectangle specified by the coordinates left bottom right and top
entirely within the window both horizontally and vertically. If the required
horizontal and vertical magnification factors are different, use the smaller of
the two, centering the rectangle within the window in the other dimension.
Note, the maximum zoom factor supported by Adobe's Acrobat is limited to
16 (Acrobat 4/5) or 64 if Acrobat 6 is used. It is not possible to zoom into the
rectangle if it is too small.

Example:
pdfSetBookmarkDest(pdf, bmk,dtFit_Rect,150,550,450,700);

The destination types dtFitB, dtFitBH_Top and dtFitBV_Left use always the media box of the page to
fit the page into the window. All other destination types use the crop box if any.

As you can see above that the usage of the destination types are the same as for a go-to action. The
function creates in real a go-to action which is executed by the bookmark. However, the action is
stored in a more compact format and cannot be shared with other objects.

If a destination should be used with multiple objects such as page links, create a go-to action instead
and add it to the bookmark with the function AddActionToObj(). The same action can then be
added to other objects.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 708 of 854

SetBookmarkStyle

Syntax:
LBOOL pdfSetBookmarkStyle(
 const PPDF* IPDF, // Instance pointer
 SI32 ABmk, // Bookmark handle
 TFStyle Style, // Style beeing used to display the text
 UI32 RGBColor) // Color of the bookmark

typedef SI32 TFStyle;
#define SI32 fsNone = 0; // Default
#define SI32 fsItalic = 1; // Italic
#define SI32 fsBold = 2; // Bold
#define SI32 fsUnderlined = 4; // Unsupported
#define SI32 fsStriked = 8; // Unsupported

Since Acrobat 5 bookmarks support a user defined color and the text style can be changed to italic,
bold and so on. Older versions of Adobe's Acrobat ignore the style information. Bookmarks support
RGB colors only. The parameter Style is a bit mask, the flags can be combined, e.g. to create a
bolditalic bookmark.

Example:

pdfSetBookmarkStyle(pdf, bmk, fsBold | fsItalic, PDF_RGB(45, 144, 54));

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetBorderStyle

Syntax:
LBOOL pdfSetBorderStyle(
 const PPDF* IPDF, // Instance pointer
 TBorderStyle Style) // Border style

typedef enum
{
 bsSolid = 0, // Solid border
 bsBevelled = 1, // Bevelled border
 bsInset = 2, // Inset border
 bsUnderline = 3, // Underline only
 bsDashed = 4, // Dashed border
 bsUserDefined = 5 // Not allowed
}TBorderStyle;

The function set the global border style which is used for newly created form fields. It is also
possible to change the style of a specific form field, see SetFieldBorderStyle() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 709 of 854

SetCharacterSpacing

Syntax:
LBOOL pdfSetCharacterSpacing(
 const PPDF* IPDF, // Instance pointer
 double Value) // Character spacing

The function sets the current character spacing. The function requires an open page, template or
pattern.
Default value = 0

Value = 0 Character
Value = 10.0 C h a r a c t e r

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCheckBoxChar

Syntax:
LBOOL pdfSetCheckBoxChar(
 const PPDF* IPDF, // Instance pointer
 TCheckboxChar CheckBoxChar) // see below

typedef enum
{
 ccCheck,
 ccCircle,
 ccCross1,
 ccCross2,
 ccCross3,
 ccCross4,
 ccDiamond,
 ccSquare,
 ccStar
}TCheckBoxChar;

The function sets the character which should be used for newly created check boxes.
Default value = ccCheck

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 710 of 854

Check box characters

 ccCheck

 ccCircle

 ccCross1

 ccCross2

 ccCross3

 ccCross4

 ccDiamond

 ccSquare

 ccStar

SetCheckBoxDefState

Syntax:
LBOOL pdfSetCheckBoxDefState(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 LBOOL Checked) // Default state

This function changes the default state of a check box; it can differ from the current visible state of
the check box. The default state is used when the form is reset with a Reset Form Action.

The default state of a new check box is always identical with the visible state.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 711 of 854

SetCheckBoxState

Syntax:
LBOOL pdfSetCheckboxState(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 LBOOL Checked) // State

The function changes the state of a check box. The parameter AField must be a valid check box
handle.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCIDFont

Syntax:
SI32 pdfSetCIDFont(

const PPDF* IPDF, // Instance pointer
UI32 CMapHandle, // Handle of a CMap returned by LoadCMap()
const char* Name, // Font name
TFStyle Style, // Font style
double Size, // Font size
LBOOL Embed) // If true, the font will be embedded

The function loads an OpenType or TrueType font with an external CMap. A font that is used with
an external CMap is called a composite font or CID font. A CID-keyed font is an OpenType font
(with Postscript outlines) that contains CID font operators.

CID-keyed fonts provide a convenient and efficient method for defining multiple-byte character
encodings as wells as fonts with a large number of glyphs. These capabilities provide great
flexibility for representing text in writing systems for languages with large character sets, such as
Chinese, Japanese, and Korean (CJK).

The CID-keyed font architecture specifies the external representation of certain font programs,
called CMap and CIDFont files, along with some conventions for combining and using those files.
PDF does not support the entire CID-keyed font architecture, which is independent of PDF; CID-
keyed fonts can also be used in other environments. For complete documentation on the architecture
and the file formats, see Adobe Technical Notes #5092, CID-Keyed Font Technology Overview, and
#5014, Adobe CMap and CIDFont Files Specification.

The term CID-keyed font reflects the fact that CID numbers (character identifiers) are used to index
and access the glyph descriptions in the font. A CID refers always into a predefined character
collection.

A character collection is an ordered set of all glyphs needed to support one or more popular
character sets for a particular language. The order of the glyphs in the character collection

Function Reference Page 712 of 854

determines the CID number for each glyph. Each CID-keyed font explicitly references the character
collection on which its CID numbers are based.

A CMap (character map) file specifies the correspondence between character codes and the CID
numbers used to identify glyphs. It is equivalent to the concept of an encoding in simple fonts.
Whereas a simple font allows a maximum of 256 glyphs to be encoded and accessible at one time, a
CMap can describe a mapping from multiple-byte codes to thousands of glyphs in a large CID-
keyed font. For example, it can describe Shift-JIS, one of several widely used encodings for Japanese.
See also LoadCMap().

The supported character collection of a CID-keyed font must match the one of the CMap file. If the
CMap file provides a mapping into another character collection as the font supports, then the
function returns with an error and the font will not be loaded.

Although TrueType fonts have no native notation of CIDs it is also possible to use TrueType fonts
with external CMaps as long as the font contains a CMap in the format 0, 4, 6, 10, or 12. TrueType
fonts which contain only a CMap in format 2 cannot be used with external CMap files (format 2 is a
mixed 8/16 bit encoding that is supported in certain pure CJK fonts). However, such fonts can be
loaded with SetFont().

A key feature of the CID-keyed font architecture is that it works also with non-embedded fonts. Due
the predefined character collections it is possible to display the text also if the font is not available on
the system.

Documents in western writing systems use about 80 through 100 glyphs of a font on average, while
Asian documents use often more than 400 through several thousand glyphs in one document. The
amount of font data that must be stored in Asian documents is not comparable with western
documents.

Although font embedding is still recommended, the amount of data is sometimes too large to embed
all fonts. If font embedding is not possible it is recommended to use fonts which are probably
available on the user's operating system.

Please note that DynaPDF knows nothing about the encoding when using a font with an external
CMap. Functions which output formatted text like WriteFText() can only be used with CMaps
which map Unicode (UTF-16) to CIDs. The wide string version of the function must be used in this
case.

Word Spacing

Word spacing applies to the space character of a string. However, most CJK encodings support
more than one space character, such as a proportional space, ideographic space, full width space,
half width space and many more. DynaPDF treats always CID 1 as space character, independent of
the used character collection. All other CIDs are treated as ordinary glyphs.

Function Reference Page 713 of 854

Vertical Writing Mode

When using a CMap for vertical writing mode the text extends always from top to bottom. The
coordinate origin of the text depends on the font origin (see SetFontOrigin()). If the font origin is set
to orDownLeft the first character is placed on the font's baseline. This can be somewhat confusing
because the remaining text is of course placed below the first character. It is usually best to set the
font origin to orTopLeft, also if bottom up coordinates are used.

Because the text width is simply the font size, GetTextWidth() returns the text height in vertical
writing mode.

Encodings Identity-H and Identity-V

Iit is also possible to load TrueType and OpenType fonts with the special encodings Identity-H or
Identity-V with this function. These are encodings and no predefined external CMaps. That means
the CID-keyed font architecture is not used.

A font that was loaded with these encodings can be used as if it were loaded with SetFont() with the
code page cpUnicode. The only difference is that the font can be left unembedded. However, the
PDF file stores glyph indexes instead of CIDs and glyph indexes are private for every font. That
means if the original font is not available on the system then it is not possible to display the text!

It is not recommended to use these encodings with non-embedded fonts, although it works. If you
want to use fonts with these encodings then make sure that you use only standard fonts which are
normally available on the users system. The encodings Idenitity-H and Identity-V require Acrobat 6
or higher. Due to a change in the font search algorithm in Acrobat 10 it is no longer possible to
display such files with Acrobat 4/5.

Known issues:

• At time of publication CID fonts cannot be used with form fields.
• Vertical writing mode does not work with WriteFText().

Remarks:

All functions which output text report a warning if one or more characters cannot be found. Call
GetMissingGlyphs() to determine which characters could not be found.

Return values:

If the function succeeds the return value is the font handle, a value greater or equal zero. If the
function fails, the return value is a negative error code.

Function Reference Page 714 of 854

SetCMapDir

Syntax:
SI32 pdfSetCMapDir(
 const PPDF* IPDF, // Instance pointer
 const char* Path, // Directory that contains CMap files
 TLoadCMapFlags Flags) // See below

typedef enum
{
 lcmDefault = 0, // Load the cmaps in the directory now
 lcmRecursive = 1, // Load sub directories recursively
 lcmDelayed = 2 // Load the files when required
}TLoadCMapFlags;

The function sets a search path from which external CMap files can be loaded. External CMap files
are sometimes required, e.g. when extracting text from Asian PDF files or when rendering PDF
pages. However, it is also possible to load external CMaps with OpenType or TrueType fonts. This
is a key feature when creating Asian PDF files (see SetCIDFont() for further information).

Although the function name suggests that only one directory can set at time it is possible to load an
arbitrary number of directories. Each time the function is called a duplicate check is performed so
that only unique CMap files reside in the CMap cache.

The parameter Flags specifies how and when the CMaps should be loaded. When the flag
lcmDelayed is set, the function adds the path to the internal array of search paths, but the CMap
files will be loaded when a font requires an external CMap, e.g. during text extraction or rendering.
The flag lcmDelayed should be set in viewer applications so that the first page can be loaded as fast
as possible.

CMap files can be divided into three categories:

• CMaps which provide a mapping from an arbitrary character encoding to a predefined
character collection.

• CMaps which provide an identity mapping to a predefined character collection. Such CMaps
should contain the DSC comment "%%BeginResource: CMap (Identity)".

• CMaps which provide a CID to Unicode mapping of a character collection.

If a CMap should be loaded for use with an OpenType or TrueType font, two CMap files are
required: the one that provides the mapping into the character collection, and the one that provides
the CID to Unicode mapping. If one of these CMap files base in turn on another CMap, the
corresponding base CMap must be available too.

The following notes should be considered when working with external CMaps:

• To improve processing speed the directory in which CMap files are stored should not
contain other file types.

• CMap files should be loaded once per PDF instance and one PDF instance should be used as
long as possible to create an arbitrary number of PDF files.

Function Reference Page 715 of 854

• The CMap name and the file name should be identical.

• A valid CMap file must begin with the DSC comment "%!PS-Adobe-3.0 Resource-CMap"
(excluding double quotes). Other DSC comments are optional.

• The keys /CMapType, /WMode, /CMapName and /CIDSystemInfo must be fully defined
within the first 4096 bytes.

• DynaPDF uses the value of /CMapName and the CIDSystemInfo dictionary to identify a
CMap file.

Remarks:

The parameter Path must be an absolute path if the CMaps are loaded delayed. Otherwise it is
maybe not possible to load the files, e.g. if the current directory was already changed at the time the
files must be loaded.

The function performs a duplicate check during execution. If two CMap files with the same name,
registry, and ordering will be found, the one with the higher supplement number will be added to
the cache. The function parses the CMap's header information only. A CMap file must be loaded
into memory with LoadCMap() before it can be used with SetCIDFont(). However, the CMap's
header information can be accessed with GetCMap() without loading the CMap file.

The function is implemented in an Ansi and Unicode compatible version. Unicode paths are
converted to UTF-8 on non-Windows operating systems.

Return values:

If the function succeeds the return value is the number of CMap files in the cache. This value can
directly be used to access the CMap headers with GetCMap(). If the function fails the return value is
a negative error code. The only reason why this function can fail is out of memory.

SetColDefFile

Syntax:
LBOOL pdfSetColDefFile(

const PPDF* IPDF, // Instance pointer
UI32 EmbFile) // Handle of an embedded file

The function sets the initial document of a portable collection that should be opened in the viewer
application. See also CreateCollection().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 716 of 854

SetColSortField

Syntax:
LBOOL pdfSetColSortField(

const PPDF* IPDF, // Instance pointer
UI32 ColField, // Handle of a collection field
LBOOL AscendingOrder) // If true, sort the list in ascending order

The function sets the collection field that should be used to sort the list of embedded files.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetColorMask

Syntax:
LBOOL pdfSetColorMask(

const PPDF* IPDF, // Instance pointer
 UI32 ImageHandle, // Image handle
 SI32* Mask, // Mask values (min / max per component) or NULL
 UI32 Count) // Number of mask values

The functions sets or overrides the color mask of an image. The parameter ImageHandle must be a
valid handle of an image that should get the mask. The bit depth of the image must be higher than 1.

The parameter Mask must be an array of min / max pairs for every color channel. Each integer must
be in the range 0 to 2BitsPerComponent -1.

If Mask is NULL or if Count is zero an existing color mask will be deleted if any. Count holds the full
length of the array which must be 2 x NumComponents.

Remarks:

Color Key Masking depends on exact color values. Since JPEG or JPEG 2000 compressed images
produce interpolated colors, these filters should not be used with a color mask. To achieve
predictable results use Flate compression instead (see SetCompressionFilter()).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 717 of 854

SetColors

Syntax:
LBOOL pdfSetColors(
 const PPDF* IPDF, // Instance pointer
 UI32 Color) // Color value defined in the current color space

The function sets the fill and stroke color. The parameter Color must be defined in the current color
space. For example, if the current color space is DeviceGray the color value must be in the range 0 to
255. CMYK colors can be constructed with the macro PDF_CMYK() or with the function CMYK()
which is available in most programming languages. RGB colors can be constructed with the macro
PDF_RGB() or with the function RGB() which is available in most programming languages.

The function requires an open page, template, or pattern.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetColorSpace

Syntax:
LBOOL pdfSetColorSpace(
 const PPDF* IPDF, // Instance pointer
 TPDFColorSpace ColorSpace) // see below

typedef enum
{
 csDeviceRGB = 0,
 csDeviceCMYK = 1,
 csDeviceGray = 2
}TPDFColorSpace;

The function activates a device color space in the graphics state. All color values must be defined in
the current color space. Images or EMF graphics are automatically converted to the current color
space. The default color conversion rules can be modified with the function SetGStateFlags().

Extended color spaces can be set with SetExtColorSpace(), SetExtFillColorSpace(), and
SetExtStrokeColorSpace().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 718 of 854

SetCompressionFilter

Syntax:
LBOOL pdfSetCompressionFilter(
 const PPDF* IPDF, // Instance pointer
 TCompressionFilter Filter) // see below

typedef enum
{
 cfFlate = 0,
 cfJPEG = 1,

cfCCITT3 = 2, // PDF or TIFF output
 cfCCITT4 = 3, // PDF or TIFF output
 cfLZW = 4, // TIFF or GIF output
 cfReserved = 5, // Reserved for future extensions.
 cfFlateBW = 6, // TIFF, PNG, or BMP output
 cfJP2K = 7, // PDF or JPEG2000 output
 cfJBIG2 = 8, // PDF output only
 // Special flags for AddRasImage(), RenderPageToImage(), and RenderPDFFile().
 cfDitherFloydSteinberg = 0x00001000, // Floyd Steinberg Dithering.

cfConvGrayToOtsu = 0x00002000, // Optimal filter for an OCR scan.
// Special flags for Optimize()

 cfPresLosslessFilter = 0x00020000, // Preserve loss-less compression filters. Use the specified
 // filter otherwise.
 cfPresLossyFilter = 0x00040000 // Preserve lossy compression filters. Use the specified
 // filter otherwise.
}TCompressionFilter;

The function sets the compression filter that should be used to compress images. The filters are
described in detail at InsertImageEx().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetCompressionLevel

Syntax:
LBOOL pdfSetCompressionLevel(
 const PPDF* IPDF, // Instance pointer
 TCompressionLevel CompressLevel) // see below

typedef enum
{
 clNone = 0, // No compression (ignored for images)
 clDefault = 1, // Normal compression ratio
 clFastest = 2, // Less compression ratio but faster
 clMax = 3 // Maximum compression ratio but slower
}TCompressionLevel;

The function sets the current compression level. If the compression level is clNone, content streams
will be left uncompressed. This value is useful if a content stream must be debugged, the value will
be ignored for image streams. The compression level is also used by certain image compression
filters, see InsertImage() for further information.

Return values:

Function Reference Page 719 of 854

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetContent

Syntax:
LBOOL pdfSetContent(
 const PPDF* IPDF, // Instance pointer
 const char* Buffer, // New content stream
 UI32 BufSize) // Buffer size in bytes

This function replaces the content stream of the currently open page or template with a new one. If
the parameter Buffer is NULL the content stream of the page or template will be deleted. In the latter
case page resources such as fonts, images and so on will be deleted from the page object too.

Remarks:

Use this function in combination with GetContent() if you need to change a content stream in a
manner that DynaPDF does not supports. Do never change a content stream when you don't know
exactly what you are doing.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetDateTimeFormat

Syntax:
LBOOL pdfSetDateTimeFormat(
 const PPDF* IPDF, // Instance pointer
 UI32 TxtField, // Text field handle
 TPDFDateTime Fmt) // Date or time format

typedef enum
{
 dfMM_D = 0,
 dfM_D_YY = 1,
 dfMM_DD_YY = 2,
 dfMM_YY = 3,
 dfD_MMM = 4,
 dfD_MMM_YY = 5,
 dfDD_MMM_YY = 6,
 dfYY_MM_DD = 7,
 dfMMM_YY = 8,
 dfMMMM_YY = 9,
 dfMMM_D_YYYY = 10,
 dfMMMM_D_YYYY = 11,
 dfM_D_YY_H_MM_TT = 12,
 dfM_D_YY_HH_MM = 13,
 /* time formats */
 df24HR_MM = 14,
 df12HR_MM = 15,
 df24HR_MM_SS = 16,
 df12HR_MM_SS = 17
}TPDFDateTime;

Function Reference Page 720 of 854

The function restricts the allowed value of a text field to a date time format and applies this format if
the value was valid. A date time format is represented as two separate JavaScript actions in PDF
which are automatically created and added to the text field by this function.

The same formats can also be applied manually by creating two JavaScript actions, one for the
OnKeyStroke event, and one for the OnFormat event of the text field. See AddActionToObj() for a
description of the events.

DynaPDF uses the JavaScript functions AFDate_Keystroke() / AFDate_KeystrokeEx() and
AFDate_Format() / AFDate_FormatEx() to apply a date time format. The functions are described in the
JavaScript scripting reference which is available at http://www.adobe.com.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetDefBitsPerPixel

Syntax:
LBOOL pdfSetDefBitsPerPixel(
 const PPDF* IPDF, // Instance pointer
 SI32 Value) // Currently supported values are 8 and 24 bit

The function sets the default color depth in bits per pixel, which determines whether images should
be downsampled. If the property is to 8 bits per pixel images are converted to 256 indexed color
images. At time of publication only two values are supported:

• 24 bit: No conversion

• 8 bit: Conversion to 256 indexed color image

Default value = 24

Downsampling will only be applied if Flate compression is used. The color table is always created in
the current color space.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetDocInfo

Syntax:
LBOOL pdfSetDocInfo(
 const PPDF* IPDF, // Instance pointer
 TDocumentInfo DInfo, // see below
 const char* Value) // Info string

typedef enum
{
 diAuthor = 0,
 diCreator = 1,
 diKeywords = 2,
 diProducer = 3,

http://www.adobe.com/

Function Reference Page 721 of 854

 diSubject = 4,
 diTitle = 5,
 diCompany = 6,
 diPDFX_Ver = 7, // GetInDocInfo() or GetInDocInfoEx()
 diCustom = 8, // Not supported -> Use SetDocInfoEx()
 diPDFX_Conf = 9, // GetInDocInfo() or GetInDocInfoEx()
 diCreationDate = 10, // Available after a PDF file was imported
 diModDate = 11 // GetInDocInfo() or GetInDocInfoEx()
}TDocumentInfo;

The function sets or changes a document info entry. This function is implemented in an Ansi and
Unicode compatible version. The Ansi Version supports Ansi strings of the code page 1252. To
create a documents info entry in an arbitrary 8 bit or CJK encoding convert the string to Unicode
with the function ConvToIncode() and use the Unicode version to set the entry.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetDocInfoEx

Syntax:
LBOOL pdfSetDocInfoEx(
 const PPDF* IPDF, // Instance pointer

TDocumentInfo DInfo, // see SetDocInfo() above
const char* Key, // User defined key
const char* Value) // The value for a specific key

The function sets or changes a document info entry. This function supports also user defined keys
which can be created or changed if necessary. If the parameter DInfo is set to diCustom the
parameter Key must contain a unique key.

The following keywords are reserved and must not be used as user defined keys:

• Author

• CreationDate

• GTS_PDFXVersion

• Keywords

• ModifyDate

• Producer

• Subject

• Title

• Trapped

Note that the function does not check whether a reserved key is used. Using such a key causes
maybe errors which are mostly not reported in viewer applications.

User defined keys should be defined as 7 bit ASCII string and the usage of special characters like /,
\, #, or character codes higher than 127 should be avoided. The value of the document info entry
should not contain binary data.

Remarks:

Function Reference Page 722 of 854

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a documents info entry in an arbitrary 8
bit or CJK encoding convert the string to Unicode with the function ConvToIncode() and use the
Unicode version to set the document info entry.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetDrawDirection

Syntax:
LBOOL pdfSetDrawDirection(
 const PPDF* IPDF, // Instance pointer
 TDrawDirection Direction) // Draw direction

typedef enum
{
 ddCounterClockwise = 0,
 ddClockwise = 1
}TDrawDirection;

The function sets the draw direction of closed vector graphics such as rectangles, ellipses, triangles
and so on. The draw direction is important if a path should be filled with the nonzero winding
number rule or even-odd rule. Both modes are described in detail under ClipPath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetEMFFrameDPI

Syntax:
LBOOL pdfSetEMFFrameDPI(
 const PPDF* IPDF, // Instance pointer
 UI32 DPIX, // Horizontal DPI per inch
 UI32 DPIY) // Vertical DPI per inch

This function can be used to adjust DPI value which is used to calculate the picture size of an EMF
file. The values of DPIX and DPIY are only used if the flag mfUseRclFrame is set (see
SetMetaConvFlags()).

The flag mfUseRclFrame is primarily used to convert EMF files which where originally created from
non-portable WMF files. Such files contain often a wrongly calculated picture size (rclBounds) so
that the picture size must be calculated from the rectangle rclFrame of the EMF file header. This is
often the one and only way to convert those files successfully to PDF.

The default DPI value is 100. If the EMF picture appears too large then decrease the DPI value, e.g.
to 72.

Function Reference Page 723 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetEMFPatternDistance

Syntax:
LBOOL pdfSetEMFPatternDistance(
 const PPDF* IPDF, // Instance pointer
 double Value) // Distance between pattern lines in units

The function changes the default distance between lines of standard patterns during EMF
conversion.
Default value = 4.0
Minimum value = 1.0

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetErrorMode

Syntax:
LBOOL pdfSetErrorMode(
 const PPDF* IPDF, // Instance pointer
 TErrMode ErrMode) // see below

typedef SI32 TErrMode;
#define emIgnoreAll 0x00000000 // Default
#define emSyntaxError 0x00000001
#define emValueError 0x00000002
#define emWarning 0x00000004
#define emFileError 0x00000008
#define emFontError 0x00000010
#define emAllErrors 0x0000FFFF
#define emNoFuncNames 0x10000000 // Do not output function names
#define emUseErrLog 0x20000000 // Redirect all messages to the error log
// Special flags for CheckConformance().
// These flags add info messages to the error log. The error callback function is not invoked.
#define emLogFonts 0x00010000 // If set, CheckConformance() logs which fonts were replaced
with
 // system fonts or converted to Type3
#define emLogFontsVerbose 0x00020000 // If set, the path to the font file is added to the message too

The error mode specifies which error types should be treated as fatal error and whether error
messages should be added to the error log instead of calling the error callback function.

By default, DynaPDF ignores all non-fatal errors but calls the error callback function (if set) if an
error occurs. The last error message is also internally stored so that GetErrorMessage() is able to
return the last error message. Once a fatal error occurred, processing breaks immediately and no
further error messages or warnings are returned.

The special flag emNoFuncNames names can be used to avoid the output of the function name in
which the error occured. Error messages start normally with the function name that produced the

Function Reference Page 724 of 854

error, e.g. "SetFont: Font not found!". While this information is useful during development, it is
usually not useful in an end user application.

If the flag emUseErrLog is set, DynaPDF redirects all error messages to the error log, see
GetErrLogMessage() / GetErrLogMessageCount() / ClearErrorLog(). The error log is always cleared
when CreateNewPDF() is called, but the error messages reside in memory when CloseFile() or
FreePDF() is called.

The parameter ErrMode is a bit mask; multiple flags can be set with the bitwise or operator, e.g.
(emSyntaxError | emWarning).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetExtColorSpace

Syntax:
LBOOL pdfSetExtColorSpace(

const PPDF* IPDF, // Instance pointer
UI32 Handle) // Handle of an extended color space

The function activates an extended color space in the graphics state. An extended color spaces are
non-device color spaces, such as ICCBased, Lab, Separation, DeviceN, and so on. The current fill
and stroke color are initialized to black after the color space has been changed. Device color spaces
can be set with SetColorSpace(). The fill and stroke color spaces can also be set separately with
SetExtFillColorSpace() and SetExtStrokeColorSpace(). See also Color Spaces.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetExtFillColorSpace

Syntax:
LBOOL pdfSetExtFillColorSpace(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Handle of an extended color space

The function activates an extended color space for fillings in the graphics state. The fill color is
initialized to black after the color space has been changed. See also Color Spaces.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 725 of 854

SetExtGState

Syntax:
LBOOL pdfSetExtGState(

const PPDF* IPDF, // Instance pointer
UI32 Handle) // Handle of an extended graphics state object

The function activates an extended graphics state. Extended graphics states can be used to adjust
certain settings of the graphics state. See CreateExtGState() for further information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetExtStrokeColorSpace

Syntax:
LBOOL pdfSetExtStrokeColorSpace(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle) // Handle of an extended color space

The function activates an extended color space for strokes in the graphics state. The stroke color is
initialized to black after the color space has been changed. See also Color Spaces.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldBackColor

Syntax:
LBOOL pdfSetFieldBackColor(
 const PPDF* IPDF, // Instance pointer
 UI32 AColor) // Background color

The function sets the background color used for newly created interactive form fields and
annotations. Normal annotations support RGB colors only. Form fields support the color spaces
DeviceRGB, DeviceGray, and DeviceCMYK. The color value must be defined in the current color
space.

If the background should appear transparent set the color to NO_COLOR.
#define NO_COLOR 0xFFFFFFF1
Default value = NO_COLOR

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 726 of 854

SetFieldBBox

Syntax:
LBOOL pdfSetFieldBBox(

const PPDF* IPDF, // Instance pointer
UI32 AField, // Field handle
struct TPDFRect* BBox) // The new bounding box

The function changes the bounding box of a field. The bounding box must be defined in bottom up
coordinates. The Top member of the structure BBox must be larger than Bottom as well as Right
must be larger than the Left member.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldBorderColor

Syntax:
LBOOL pdfSetFieldBorderColor(
 const PPDF* IPDF, // Instance pointer
 UI32 AColor) // Border color

The function sets the border color used for newly created interactive form fields and annotations.
Normal annotations support RGB colors only. Form fields support the color spaces DeviceRGB,
DeviceGray and DeviceCMYK. The color value must be defined in the current color space.

If the border should appear transparent set the color to NO_COLOR.
#define NO_COLOR 0xFFFFFFF1
Default value = 0 // Black

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldBorderStyle

Syntax:
LBOOL pdfSetFieldBorderStyle(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 TBorderStyle Style) // Border style

typedef enum
{
 bsSolid = 0, // Solid border
 bsBevelled = 1, // Bevelled border
 bsInset = 2, // Inset border
 bsUnderline = 3, // Underline only
 bsDashed = 4, // Dashed border
 bsUserDefined = 5 // Not allowed
}TBorderStyle;

Function Reference Page 727 of 854

The function changes the border style of a specific Interactive Form field. The parameter AField must
be a valid field handle.

Remarks:

It is not possible to change the border style of imported button fields. The global border style which
is used for newly created fields can be set with the function SetBorderStyle().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldBorderWidth

Syntax:
LBOOL pdfSetFieldBorderWidth(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 double LineWidth) // Line width of the border

This function can be used to change the border width of a field. The parameter AField must be a
valid field handle. The parameter LineWidth must not be negative and it should either be 0, 1, 2, or 3
units (no border, thin, medium, or thick). Note that Adobe's Acrobat supports only these values. It is
possible to draw a field with any border width, but if the field is repainted due to a reset action or
due to other changes, the field appearance will be changed in Adobe's Acrobat and the border width
is adjusted to the nearest supported value.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldCalcOrder

Syntax:
LBOOL pdfSetFieldCalcOrder(
 const PPDF* IPDF, // Instance pointer
 SI32 CurrIndex, // Current calc order index
 UI32 NewIndex) // New calc order index

The function moves a field in the global calc order array. This is the order in which field values will
be recalculated when the value of any field changes.

The current calc order can be accessed with GetFieldCalcOrder(). The calc order array contains field
handles. A field handle is a simple array index.

Example:
// Assume the current calc order array looks as follows:
calcOrder[0] = 5;
calcOrder[1] = 9;
calcOrder[2] = 45;

Function Reference Page 728 of 854

calcOrder[3] = 122;
// Move the field of index 1 to index 3
pdfSetFieldCalcOrder(pdf, 1, 3);
// Result:
calcOrder[0] = 5;
calcOrder[1] = 45;
calcOrder[2] = 122;
calcOrder[3] = 9;

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldColor

Syntax:
LBOOL pdfSetFieldColor(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 TFieldColor ColorType, // Color type that should be changed
 TPDFColorSpace CS, // Color space
 UI32 Color) // Color value

typedef enum
{
 fcBackColor = 0,
 fcBorderColor = 1,
 fcTextColor = 2
}TFieldColor;

typedef enum
{
 csDeviceRGB = 0,
 csDeviceCMYK = 1,
 csDeviceGray = 2
}TPDFColorSpace;

The function sets a specific color of an interactive form field. The parameter AField must be a valid
field handle. The background and border color of a form field must be defined in the same color
space. The color space for the text color can be defined in a separate color space (e.g. DeviceGray for
the text and DeviceRGB for the background and border).

If the border or background should appear transparent set the value to NO_COLOR. The text color
cannot be transparent.
#define NO_COLOR 0xFFFFFFF1

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 729 of 854

SetFieldExpValue

Syntax:
LBOOL pdfSetFieldExpValue(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 SI32 ValIndex, // Value index or -1
 const char* Value, // New value
 const char* ExpValue, // New export value
 LBOOL Selected) // Select the value?

This function can be used to change the choice values of a combo or list box, or to change the state
and export value of check box. In the latter case, the parameter ValIndex will be ignored. If the field
handle refers to a radio button, ValIndex represents the index into the Kids array of the radio button.

To determine how many values are defined in a field call the function GetFieldExpValCount() or
GetFieldEx().

The parameter Value is ignored if the field is a check box or radio button. However, the parameter
ExpValue is required for these field types.

Notice:

If you don't need to change the value or export value then use the function
SetFieldExpValueEx() instead.

If the field is either a combo box or list box, the parameter ExpValue is optional and can be NULL. If
the parameter Value is set to NULL or to an empty string, the choice value will be deleted. Note that
all choice values in a combo or list box must be unique. DynaPDF checks whether another choice
value with the new name does already exist. If this is the case then the function will fail.

Combo boxes which have the field flag ffEdit set accept a value that was directly typed into the field
in a viewer. Such a value may or may not exist the list of choice values. In any case, a special
handling is required for this case because the value must be set as the field's value independent of
whether it is already included in the list of choice value.

To achieve this, set the parameter ValIndex to PDF_MAX_INT (0x7FFFFFFF) or any index greater
than the number of choice values in the field. The parameter Value can also be set to NULL or to an
empty string to delete the field's value. If the string is set then it becomes the new field value but it is
not added to the list of choice values if not included.

Note that the above handling is only valid for combo boxes which have the ffEdit field flag set.

Function Reference Page 730 of 854

Example (C++):
...
// aField is a handle of a combo box in this example; we want to
// deselect the currently selected value, that's all.
char* value, *expValue;
LBOOL selected;
SI32 valCount = pdfGetFieldExpValCount(pdf, aField);
for (SI32 i = 0; i < valCount; i++)
{
 if (pdfGetFieldExpValueEx(pdf, aField, i, value, expValue, selected))
 {
 if (selected)
 {
 pdfSetFieldExpValue(pdf, aField, i, value, expValue, false);
 break;
 }
 }
}

Remarks:

To enumerate the choice values of a combo box, list box or radio button use the function
GetFieldExpValueEx().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldExpValueEx

Syntax:
LBOOL pdfSetFieldExpValueEx(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 UI32 ValIndex, // Value index
 LBOOL Selected, // New state
 LBOOL DefSelected) // New default state

The function marks a choice value of a combo or list box as selected or unselected. It can also be
used to change the state of check boxes or the children of a radio button. The parameter ValIndex
will be ignored if the field is a normal check box (no child of a radio button or field group).

Remarks:

To enumerate the choice values of a combo box, list box or radio button use the function
GetFieldExpValueEx().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 731 of 854

SetFieldFlags

Syntax:
LBOOL pdfSetFieldFlags(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 TFieldFlags Flags, // Field flags, see below
 LBOOL Reset) // Reset the flags or add them?

typedef UI32 TFieldFlags;
// Basic flags supported by all field types except group fields and
// radio button fields.
#define ffReadOnly 0x00000001
#define ffRequired 0x00000002
#define ffNoExport 0x00000004
#define ffInvisible 0x00000008
#define ffHidden 0x00000010
#define ffPrint 0x00000020
#define ffNoZoom 0x00000040
#define ffNoRotate 0x00000080
#define ffNoView 0x00000100
// Special flags supported by specific fields only
#define ffMultiline 0x00001000 // Text fields only
#define ffPassword 0x00002000 // Text fields only
#define ffNoToggleToOff 0x00004000 // Radio buttons, check boxes
#define ffRadioIsUnion 0x04000000 // PDF 1.5 Radio buttons
#define ffCommitOnSelCh 0x08000000 // PDF 1.5 Combo and list boxes
#define ffEdit 0x00040000 // Combo boxes only
#define ffSorted 0x00080000 // Combo and list boxes
#define ffFileSelect 0x00100000 // PDF 1.4 Text fields only
#define ffMultiSelect 0x00200000 // PDF 1.4 List boxes only
#define ffDoNotSpellCheck 0x00400000 // PDF 1.4 Text fields, combo boxes
#define ffDoNotScroll 0x00800000 // PDF 1.4 Text fields only
#define ffComb 0x01000000 // PDF 1.5 Text fields only

The function sets the flags of a specific interactive form field. The parameter AField must be a valid
field handle. The parameter Flags is a bit mask, multiple flags can be set by adding the values or use
a bitwise Or operator, e.g. ffPrint | ffMultiline. If the parameter Reset is true the flags of the field are
set to the ones specified. If Reset is false, the flags are added by using a bitwise Or operator.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 732 of 854

Flag Description

ffInvisible If set, do not display the annotation if it does not belong to one of the
standard annotation types and no annotation handler is available.

ffHidden (PDF 1.2) If set, do not display or print the annotation or allow it to
interact with the user, regardless of its annotation type or whether an
annotation handler is available.

ffPrint
(PDF 1.2) If set, print the annotation when the page is printed. If clear,
never print the annotation, regardless of whether it is displayed on the
screen. This can be useful, for example, for annotations representing
interactive pushbuttons, which would serve no meaningful purpose on
the printed page.

ffNoZoom (PDF 1.3) If set, do not scale the annotation’s appearance to match the
magnification of the page. The location of the annotation on the page
(defined by the upper-left corner of its annotation rectangle) remains
fixed, regardless of the page magnification.

ffNoRotate
(PDF 1.3) If set, do not rotate the annotation’s appearance to match the
rotation of the page. The upper-left corner of the annotation rectangle
remains in a fixed location on the page, regardless of the page rotation.

ffNoView
(PDF 1.3) If set, do not display the annotation on the screen or allow it to
interact with the user. The annotation may be printed (depending on the
setting of the ffPrint flag), but should be considered hidden for purposes
of on-screen display and user interaction.

ffReadOnly (PDF 1.3) If set, do not allow the annotation to interact with the user. The
annotation may be displayed or printed (depending on the settings of the
afNoView and ffPrint flags), but should not respond to mouse clicks or
change its appearance in response to mouse motions.

ffRequired If set, the field must have a value at the time it is exported by a submit-
form action (see CreateSubmitAction() for further information).
Supported by all fields except group fields.

ffNoExport If set, the field must not be exported by a submit-form action (see
CtreateSubmitAction() for further information). Supported by all fields
except group fields.

ffMultiline If set, the field may contain multiple lines of text; if clear, the field’s text
is restricted to a single line. Supported by button fields, text fields.

Function Reference Page 733 of 854

Flag Description

ffPassword If set, the field is intended for entering a secure password that should not
be echoed visibly to the screen. Characters typed from the keyboard
should instead be echoed in some unreadable form, such as asterisks or
bullet characters. To protect password confidentiality, the value of the
text field is not stored in the PDF file if this flag is set. Supported by text
fields only.

ffNoToggleToOff If set, exactly one radio button must be selected at all times; clicking the
currently selected button has no effect. If clear, clicking the selected
button deselects it, leaving no button selected. Supported by radio button
fields only.

ffEdit If set, the combo box includes an editable text box as well as a drop list; if
clear, it includes only a drop list. Supported by combo boxes only.

ffSorted If set, the field values are sorted in ascending order. Supported by combo
boxes and list boxes only.

ffFileSelect (PDF 1.4) If set, the text entered in the field represents the pathname of a
file whose contents are to be submitted as the value of the field.
Supported by text fields only.

ffMultiSelect (PDF 1.4) If set, more than one of the field ’s option items may be selected
simultaneously; if clear, no more than one item at a time may be selected.
This flag is supported by list boxes only.

ffDoNotSpellCheck (PDF 1.4) If set, the text entered to the field will not be spell-checked.
Supported by text fields, combo boxes. If the field type is combo box, this
flag is meaningful only if the flag ffEdit is also set.

ffDoNotScroll (PDF 1.4) If set, the field will not scroll (horizontally for single-line fields,
vertically for multiple-line fields) to accommodate more text than will fit
within its annotation rectangle. Once the field is full, no further text will
be accepted. Supported by text fields only.

ffComb (PDF 1.5) Meaningful only if MaxLen is set (see CreateTextField()) and if
the ffMultiline, ffPassword, and ffFileSelect flags are clear. If set, the field
is automatically divided up into as many equally spaced positions, or
combs, as the value of MaxLen, and the text is laid out into those combs.
Supported by text fields only.

Function Reference Page 734 of 854

Flag Description

ffCommitOnSelCh (PDF 1.5) If set, the new value is committed as soon as a selection is made
with the pointing device. This allows applications to perform an action
once a selection is made, without requiring the user to exit the field. If
clear, the new value is not committed until the user exits the field.
Supported by combo boxes and list boxes only.

ffRadioIsUnion (PDF 1.5) If set, a group of radio buttons within a radio button field that
use the same export value for the on state will turn on and off in unison;
that is, if one is checked, they are all checked. This flag requires Acrobat 6
or higher and is supported by check boxes only.

SetFieldFont
SI32 pdfSetFieldFont(
 const PPDF* IPDF, // Instance pointer
 UI32 Field, // Field handle
 const char* Name, // Font name (depends on the font selection mode)
 TFStyle Style, // Font style
 double Size, // Font size or zero for auto size
 LBOOL Embed, // If true, the font will be embedded
 TCodepage CP) // Code page cp1252 or cpUnicode are recommended

The function sets or changes the font of a form field. Form fields support natively the code pages
1252 and MacRoman only.

If a form field should be used with another code page then DynaPDF must create an Unicode based
font for the field.

Subject to change:

This is only possible if the following external cmaps are available:

Minimal requirement:
UniJIS-UTF16-H // Encoding
Adobe-Japan1-UCS2 // Decoding

If OpenType fonts should be supported then these additional cmaps must be available:
UniGB-UTF16-H
Adobe-GB1-UCS2
UniKS-UTF16-H
Adobe-Korea1-UCS2

You find the above cmaps in the sub directory /Resource/CMap of the DynaPDF installation
folder. The cmaps can be loaded delayed with SetCMapDir().

Function Reference Page 735 of 854

If no external cmaps are available then DynaPDF creates the appearance stream of the field with
the specified font but the field font will be set to Helvetica! Although DynaPDF still creates a
PDF file in this case do not assume that the resulting file is usable!

If you don't want to use external cmaps then don't use another code page than 1252 or
MacRoman with form fields!

DynaPDF checks whether the field font supports all glyphs which are used in the field when the file
is closed. If one or more glyphs are missing, then the font will be replaced if DynaPDF can find a
better match that supports all glyphs.

If the font of several fields must be set to the same font, then store the returned field handle and set
the font with SetFieldFontEx().

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Unicode version is
preferred since font names are usually stored in Unicode format.

Field fonts and fonts which are used on a page are stored in different arrays. Therefore, a field font
handle that was returned by this function cannot be used with ChangeFont() and a font handle that
was returned by SetFont() cannot be used with SetFieldFontEx().

Return values:

If the function succeeds the return value is the font handle, a value greater zero. If the function fails
the return value is a negative error code.

SetFieldFontEx

Syntax:
LBOOL pdfSetFieldFontEx(
 const PPDF* IPDF,
 UI32 Field,
 UI32 Handle,
 double FontSize)

The function sets or replaces the font of a field. The function requires a font handle that was
returned by SetFieldFont().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 736 of 854

SetFieldFontSize

Syntax:
LBOOL pdfSetFieldFontSize(

const PPDF* IPDF, // Instance pointer
UI32 AField, // Field handle
double FontSize) // New font size

The function changes the font size of a specific field. A value of 0.0 is used as auto size. The optimal
font size is then calculated by DynaPDF.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldHighlightMode

Syntax:
LBOOL pdfSetFieldHighlightMode(

const PPDF* IPDF, // Instance pointer
UI32 AField, // Field handle
THighlightMode Mode) // New highlight mode

The function changes the highlight mode of a specific field. Supported field types are buttons,
checkboxes, radio buttons, and signature fields. Other field types do not support this property.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldIndex

Syntax:
LBOOL pdfSetFieldIndex(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 UI32 Index) // New field index (this represents the tab order)

This function can be used to set the tab order of interactive form fields. All fields, independently
whether they are created with DynaPDF or imported from external documents, holds in internal
index which can be used to reorder or sort the fields with this index.

The start index of a new field is not zero, it is 1000 instead. This makes it easier to set a field in front
of all other fields without changing all field indices. However, changing a field index changes not
the tab order directly, the fields of a page must be sorted before the page will be closed with the
function SortFieldByIndex().

The tab order of interactive form fields must be set for each page separately.

Function Reference Page 737 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Example (C++):

In this example we create 50 text fields in two columns. The order in which the fields are created is
line by line, not column by column. Execute the example and open the file with Acrobat or Reader.
You can see now that the tab order is column by column, not line by line as the fields were created.
Comment out the SortFieldsByIndex() function call and create the file again; the tab order is now
line by line.

Take a look onto the for-statement; we set the field index of the text fields of the first column only.
The other fields can be left unchanged because their index lies between 1001 and 1049.
#include "dynapdf.h"
using namespace DynaPDF;
// First we declare our error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}
int main(int argc, char* argv[])
{
 char tmp[30]; double y; SI32 field, index;
 PPDF* pdf = pdfNewPDF(); // Create a PDF instance
 if (!pdf) return 2; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfSetDocInfo(pdf, diCreator, "C++ sample project");
 pdfSetDocInfo(pdf, diSubject, "Tab order");
 pdfSetDocInfo(pdf, diCreator, "Tab order");

 pdfCreateNewPDF(pdf, "c:/cppout.pdf");
 pdfSetPageCoords(pdf, pcTopDown);
 pdfAppend(pdf);
 y = 50.0; index = 0;
 for (SI32 i = 0; i < 50; i++)
 {
 sprintf(tmp, "Field %d", i);
 if (i & 1)
 {
 // This is the second column, the field indices can be left
 // unchanged because they are above 1000.
 pdfCreateTextField(pdf, tmp, -1, false, 0, 210, y, 150, 20);
 y += 25.0; // goto the next line
 }else
 {
 field = pdfCreateTextField(pdf, tmp, -1, false,0,50,y,150,20);

Function Reference Page 738 of 854

 pdfSetFieldIndex(pdf, field, index++);
 }
 }
 pdfSortFieldsByIndex(pdf);
 pdfEndPage(pdf);
 pdfCloseFile(pdf);
 pdfDeletePDF(pdf); // Do not forget to delete the PDF instance
}

SetFieldMapName

Syntax:
LBOOL pdfSetFieldMapName(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 const char* Name) // Mapping name (NULL to delete it)

The function sets or changes the mapping name of a field. The mapping is used when exporting
interactive form field data from the document. The parameter AField must be a field handle. If the
mapping name of the field should be deleted set the parameter Name to NULL. This function is also
available in a Unicode compatible version. However, a mapping name should be defined as an Ansi
string.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldName

Syntax:
LBOOL pdfSetFieldName(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 const char* NewName) // New field name

The function changes the name of an interactive form field. Field names must sometimes be changed
when multiple interactive forms with identical field names are imported. The resulting form will be
damaged if the names of such fields are not changed.

The function does not check whether a field name is already in use. Such a check would not be
useful, because the usage of the function would be much more complicated. Use the function
CheckFieldNames() to check the integrity of the form after field names were changed.

Remarks:

Changing field names can cause problems if the field is used in a JavaScript action or global
JavaScript. The JavaScript(s) must also be changed to avoid error messages in Adobe's Acrobat.
Global JavaScripts can be accessed with the function GetJavaScript() and changed with the function

Function Reference Page 739 of 854

ChangeJavaScript(). A JavaScript Action can be accessed with the function GetJavaScriptAction()
and changed with the function ChangeJavaScriptAction().

Remarks:

This function is available in an Ansi and Unicode compatible version. Unicode field names are
supported since PDF 1.5 (Acrobat 6).

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldOrientation

Syntax:
LBOOL pdfSetFieldOrientation(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 SI32 Value) // Orientation in degrees (must be a multiple of 90)

The function sets or changes the orientation of a field. The parameter AField be a valid field handle.
The parameter Value must a multiple of 90 or 0. Positive values rotate the field counter clockwise,
negative values clockwise.

The function can also be used to rotate a Caret and FreeText annotation. The annotation handle must
be added to the constant PDF_ANNOT_INDEX in this case because annotations are stored in a
different array. Only caret and free text annotations can be rotated, all other annotation types do not
support this feature.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldTextAlign

Syntax:
LBOOL pdfSetFieldTextAlign(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Text field or button field handle
 TTextAlign Align) // New alignment

typedef enum
{
 taLeft,
 taCenter,
 taRight,
 taJustify
}TTextAlign;

The function set or changes the text alignment of a text or button field. The parameter AField must
be a valid handle of a text field or button field.

Function Reference Page 740 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldTextColor

Syntax:
LBOOL pdfSetFieldTextColor(
 const PPDF* IPDF, // Instance pointer
 UI32 Color) // Text color defined in the current color space

The function sets the text color which is used for newly created interactive form fields. The color
value must be defined in the current color space. The color space must not be changed before the
fields are created which should use this color.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFieldToolTip

Syntax:
LBOOL pdfSetFieldToolTip(
 const PPDF* IPDF, // Instance pointer
 UI32 AField, // Field handle
 const char* Value) // Tool tip

The function set or changes the tool tip or description string of an interactive form field. The
parameter AField must be a valid field handle.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a description string in an arbitrary
encoding convert the string to Unicode with the function ConvToIncode() first and use the Unicode
version to apply the string.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFillColor

Syntax:
LBOOL pdfSetFillColor(
 const PPDF* IPDF, // Instance pointer
 UI32 Color) // Color value defined in the current color space

The function sets the fill color. The parameter Color must be defined in the current color space. For
example, if the current color space is DeviceGray the color value must be in the range 0 to 255.

Function Reference Page 741 of 854

CMYK colors can be constructed with the macro PDF_CMYK() or with the function CMYK() which
is available in most programming languages. RGB colors can be constructed with the macro
PDF_RGB() or with the function RGB() which is available in most programming languages.

If the corresponding color space contains more than four color components use SetFillColorEx()
instead.

The function requires an open page, template, or pattern.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFillColorEx

Syntax:

LBOOL pdfSetFillColorEx(
const PPDF* IPDF, // Instance pointer
const BYTE* Color, // Color to be set
UI32 NumComponents) // Number of componnents

The function sets the fill color. The color must be defined as an array of bytes in the logical order of
the color space. The number of components must match the number of components of the
underlying color space.

Lab colors can be defined as signed char as usual. Make a typecast to BYTE* when passing the color
to the function. See CreateCIEColorSpace() for further information.

Example (C/C++):
...
char labColor[3] = {50, -34, 77}; // L, *a, *b
pdfSetFillColor(pdf, (BYTE*)labColor, 3);
...

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFillColorF

Syntax:
LBOOL pdfSetFillColorF(
 const PPDF* IPDF, // Instance pointer
 const float* Color, // Array of float values
 UI32 NumComponents) // Must match the underlying color space

The function sets the current fill color as an array of float values. The components of non-Lab color
spaces must be in the range from 0 through 1. The *a and *b components of a Lab color space are
typically in a range -128 though 127. The *L component ranges from 0 through 100.

Function Reference Page 742 of 854

The number of components must match the number of components of the underlying color space.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFillColorSpace

Syntax:
LBOOL pdfSetFillColorSpace(

const PPDF* IPDF, // Instance pointer
TPDFColorSpace CS) // Color space

The function changes the fill color space. In PDF, fill and stroke colors use both their own color
spaces. Although it is possible to use different color spaces for strokes and fillings it should be
avoided if possible. The fill color space is the relevant color space when creating interactive objects
such as form field or annotations. See also SetStrokeColorSpace().

Notice:

This function was added to DynaPDF primarily for testing purposes. The color space should be set
with SetColorSpace() which sets always the same color space for fillings and strokes.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFloatPrecision

Syntax:
LBOOL pdfSetFloatPrecision(
 const PPDF* IPDF, // Instance pointer
 UI32 NumTextDecDigits, // Number decimal digits for text object
 UI32 NumVectDecDigits) // Number of decimal digits for vector objects

The function changes the output precision of text and vector coordinates. The default precision for
text and vector graphics is two decimal digits. This corresponds to 7200 DPI. The output precision of
bezier curves is one higher as for vector graphics. The maximum output precision is 5 decimal
digits.

Note that higher values increase the resulting file size.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 743 of 854

SetFont

Syntax:
SI32 pdfSetFont(

const PPDF* IPDF, // Instance pointer
const char* Name, // Font name or NULL (see note below)
TFStyle Style, // Font style
double Size, // Font size
LBOOL Embed, // If true, the font is embedded
TCodepage CP) // Code page

typedef SI32 TFStyle;
#define fsNone 0x00000000 // Obsolete, use fsRegular instead
#define fsItalic 0x00000001
#define fsUnderlined 0x00000004
#define fsStriked 0x00000008
#define fsVerticalMode 0x00000010 // Not considered at this time
#define fsDblUnderline 0x00000020
// Width Class (defined for future use, ignored at this time)
#define fsUltraCondensed 0x00000100 // 1
#define fsExtraCondensed 0x00000200 // 2
#define fsCondensed 0x00000300 // 3
#define fsSemiCondensed 0x00000400 // 4
#define fsNormal 0x00000500 // 5
#define fsSemiExpanded 0x00000600 // 6
#define fsExpanded 0x00000700 // 7
#define fsExtraExpanded 0x00000800 // 8
#define fsUltraExpanded 0x00000900 // 9
// Weight Class
#define fsThin 0x06400000 // 100
#define fsExtraLight 0x0C800000 // 200
#define fsLight 0x12C00000 // 300
#define fsRegular 0x19000000 // 400
#define fsMedium 0x1F400000 // 500
#define fsDemiBold 0x25800000 // 600
#define fsBold 0x2BC00000 // 700 -> The old constant 2 is still supported to preserve
backward compatibility
#define fsExtraBold 0x32000000 // 800
#define fsBlack 0x38400000 // 900
#define fsUltraBlack 0x3E800000 // 1000

typedef enum
{

cp1250, // Eastern European
 cp1251, // Cyrillic
 cp1252, // Latin 1 Western European
 cp1253, // Greek
 cp1254, // Turkish
 cp1255, // Hebrew
 cp1256, // Arabic
 cp1257, // Baltic
 cp1258, // Vietnamese
 cp8859_2, // Latin 2 Central Europe
 cp8859_3, // Latin 3 Maltese
 cp8859_4, // Baltic
 cp8859_5, // Cyrillic
 cp8859_6, // Arabic
 cp8859_7, // Greek
 cp8859_8, // Hebrew
 cp8859_9, // Latin 5 Turkish
 cp8859_10, // Latin 6 Nordic Area
 cp8859_13, // Latin 7 Baltic Rim
 cp8859_14, // Latin 8 Celtic
 cp8859_15, // Latin 9 French

Function Reference Page 744 of 854

 cp8859_16, // Latin 10 Hungarian
 cpSymbol, // Symbol
 cp437, // DOS USA
 cp737, // DOS Greek
 cp775, // DOS Baltic Rim
 cp850, // DOS Multilingual
 cp852, // DOS Slavic
 cp855, // DOS Cyrillic
 cp857, // DOS Turkish
 cp860, // DOS Portuguese
 cp861, // DOS Icelandic
 cp862, // DOS Hebrew
 cp863, // DOS French (Canada)
 cp864, // DOS Arabic
 cp865, // DOS Nordic
 cp866, // DOS Russian
 cp869, // DOS Modern Greek
 cp874, // DOS Thai
 cpUnicode, // Unicode without Uniocde algorithms
 cpCJK_Big5_Uni, // Big5 plus HKSCS extension
 cpCJK_EUC_JP_Uni, // EUC-JP
 cpCJK_EUC_KR_Uni, // EUC-KR
 cpCJK_EUC_TW_Uni, // CNS-11643-1992 (Planes 1-15)
 cpCJK_GBK_Uni, // MS code page 936 (GB2312, EUC-CN plus GBK)
 cpCJK_GB12345_Uni, // GB-12345-1990 (Trad. Chinese form of GB-2312)
 cpCJK_HZ_Uni, // Mixed ASCII / GB-2312 encoding
 cpCJK_2022_CN_Uni, // ISO-2022-CN-EXT (GB-2312 plus ISO-11643)
 cpCJK_2022_JP_Uni, // ISO-2022-JP
 cpCJK_2022_KR_Uni, // ISO-2022-KR
 cpCJK_646_CN_Uni, // ISO-646-CN (GB-1988-80)
 cpCJK_646_JP_Uni, // ISO-646-JP (JIS_C6220-1969-RO)
 cpCJK_IR_165_Uni, // ISO-IR-165 (extended version of GB-2312)
 cpCJK_932_Uni, // Microsoft extended version of SHIFT_JIS
 cpCJK_949_Uni, // EUC-KR extended with UHC (Unified Hangul Codes)
 cpCJK_950_Uni, // Microsoft extended version of Big5
 cpCJK_JOHAB_Uni, // JOHAB
 cpShiftJIS, // Native CJK character set requires a CJK font
 cpBig5, // Native CJK character set requires a CJK font
 cpGB2312, // Native CJK character set requires a CJK font
 cpWansung, // Native CJK character set requires a CJK font
 cpJohab // Native CJK character set requires a CJK font
 cpMacRoman, // Mac Roman
 cpAdobeStd, // Special encoding for Type1 fonts; should not used.
 cpInternal, // Internal -> not usable
 cpGlyphIndexes, // TrueType and OpenType fonts only
 cpPDFDocEnc, // Internal -> not usable
 cpDingbats // Internal -> not usable
}TCodepage;

The function loads a font that can be used for text output and interactive form fields. The parameter
Name must be either the Family, Full, or PostScript Name depending on the current font selection
mode (see SetFontSelMode() for further information).

It is also possible to set the font name to NULL to deactivate the active font. This can be useful when
creating form fields. It means, use the default font of the global AcroForm object.

Fonts are looked up in the search directories which can be set with AddFontSearchPath(). On
Windows and Mac OS X operating systems DynaPDF adds automatically the default font directories
of the system to the list of font search paths. See SetUseSystemFonts() for further information.

Font enumeration

The available system fonts can be enumerated with GetSysFontInfo().

Function Reference Page 745 of 854

Font Search Order

DynaPDF searches for fonts in a specific order which can be changed with SetFontSearchOrder() or
SetFontSearchOrderEx(). The default search order is:

• TrueType, TrueType Collection, OpenType fonts with TrueType outlines
• OpenType fonts with Postscript outlines
• Type1
• Standard PDF fonts

OpenType fonts with TrueType outline are treated like ordinary TrueType fonts. All supported font
formats can be explicitly disabled if necessary. See SetFontSearchOrder() for further information.

Font names

All font types support different naming schemes: family and full names are normally used on
Windows and the Postscript name is widely used on Linux and UNIX operating systems. Font
names are case-sensitive, they must be specified exactly. The naming sheme that should be used for
font selection can be set with SetFontSelMode() (the default is smFamilyName).

Family name

The family name is the typeface of a font, it refers to the member lfFaceName of the LOGFONT
structure on Windows (see GetLogFont() for further information). Family names are stored in
Unicode format in TrueType and OpenType fonts. However, most available fonts can be selected
with the Ansi version of SetFont() too because a usual font name contains no special characters.

A family name is not unique; it specifies the font family and not a specific font of a given style.

The combination of the family name and the font style identifies a font. For example, the font Arial
is available in several different styles such as Regular, Bold, Italic, or BoldItalic. The style
information Bold, Italic, and so on is not part of the font name. That is the reason why the style is a
separate parameter of SetFont().

Each font style is physically stored in a separate font file. However, if a requested style is not
available, SetFont() emulates the missing style if a compatible variant can be found. The emulation
of bold and italic font styles can be disabled with SetFontWeight() and SetItalicAngle().

Full name

The full name is a unique font name that identifies a font exactly. The full name is a combination of
the family name plus the style name, e.g. "Arial Bold Italic". This is the name that Windows exposes
to users. The parameter Style is ignored when selecting fonts via the full name.

TrueType and OpenType fonts can contain many localized full names. DynaPDF loads all these
language variants so that they can be used independent of the current locale.

Function Reference Page 746 of 854

PostScript name

The postscript name should be a unique name that identifies a font exactly. However, it is known
that certain font vendors deliver fonts with incorrectly named style variants, i.e. the same postscript
name can be assigned to condensed and expanded versions. In such a case the postscript name is
not unique and avoids correct font selection.

It is usually better to select fonts via the full name since this name seems to be unique in most fonts.

Font Styles

The parameter Style specifies the font style variant that should be loaded from a given font family. A
font style is a 32 bit unsigned integer that is encoded as follows:

• Bits 0..8 // Style bits fsItalic, fsUnderlined, fsStriked

• Bits 9..19 // Width class (1..9) -> Defined for future use

• Bits 20..31 // Font Weight (100..1000)

The width class and font weight can be converted to a style constant with the macros
WidthToStyle() and WeightToStyle():
#define WidthToStyle(w) ((w) << 8)
#define WeightToStyle(w) ((w) << 20)
// Corresponding macros to extract the values
#define WidthFromStyle(s) (((s) & 0x00000F00) >> 8)
#define WeightFromStyle(s)(((s) & 0xFFF00000) >> 20)

Example:
// Width class 5 (Normal), font weight 700 (bold), italic
TFStyle style = WidthToStyle(5) | WeightToStyle(700) | fsItalic;
// or use the defined constants instead
TFStyle style = fsNormal | fsBold | fsItalic;

A valid font weight is a multiple of 100 or 100. Values like 450 or 770 are not meaningful.

Supported font formats

The following font formats are supported by DynaPDF (on Mac OS X the same formats are also
supported if they are stored in resource or data forks, as well as in .dfont or .suit files):

• TrueType fonts (*.ttf). MAC Standard, Unicode or CJK encoded fonts.
• TrueType Collection (*.ttc). These fonts contain multiple fonts into one.
• OpenType fonts (*.otf) with TrueType or PostScript outlines.
• PostScript Type 1 fonts (*.pfb or *.pfa). No metric files are required.

Font Subsetting

When a TrueType, OpenType or a font of a TrueType Collection will be embedded, DynaPDF
creates a subset of this font which contains the used characters only. The function constructs a
completely new font file that contains no unnecessary information.

Function Reference Page 747 of 854

Type 1 fonts are always stored unchanged in the PDF file. Font subsetting is not supported for this
font format.

Font Embedding

All supported font formats can be embedded as long as font embedding is not restricted in the font
file. Font embedding can be disabled when using the code page 1252 or MacRoman, but it is
required if another code page is used; the parameter Embed is ignored in this case. If font embedding
is required but not possible due to licensing restrictions the function will fail.

However, when creating Asian PDF files it is possible to use CID-keyed fonts instead. The CID-
Keyed Font Architecture works with embedded and non-embedded OpenType and TrueType fonts.
See SetCIDFont() for further information.

The 14 Standard Fonts

All versions of Adobe's Acrobat support 14 standard fonts. These fonts are always available
independent whether they're embedded or not.

Family name Full name PostScript name Style

Courier Courier Courier fsRegular

Courier Courier Bold Courier-Bold fsBold

Courier Courier Oblique Courier-Oblique fsItalic

Courier Courier Bold Oblique Courier-BoldOblique fsBold + fsItalic

Helvetica Helvetica Helvetica fsRegular

Helvetica Helvetica Bold Helvetica-Bold fsBold

Helvetica Helvetica Oblique Helvetica-Oblique fsItalic

Helvetica Helvetica Bold Oblique Helvetica-BoldOblique fsBold + fsItalic

Times Times Roman Times-Roman fsRegular

Times Times Bold Times-Bold fsBold

Times Times Italic Times-Italic fsItalic

Times Times Bold Italic Times-BoldItalic fsBold + fsItalic

Symbol Symbol Symbol fsRegular

ZapfDingbats ZapfDingbats ZapfDingbats fsRegular

DynaPDF includes the metrics of these fonts only. Please note that standard fonts have the lowest
search priority. If a standard font is available in one of the font search paths then this version will be
used. The font search order can be changed with SetFontSearchOrder().

Function Reference Page 748 of 854

Code pages versus character sets

The following table specifies which code page refers to which Windows character set.

Code page Windows character set
cp1250 EASTEUROPE_CHARSET
cp1251 RUSSIAN_CHARSET
cp1252 Ansi_CHARSET
cp1253 GREEK_CHARSET
cp1254 TURKISH_CHARSET
cp1255 HEBREW_CHARSET
cp1256 ARABIC_CHARSET
cp1257 BALTIC_CHARSET
cp1258 VIETNAMESE_CHARSET
cp8859_2 EASTEUROPE_CHARSET
cp8859_3 TURKISH_CHARSET
cp8859_4 BALTIC_CHARSET
cp8859_5 RUSSIAN_CHARSET
cp8859_6 ARABIC_CHARSET
cp8859_7 GREEK_CHARSET
cp8859_8 HEBREW_CHARSET
cp8859_9 TURKISH_CHARSET
cp8859_10 BALTIC_CHARSET
cp8859_13 BALTIC_CHARSET
cp8859_14 Ansi_CHARSET
cp8859_15 Ansi_CHARSET
cp8859_16 EASTEUROPE_CHARSET
cpSymbol SYMBOL_CHARSET
cp437 Ansi_CHARSET
cp737 GREEK_CHARSET
cp775 BALTIC_CHARSET
cp850 Ansi_CHARSET
cp852 EASTEUROPE_CHARSET
cp855 RUSSIAN_CHARSET
cp857 TURKISH_CHARSET
cp860 Ansi_CHARSET
cp861 Ansi_CHARSET
cp862 HEBREW_CHARSET
cp863 Ansi_CHARSET
cp864 ARABIC_CHARSET
cp865 Ansi_CHARSET
cp866 RUSSIAN_CHARSET
cp869 GREEK_CHARSET
cp874 VIETNAMESE_CHARSET
cpUnicode DEFAULT_CHARSET
cpCJK_Big5_Uni DEFAULT_CHARSET
cpCJK_EUC_JP_Uni DEFAULT_CHARSET
cpCJK_EUC_KR_Uni DEFAULT_CHARSET
cpCJK_EUC_TW_Uni DEFAULT_CHARSET

Function Reference Page 749 of 854

cpCJK_GBK_Uni DEFAULT_CHARSET
cpCJK_GB12345_Uni DEFAULT_CHARSET
cpCJK_HZ_Uni DEFAULT_CHARSET
cpCJK_2022_CN_Uni DEFAULT_CHARSET
cpCJK_2022_JP_Uni DEFAULT_CHARSET
cpCJK_2022_KR_Uni DEFAULT_CHARSET
cpCJK_646_CN_Uni DEFAULT_CHARSET
cpCJK_646_JP_Uni DEFAULT_CHARSET
cpCJK_IR_165_Uni DEFAULT_CHARSET
cpCJK_932_Uni DEFAULT_CHARSET
cpCJK_949_Uni DEFAULT_CHARSET
cpCJK_950_Uni DEFAULT_CHARSET
cpCJK_JOHAB_Uni DEFAULT_CHARSET
cpShiftJIS SHIFTJIS_CHARSET
cpBig5 CHINESEBIG5_CHARSET
cpGB2312 GB2312_CHARSET
cpWansung HANGUL_CHARSET
cpJohab HANGUL_CHARSET
cpMacRoman MAC_CHARSET

How to use CJK encodings?

DynaPDF supports two types of CJK fonts: Native CJK fonts which support native CJK character
sets such as cpShiftJIS, cpGB2312, cpWansung, and so on, and Unicode fonts which contains CJK
characters.

Pure Unicode fonts support, as the name suggests, Unicode code points and no mixed 8/16 bit CJK
encodings. Mixed 8/16 bit multi-byte strings must be converted to Unicode before they can be used
with Unicode fonts. This conversion is automatically applied when a code page is used which ends
with a "_Uni", e.g. cpCJK_Big5_Uni or cpCJK_932_Uni. The "CJK" in the code page name indicates
that mixed 8/16 bit CJK input character sequences must be used with this encoding.

The "_Uni" at the end of the name means that this code page can be used with a Unicode font. CJK
to Unicode conversion algorithms are available in the Ansi versions of string methods only. This is
normally no limitation because CJK strings are usually not defined as wide-strings.

The other CJK code pages which are available in DynaPDF are those without the "_Uni" at the end
of the name, such as cpShiftJIS, cpGB2312, and so on. These code pages represent character sets and
no code pages. The usage of a pure CJK encoding requires that the TrueType or OpenType font
contains a CMap in format 2. This is mostly the case in pure CJK fonts (fonts which provide no
Unicode based CMap). Unlike the CJK to Unicode code pages, these character sets can be used with
the Ansi and wide string versions of a text method. Native character sets are faster than Unicode
based versions because no string conversion is required.

In addition to the above code pages and character sets DynaPDF supports also the CID-Keyed font
architecture which was specifically designed to process Asian languages. See SetCIDFont() for
further information.

Function Reference Page 750 of 854

GDI Font selection in comparison to DynaPDF

The Windows GDI selects a font in another way than DynaPDF does. Let us see how a font can be
selected with the GDI function CreateFont() and where are the differences in comparison to
DynaPDF:
HFONT f = CreateFont(
 -240, // height of font
 0, // average character width
 0, // angle of escapement
 0, // base-line orientation angle
 500, // font weight
 1, // italic attribute option
 0, // underline attribute option
 0, // strikeout attribute option
 Ansi_CHARSET, // character set identifier
 OUT_TT_ONLY_PRECIS, // output precision
 CLIP_DEFAULT_PRECIS, // clipping precision
 ANTIALIASED_QUALITY, // output quality
 FF_DONTCARE, // pitch and family
 "Arial") // typeface name (Family Name)

nHeight

The GDI supports three modes how the font size or height can be specified. We want to discuss
negative values only because the other modes are not of interest for high precision output (positive
values specify the cell height of a font, this value must be converted by DynaPDF to determine the
wished font size). The font height we used in the example CreateFont() function call is defined as a
negative value. The absolute value of it is transformed to device units by the font mapper. We
choose a size of 240 units; this is a normal font size for a 1440 DPI output.

A negative font height in a CreateFont() function call is exactly the same as a positive height or size
in a SetFont() function call in DynaPDF (negative values are not supported by SetFont()).

However, GDI coordinates are normally upscaled because GDI functions support integer values
only. For example, if we want to use a font size of 12.74 units, we can only upscale the coordinate
system because it is impossible to define such a font size with a GDI function. That is the reason
why GDI drawings are defined in a specific resolution. GDI coordinates are never really device
independent.

However, to avoid issues with a fixed resolution the PDF format uses a completely different system
to produce device independent output. PDF coordinates and font sizes are expressed in floating
point units so that we can use our font size of 12.74 units directly. We do not need to upscale the
coordinate system and we don't need to consider whether the PDF file is drawn on a monitor or
printer. All the details about the output resolution are completely hidden for the user.

BTW - A PDF unit is 1/72 inch.

Function Reference Page 751 of 854

nWidth

The average character width (nWidth) is the same as horizontal text scaling in PDF (see
SetTextScaling()), but the calculation is completely different. The GDI uses the average character
width of a font to calculate the text scaling (the unscaled value is returned by the GDI function
GetTextMetrics() if nWidth was set to zero during font selection). So, the font must be selected into
device context twice to calculate a text scaling, one time to determine the unscaled value, and a
second time to select the font with the wished value.

If a text should be scaled to 120% horizontally the calculation is as follows (C++):
TEXTMETRIC tm;
GetTextMetrics(dc, &tm);
int nWidth = tm.AveCharWidth * 120 / 100;

Note that text scaling is an output attribute; the value is not used during font selection.

In PDF, text scaling is a separate property of the current graphics state so that you don't need to
determine the average character width of a font beforehand. Text scaling can be applied directly
with the function SetTextScaling() without any further calculation. So, if you want to scale a text to
120% in PDF, you can simply call the function SetTextScaling() as follows:
pdfSetTextScaling(pdf, 120.0);

nEscapement

The angle of escapement specifies the output angle of a text string in tenths degrees. The output
angle of a string has nothing to do with a font, it is an output attribute. Rotated text can be printed
with the function WriteAngleText() with DynaPDF.

nOrientation

This parameter specifies the angle, between each character's base line and the x-axis of the device.
DynaPDF does not support a function that enables printing of characters in this way. Each character
must be printed separately with the function WriteAngleText() to get the same result.

nWeight

The font weight can be in the range 0 to 1000 (zero means don't know). A font can be installed in up
to 10 different font weights and each weight refers to another font file. The weight is encoded in the
parameter Style of a SetFont() call. The helper function WidthToStyle() converts a weight to a
TFStyle constant. A valid font weight is dividable by 100. A value like 345 is no valid font weight
while 300 or 400, for example, would be correct.

The style flags underlined and strikeout are supported by SetFont() too. The only difference is that
each flag can be set with one parameter because the parameter Style of SetFont() is a bit-mask. See
sesction Font Styles for further information.

Function Reference Page 752 of 854

fdwCharSet

A character set is not what a user types in with the keyboard; it specifies a character collection or an
alphabet that the font must support. The charset has the highest search priority, followed by
fdwPitchAndFamily. Font selection fails if no font can be found that supports the selected character
set, but it does not fail if the font name is wrong.

This is the major difference in comparison to DynaPDF since the font name has the highest search
priority in DynaPDF. The character set or code page parameter is not used for font selection.

The next difference is that the GDI does not automatically map code page code points to Unicode,
this must be done manually. This step is not required when working with DynaPDF; the required
mapping is automatically applied.

fdwPitchAndFamily

The pitch and family specifies whether a proportional or fixed pitch font should be selected. This
parameter should be set to FF_DONTCARE because the pitch has a higher search priority as the font
name. A wrong value of this parameter avoids the selection of the wished font by the GDI.

SetFont() supports no corresponding parameter or style flag.

lpszFace

This can be the family or full name of a font. The GDI does not support postscript names. The font
name has the lowest search priority in the GDI while it has the highest in DynaPDF.

SetFont() needs to know what kind of name is supplied. The wished mode must be set beforehand
with SetFontSelMode(). SetFont() can select fonts via family name, full name, or postscript name.

If all three names should tested then use SetFontEx() instead.

Remarks:

The function SetFont() is implemented in an Ansi and Unicode compatible version. Family and full
names are originally defined in Unicode so that this version is preferred when the font selection
mode is set to smFamilyName (default) or smFullName.

All string functions report a warning if one or more glyphs cannot be found. Call
GetMissingGlyphs() to determine which characters could not be found.

Return values:

If the function succeeds the return value is the font handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 753 of 854

SetFontEx

Syntax:
SI32 pdfSetFontEx(

const PPDF* IPDF, // Instance pointer
const char* Name, // Font name or NULL (see note below)
TFStyle Style, // Font style
double Size, // Font size
LBOOL Embed, // If true, the font is embedded
TCodepage CP) // Code page

The function loads a font that can be used for text output and interactive form fields. The difference
in comparison to SetFont() is the way how the function tries to find the font.

If the font style is <> fsNone the function searches the font first by family name, then by full name,
and finally by postscript name if the font was not already found.

If the font style is set to fsNone the function searches the font first by full name, then by postscript
name, and finally by family name if the font was not already found.

It is also possible to set the font name to NULL to deactivate the active font. This can be useful when
creating form fields. It means: use the default font of the global AcroForm object for new fields.

The search runs are non-case-sensitive and spaces in the font name will be ignored.

This function can be used if a PDF font should be loaded or if it is not known whether the given font
name represents a family, full, or postscript name. See also SetFont().

Return values:

If the function succeeds the return value is the font handle, a value greater or equal zero. If the
function fails the return value is a negative error code.

Function Reference Page 754 of 854

SetFontOrigin

Syntax:
LBOOL pdfSetFontOrigin(
 const PPDF* IPDF, // Instance pointer
 TOrigin Origin) // New origin

typedef enum
{
 orDownLeft = 0,
 orTopLeft = 1
}TOrigin;

The function sets the current font origin that is used to position text strings. The font origin is
automatically set to orTopLeft or orDownLeft if the coordinate system will be changed (see
SetPageCoords() for further information).
Default value = orDownLeft

Font origin:

0 0

 The origin is top left
Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetFontSearchOrder

Syntax:
void pdfSetFontSearchOrder(
 const PPDF* IPDF,
 TFontBaseType Order[4]) // 4 element array or NULL

typedef enum
{

fbtTrueType, // TrueType, TrueType Collections
fbtType1, // Type1 font
fbtOpenType, // OpenType font with Postscript outlines
fbtStdFont, // PDF Standard font
fbtDisabled // Can be used to disable a font format

}TFontBaseType;

The function changes the font search order. The default search order is:

• TrueType
• OpenType (OpenType fonts with PostScript outlines)
• Type1
• PDF Standard Fonts

Function Reference Page 755 of 854

Every font type can be disabled if necessary with the value fbtDisabled. The array Order can be set to
NULL to reset the search order to the default order as described above. If Order is set, the array must
contain four elements and each value in the array must be properly initialized.

Example (C/C++):
TFontBaseType so[4] = {fbtStdFont, fbtTrueType, fbtOpenType, fbtType1};
// Change the search order
pdfSetFontSearchOrder(pdf, so);
...
// Reset the font search order to the default order
pdfSetFontSearchOrder(pdf, NULL);

Compatibility Note:

The default font search order in DynaPDF 2.0 was:

• Standard PDF Fonts
• TrueType or Type1

DynaPDF 2.0 selected simply the first font that matched the font name while the 14 PDF Standard
fonts had the highest search priority. Applications which use the standard fonts can change the
search order so that the standard fonts become a higher search priority than system fonts.

SetFontSearchOrderEx

Syntax:
void pdfSetFontSearchOrderEx(
 const PPDF* IPDF, // Instance pointer
 TFontBaseType S1, // First search format
 TFontBaseType S2, // Second search format
 TFontBaseType S3, // Third search format
 TFontBaseType S4) // Fourth search format

typedef enum
{

fbtTrueType, // TrueType, TrueType Collections
fbtType1, // Type1 font
fbtOpenType, // OpenType font with Postscript outlines
fbtStdFont, // PDF Standard font
fbtDisabled // Can be used to disable a font format

}TFontBaseType;

The function changes the font search order in the same way as SetFontSearchOrder() but it does not
use an array to set the search order to improve the compatibility to programming languages with
limited array support.

Function Reference Page 756 of 854

SetFontSelMode

Syntax:
LBOOL pdfSetFontSelMode(
 const PPDF* IPDF, // Instance pointer
 TFontSelMode Mode) // Font selection mode

typedef enum
{

smFamilyName = 0, // Default
 smPostScriptName = 1,
 smFullName = 2
}TFontSelMode;

The function changes the font selection mode. Note that the font names that will be passed to
SetFont() must correspond with the current font selection mode. If you don't know which font name
you have in memory then use SetFontEx() to select fonts. The font selection mode can be changed at
runtime whenever necessary.

SetFontWeight

Syntax:
LBOOL pdfSetFontWeight(
 const PPDF* IPDF, // Instance pointer
 SI32 Weight) // Font weight

The font weight specifies the thickness or boldness of a font. Not all fonts are available in a bold
style but such a style can be emulated. The property FontWeight specifies the maximum weight that
can be emulated.

A bold or bolder font style will only be emulated if the distance between the requested and the
available weight is larger or equal 200 and if the requested weight is smaller or equal FontWeight.

Font weights:

• 100 - 300 // Ultra-light, Light

• 400 - 500 // Standard

• 600 - 1000 // Bold till UltraBlack

Default value: 1000

To disable the emulation of very thick font styles set the property to a lower value. To fully disable
bold style emulation set the value to 100.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 757 of 854

SetGStateFlags

Syntax:
void pdfSetGStateFlags(

const PPDF* IPDF, // Instance pointer
TGStateFlags Flags, // See description
LBOOL Reset) // See below

typedef UI32 TGStateFlags;
#define gfCompatible 0x00000000 // Default
#define gfRestorePageCoords 0x00000001 // see below
#define gfRealTopDownCoords 0x00000002 // see below
#define gfNativeBlackWhite 0x00000004 // Do not convert RGB b/w to gray
#define gfUseImageColorSpace 0x00000008 // Use the image color space
#define gfIgnoreICCProfiles 0x00000010 // see description below
#define gfAnsiStringIsUTF8 0x00000020 // Ansi strings are UTF-8 encoded
#define gfRealPassThrough 0x00000040 // Insert JPEG images unchanged
#define gfNoBitmapAlpha 0x00000080 // Ignore the alpha channel in bitmaps
#define gfNoImageDuplCheck 0x00000100 // Disables duplicate check for images
#define gfNoObjCompression 0x00000200 // Disables object compression
#define gfComplexText 0x00000400 // If set, text is processed with Uniscribe on Windows.
#define gfDisableJavascript 0x00000800 // Ignore OnFormat scripts of text fields
#define gfDisableBidiCtrls 0x00001000 // Disable bidi control characters
#define gfDoNotComprMetadata 0x00002000 // Disable compression for metadata streams.
#define gfUpdatePDFVTModDate 0x00004000 // If set, the key GTS_PDFVTModDate will be set to the
 // file's modification date.
#define gfSkaleAnnotIcons 0x00008000 // If set, icons of text and file attach annotation are
 // scaled with the page like every other annotation.

The function sets optional flags affecting the graphics state, coordinate handling, as well as color
and image conversion rules. If the parameter Reset is true, the new flags replace current flags. If set
to false, the flags are combined with the current flags.

Flag Description

gfCompatible The graphics state is fully compatible to earlier versions of
DynaPDF.

gfRestorePageCoords If set, the current base coordinate system like bottom or top down is
saved and restored with the graphics state.

gfRealTopDownCoords This flag is reserved for future extensions. It is not implemented
yet.

gfNativeBlackWhite If set, RGB black or white is not converted to DeviceGray. This flag
affects text and vector graphics but no images.

gfUseImageColorSpace If set, the active color space is ignored when inserting an image. The
color space is taken from the image file instead. See also "Color
spaces and Images".

Function Reference Page 758 of 854

gfIgnoreICCProfiles If set, embedded ICC profiles in image files are ignored when
inserting an image. The image is inserted in the base color space
instead. This flag is not meaningful if the flag
gfUseImageColorSpace is absent. See also "Color spaces and
Images".

gfAnsiStringIsUTF8 If set, all Ansi functions (functions which end with an uppercase 'A'
or functions which contain only single byte string parameters (data
type char*)) interpret string parameters as UTF-8 encoded Unicode
strings. If a function does not support Unicode then the string will
be converted to the encoding that the function supports, typically to
the code page 1252.

This flag does NOT affect single byte strings in wide string
functions which contain also single byte string prameters (functions
which end with an uppercase 'W'), e.g. DecryptPDFW() or
EncryptPDFW().

The flag is also considered in functions which use structures to pass
string parameters to DynaPDF. For example, the function
InitColorManagement() uses the structure TPDFColorProfiles. This
structure supports Ansi and UTF-16 Unicode strings. If the flag
gfAnsiStringIsUTF8 is set, Ansi strings are interpreted as UTF-8
encoded Unicode strings.

Special attention must be taken into account when encrypting or
decrypting PDF files since most encryption handlers do not support
Unicode passwords. See CloseFileEx() for further information.

gfRealPassThrough If set, JPEG images are inserted as is. JPEG images are normally
rebuild, also in pass-through mode, to avoid issues with certain
malformed JPEG images which cannot be displayed in Adobes
Acrobat or Reader. If you know that your JPEG images work then
set this flag to avoid unnecessary processing time.

gfNoBitmapAlpha If set, the alpha channel in bitmaps files will be ignored. This is
sometimes useful since many 32 bit bitmaps contain an invalid
alpha channel that makes the image fully transparent.

gfNoImageDuplCheck If set, no duplicate check for images will be performed. This can
significantly improve processing speed especially for memory

Function Reference Page 759 of 854

based images.

gfComplexText This flag enables complex text layout. See section "Complex Text
Layout" for further information.

gfNoObjCompression If set, object compression will be disabled. Object compression is
enabled by default if the PDF version is set to PDF 1.5 or higher.

gfDisableJavascript If set, Javascript actions associated with the OnFormat event of text
fields are not executed to format the field value.

gfDisableBidiCtrls Meaningful only if gfComplexText is set too. If set, bidi control
characters are ignored. This flag can be useful if the result of web
browsers should be emulated since web browsers do not support
bidi control characters. This flag is also used internally to create the
appearance stream of form fields since form fields do not support
bidi control characters.

gfDoNotComprMetadata If set, metadata streams assiciated with fonts, templates, or images,
for example, will not be compressed. Metadata streams of PDF/X
files are always left uncompressed.

gfUpdatePDFVTModDate If set, the key GTS_PDFVTModDate will be set to the file's
modification date. The key exists in PDF/VT files only.

gfSkaleAnnotIcons If set, icons of text and file attach annotation are scaled with the
page like every other annotation. These annotations have normally
a fixed size that is indendent of the zoom or scaling factor.

SetIconColor

Syntax:
LBOOL pdfSetIconColor(
 const PPDF* IPDF, // Instance pointer
 UI32 Color) // RGB color value

The icon color is used for the closed state of a text annotation. The annotation appears then as an
icon. The color value must be defined in RGB color space.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.
Default value = 0x0099FFFF

Function Reference Page 760 of 854

SetImportFlags

Syntax:
LBOOL pdfSetImportFlags(
 const PPDF* IPDF, // Instance pointer
 TImportFlags Flags) // see below

typedef UI32 TImportFlags;
#define ifImportAll 0x0FFFFFFE // Default
#define ifContentOnly 0x00000000 // No interactive objects
#define ifNoContent 0x00000001 // Interactive objects only
#define ifImportAsPage 0x80000000 // No conversion to templates
#define ifCatalogAction 0x00000002 // Open action, Catalog actions
#define ifPageActions 0x00000004 // Page actions
#define ifBookmarks 0x00000008 // Bookmarks
#define ifArticles 0x00000010 // Articles
#define ifPageLabels 0x00000020 // Page labels
#define ifThumbs 0x00000040 // Thumbnails
#define ifTranspGroups 0x00000080 // Transparency groups
#define ifSeparationInfo 0x00000100 // Separation info
#define ifBoxColorInfo 0x00000200 // Box color info
#define ifStructureTree 0x00000400 // Structure tree (can be large)
#define ifTransition 0x00000800 // Presentation settings
#define ifSearchIndex 0x00001000 // External search index
#define ifJavaScript 0x00002000 // Global JavaScripts
#define ifJSActions 0x00004000 // JavaScript actions
#define ifDocInfo 0x00008000 // Document info entries
#define ifEmbeddedFiles 0x00200000 // File attachments
#define ifFileCollections 0x00400000 // File collections (PDF 1.7)
#define ifAllAnnots 0x009F0000 // All annotations
 #define ifFreeText 0x00010000 // FreeText annotations
 #define ifTextAnnot 0x00020000 // Text annotations
 #define ifLink 0x00040000 // Link annotations
 #define ifStamp 0x00080000 // Stamp annotations
 #define if3DAnnot 0x00100000 // 3D annotations
 #define ifOtherAnnots 0x00800000 // Other annotations
#define ifFormFields 0x01000000 // Interactive form fields
#define ifPieceInfo 0x02000000 // Private data. See description.
/* -------------------- Special flags -------------------- */

#define ifPrepareForPDFA 0x10000000 // See description
#define ifEnumFonts 0x20000000 // Import fonts for EnumDocFonts()
#define ifAllPageObjects 0x40000000 // Import links with ImportPageEx()

The function sets optional flags to control the import of external PDF files. The flags are ignored by
the function ImportPage(). ImportPageEx() ignores the flags too if the page is imported outside of an
open page (see ImportPageEx() for further information). The flags are defined as a bit-mask;
multiple flags can be combined by using a bitwise or operator.

A second set of flags can be set with SetImportFlags2().

This function cannot fail; the return value is always 1.

Flag Description

ifImportAll If set, all objects of an external PDF file are imported.

ifContentOnly If set, interactive objects are excluded from import.

Function Reference Page 761 of 854

ifNoContent If set, the visual contents of external pages will not be imported. This
flag can be used to copy interactive objects from one file to another.

ifImportAsPage If set, pages are not converted to templates. This flag is useful if an
imported page must not be used multiple times. Conversion to
templates is recommended if multiple imported pages should appear
on the same page since overlapping pages can cause resource conflicts.

ifCatalogAction If set, catalog actions will be imported if any. The documents catalog is
the root object of a PDF file, which can trigger actions when the file will
be opened, closed, or printed. See AddActionToObj() for further
information.

ifPageActions If set, page actions are imported if any. A page action is an action that
was added to the page itself, not an object of a page.

ifBookmarks If set, bookmarks are imported if any.

ifArticles If set, Articles are imported if any.

ifPageLabels If set, page labels are imported if any. If multiple files are imported,
DynaPDF imports the page labels of the first file only.

ifThumbs If set, thumb nail images are imported if any. Thumb nails can be
dynamically created by Acrobat since Acrobat 5. The thumb nail images
can be removed to reduce disk space.

ifTranspGroups If set, transparency groups are imported if any. If transparency groups
are removed the objects appear then opaque.

ifSeparationInfo If set, the separation information dictionary will be imported if any.

ifBoxColorInfo If set, the bounding boxes artbox, bleedbox and trimbox are shown in
user defined color. Note that the cropbox represents the current page;
the page is already cropped if a cropbox was defined.

ifStructureTree If set, structure trees are imported if any. A structure tree contains
information about the logical structure of a document. This information
can be used by screen readers and other accessibility plug-ins to enable
certain features. The information of a structure tree is not required to
view or print a PDF document.

ifTransition If set, transition settings are import. A transition dictionary contains

Function Reference Page 762 of 854

information about how a presentation should be displayed. These
settings can be removed if the document should not be used in
presentation mode.

ifSearchIndex If set, the file path to an external search index will be imported if any.

ifJavaScript If set, global JavaScripts are imported if any. Note that JavaScript
actions can use the functions defined in global JavaScripts. If these
scripts are removed, JavaScript actions must normally also removed to
avoid errors. However, it is often useful to remove the scripts for certain
debug operations.

ifJSActions If set, JavaScript actions are imported if any. This flag is useful if an
imported form contains JavaScripts which produces errors or warnings.
For instance, a document can define certain scripts which may require
specific settings such as a document info string and so on. It is then
often difficult to determine which object produces the error or warning
because it can be a JavaScript action or a global JavaScript. In such
cases, JavaScript actions can be excluded temporarily to check whether
the error still occurs.

ifDocInfo If set, document info entries are imported if any. Already existing
entries are not overridden.

ifEmbeddedFiles If set, embedded files are imported.

ifFileCollections If set, the global definition of a collection is imported. The file
attachments are still imported if the flag ifEmbeddedFiles is set. The
PDF file is simply not longer marked as portable collection, also known
as PDF Package. See also CreateCollection().

ifAllAnnots If set, all types of annotations are imported.

ifFreeText This flag is meaningful only if the flag ifAllAnnots is clear. If set,
FreeText annotations are imported if any.

ifTextAnnot This flag is meaningful only if the flag ifAllAnnots is clear. If set, text
annotations are imported if any.

ifLink This flag is meaningful only if the flag ifAllAnnots is clear. If set, link
annotations are imported if any. This annotation type is used for
weblinks, page links, and file links.

Function Reference Page 763 of 854

ifStamp This flag is meaningful only if the flag ifAllAnnots is clear. If set, stamp
annotations are imported if any.

if3DAnnot This flag is meaningful only if the flag ifAllAnnots is clear. If set, 3D
annotations are imported if any.

ifOtherAnnots This flag is meaningful only if the flag ifAllAnnots is clear. If set, other
annotation types as the ones listed above are imported if any.

ifFormFields If set, interactive form fields are imported if any (also called AcroForm).
Form fields are also annotations, but this type is handled separately.

ifPrepareForPDFA If set, LZW compressed streams are recompressed with Flate, the
Interpolate key of images is deleted if set, embedded files are not
imported.

ifPieceInfo The PieceInfo dictionary contains arbitrary application defined data. The data
in this dictionary is meaningful only for the application that created the data.

ifEnumFonts If set, only font objects are imported to enable high performance
enumeration of the fonts used in a PDF file. The PDF file must be
deleted with FreePDF() after the fonts were enumerated. See
EnumDocFonts() for further information.

ifAllPageObjects If set, all types of link annotations are imported when importing a page
within an open page with ImportPageEx(). The entire document should
be imported in this case.

Function Reference Page 764 of 854

SetImportFlags2

Syntax:
LBOOL pdfSetImportFlags2(

const PPDF* IPDF, // Instance pointer
TImportFlags2 Flags) // See below

typedef UI32 TImportFlags2;
#define if2MergeLayers 0x00000001 // See description
#define if2Normalize 0x00000002 // Replace LZW compression with Flate, apply limit
 // checks, repair errors if possible
#define if2UseProxy 0x00000004 // Load streams on demand
#define if2NoMetadata 0x00000008 // Ignore metadata streams attached on fonts, pages,
 // images, and so on.
#define if2DuplicateCheck 0x00000010 // Perform a duplicate check during PDF import. See
 // description below.
#define if2NoResNameCheck 0x00000020 // Useful in viewer applications
#define if2CopyEncryptDict 0x00000040 // If set, the encryption settings of an encrypted
 // PDF file are copied to the new PDF file. The flag
 // does nothing if the file is not encrypted.
#define if2SkipDPartData 0x00000080 // If set, DPart dictionaries are not imported.

The function sets optional flags to control the import of external PDF files. The flags are defined as a
bit-mask; multiple flags can be combined by using a bitwise or operator.

This function cannot fail; the return value is always 1.

Flag Description
if2MergeLayers If set, layers of different PDF files with the same name are merged. That

means the layer names in the same hierarchy will be unique. A merged
layer controls the visibility of layers from different imported PDF files.

If the flag is absent (default) it is possible that the same layer name
occurs multiple times in the same hierarchy.

if2Normalize This flag must be set if the file should be normalized with
CheckConformance(). The flag enables additional limit checks, LZW
compression will be replaced with Flate, and further repairs are applied
which are not enabled by default.

If2UseProxy If set, stream objects are not loaded into memory to reduce the memory
usage. This makes it possible to import PDF files of almost arbitrary size
with minimal memory usage. Nothing special must be considered if
this flag is set. It is also allowed to call CloseImportFile() after the
wished pages were imported. The file is automatically opened again
when streams must be loaded.

PDF files which were loaded in this way must not be deleted before the
new PDF file in memory was closed.

if2NoMetadata If set, metadata streams which are attached to fonts, images, pages,
templates, and so on will not be imported.

Function Reference Page 765 of 854

if2DuplicateCheck If set, the import algorithm performs a duplicate check on recourse objects like
images, templates, fonts, and so on, as well as on many other objects. This flag
can be useful if a PDF file must be split into separate files and if these files
must be merged again into one PDF file. Such an action would normally lead
to many double objects in the resulting PDF file.

The duplicate check is computation intensive and must be applied for all PDF
files which will be imported.

if2NoResNameCheck Import resources as is. This flag can significantly imporove the loading time of
pages with a huge resource tree. This flag should only be set in viewer
applications to improve the loading time of pages.

if2CopyEncryptDict If set, the encryption settings of an enrypted PDF file are copied to the
document in memory when OpenImportFile() or OpenImportBuffer() is called.
This makes it possible to edit and save a PDF file without loosing the
encryption settings. The PDF file must be closed with CloseFile() or
CloseAndSignFile(), for example since CloseFileEx() would override the
encryption settings.

if2SkipDPartData If set, DPart dictionaries are not imported. DPart stands for Document Parts, a
feature of PDF/VT.

SetItalicAngle

Syntax:
LBOOL pdfSetItalicAngle(
 const PPDF* IPDF, // Instance pointer
 double Angle) // Angle alpha in degrees

The property ItalicAngle is used to emulate an italic font if the font is not available in an italic style.
To avoid emulation set the angle to zero.

The italic angle must not be smaller than -30 degrees and not larger than 30 degrees.
Default value = 14.0

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 766 of 854

SetJPEGQuality

Syntax:
LBOOL pdfSetJPEGQuality(
 const PPDF* IPDF, // Instance pointer
 UI32 Value) // Quality (0..100 or 0..-1000)

The function sets the quality for JPEG and JPEG 2000 compressed images. Lower values cause
higher compression rates, however, worse image quality.

The JPEG encoder supports a range from 0 through 100. The value can be set as positve or negative
number. The JPEG 2000 encoder supports a positive range from 0 through 1000, and from 0 through
-1000. Values outside the allowed range are adjusted to next nearest valid value. The larger range is
supported to achieve better backwards compatibility to older DynaPDF versions.

A negative value deactivates pass-through mode of the JPEG and JPEG 2000 decoders. That means,
an image will be re-compressed, also if not necessary.

The JPEG 2000 encoder divides a value greater 100 by 10 and uses finally the absolute value.

The values 0, 100, or -1000 activate loss-less encoding. Loss-less encoding is supported by JPEG 2000
only.
Default value = 70

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetLanguage

Syntax:
LBOOL pdfSetLanguage(
 const PPDF* IPDF, // Instance pointer
 const char* ISOTag) // Language identifier see below

The property specifies the language of the document. The document's language should always be
set when creating Tagged PDF files or Interactive Forms. The spell check feature in Adobe's Acrobat
depends on the properly defined document language.

Language Identifiers

The value of the language property is a string that specifies the language with a language identifier
having the syntax, defined in Internet RFC 3066, Tags for the Identification of Languages.

This syntax, which is summarized below, is also used to identify languages in XML, according to the
World Wide Web Consortium document Extensible Markup Language (XML) 1.0.

Language identifiers can be based on codes defined by the International Organization for
Standardization in ISO 639 and ISO 3166 or registered with the Internet Assigned Numbers

Function Reference Page 767 of 854

Authoring (IANA, whose Web site is located at http://www.iana.org), or they can include codes
created for private use. A language identifier consists of a primary code optionally followed by one
or more sub codes (each preceded by a hyphen). The primary code can be any of the following:

• A 2-character ISO 639 language code - for example, en for English or es for Spanish.
• The letter i, designating an IANA-registered identifier
• The letter x for private use

The first sub code can be a 2-character ISO 3166 country code, as in en-US, or a 3- to 8-character sub
code registered with IANA, as in en-cockney or i-cherokee (except in private identifiers, for which sub
codes are not registered). Sub codes beyond the first can be any that have been registered at IANA.

Language identifiers are treated case-sensitive.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetLeading

Syntax:
LBOOL pdfSetLeading(
 const PPDF* IPDF, // Instance pointer
 double Value) // New leading or 0

The function sets the leading (also called line height or line spacing) that is used by the functions
AddContinueText() and WriteFText() to calculate the distance between two text lines.

The default leading in PDF is the font size. However, this value is often too small and can cause
overlapping text lines. Most modern TrueType and OpenType fonts contain metrics of the
typographic leading or line height that was intended for the particular font. This value considers the
particular properties of the font and is the recommended way to calculate the line height.

The typographic line height or leading is returned by the functions GetTypoLeading() and
GetFontMetrics().

A value of 0 determines that the font size should be used as leading, this is the default behaviour.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

http://www.iana.org/

Function Reference Page 768 of 854

SetLicenseKey

Syntax:
LBOOL pdfSetLicenseKey(
 const PPDF* IPDF, // Instance pointer
 const char* Value) // License key as string

The function sets the license key and deactivates the demo mode if the key was valid. If the value
represents a correct license key the demo string does not longer appear on PDF pages. Once a
correct key was set, it will be active until the library will be unloaded or the current PDF instance is
deleted.

Note that the key must be set for each PDF instance or process of a multi-threading application.

To determine whether a specific function is available in DynaPDF Starter or Lite, pass the string
"Starter" or "Lite" to the function; all functions which are disabled in these versions produce then an
error. It is a good idea to set an error callback function so that you can see all errors…

Notice: The license key must not be stored in the registry or other files in an unencrypted form.

Return values:

• The function returns true whether or not the key was valid!
• If the key is valid but expired, then the return value is false.

The recommended way to apply the license key is as follows:
// Check first whether the right version of the dynapdf.dll was loaded and
// then set the license key.
char* ver = pdfGetDynaPDFVersionInt();
if (ver[0] <= 40450131 || pdfSetLicenseKey(pdf, "...") == false)
{
 throw("Wrong dynapdf.dll version loaded!");
}

SetLineAnnotParms

Syntax:
LBOOL pdfSetLineAnnotParms(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Handle of a line annotation
 SI32 FontHandle, // Font handle or -1 for Helvetica
 double FontSize, // Font size of the caption or zero
 struct TLineAnnotParms* Parms) // Can be NULL to delete all measure
 // line specific values

typedef enum
{
 cpInline, // The caption is centered inside the line
 cpTop // The caption is drawn on top of the line
}TLineCaptionPos;

Function Reference Page 769 of 854

struct TLineAnnotParms
{
 UI32 StructSize; // Must be set to sizeof(TLineAnnotParms)
 LBOOL Caption; // See description
 float CaptionOffsetX; // Horizontal offset of the caption
 float CaptionOffsetY; // Vertical offset of the caption
 TLineCaptionPos CaptionPos; // See enum TLineCaptionPos
 float LeaderLineLen; // Length of the leader lines
 float LeaderLineExtend; // Leader line extend (must be positive or 0)
 float LeaderLineOffset; // Amount of space between the endpoints of the

 // annotation and the leader lines (must be a
 // positive value or zero)
};

The function sets or changes the properties of a line annotation relating to measure lines. The
parameter Parms can be set to NULL to delete all measure line specific values. The parameters
FontHandle and FontSize will be ignored in this case.

The member Caption specifies whether the parameter Content of the function LineAnnot() should be
used as caption of the measure line. Although a measure line can display the string in a PopUp
annotation like ordinary line annotations, this is not recommended and not fully supported in
Adobe's Acrobat or Reader.

If Caption is true (recommended), the caption is drawn horizontally centered either on top or inside
the measure line. The text position can be changed from its normal position with the members
CaptionOffsetX and CaptionOffsetY.

The parameter FontHandle can be used to specify an arbitrary font that should be used to draw the
caption. Although it is possible to use any font or font size greater 0 with DynaPDF, a PDF viewer
will change the font and font size to it's default values when the annotation will be edited since line
annotations support no property to specify the font or font size.

The default font to draw the caption is Helvetica and the default font size is 9 units. In order to use
the default font set the parameter FontHandle to -1. The default font size is used if the parameter
FontSize is set to to zero.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 770 of 854

SetLineCapStyle

Syntax:
LBOOL pdfSetLineCapStyle(
 const PPDF* IPDF, // Instance pointer
 TLineCapStyle Style) // see below

typedef enum
{
 csButtCap = 0,
 csRoundCap = 1,
 csSquareCap = 2
}TLineCapStyle;

The function sets the line cap style that specifies how the endpoint of a line will be drawn. The
property must be applied inside an open page, template, or pattern.

Style Appearance Description

csButtCap

The stroke is squared off at the endpoint of the
path. There is no projection beyond the end of the
path.

csRoundCap

A semicircular arc with a diameter equal to the
line width is drawn around the endpoint and
filled in.

csSquareCap

The stroke continues beyond the endpoint of the
path for a distance equal to half the line width
and is then squared off.

Default value = csButtCap

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetLineDashPattern (obsolete)

Syntax:
LBOOL pdfSetLineDashPattern(
 const PPDF* IPDF, // Instance pointer
 const char* Dash, // Dash array defined as string
 SI32 Phase) // The pattern's phase

This function is obsolete, please use SetLineDashPattern2() instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 771 of 854

SetLineDashPattern2

Syntax:
LBOOL pdfSetLineDashPattern2(
 const PPDF* IPDF, // Instance pointer
 const float* Dash, // Dash array defined
 UI32 NumValues, // Number of values in the dash array
 float Phase) // The pattern's phase

The line dash pattern controls the pattern of dashes and gaps used to stroke paths. It is specified by a
dash array and a dash phase. The dash array’s elements are numbers that specify the lengths of
alternating dashes and gaps; the dash phase specifies the distance into the dash pattern at which to
start the dash. The elements of both the dash array and the dash phase are expressed in user space
units. Before beginning to stroke a path, the dash array is cycled through, adding up the lengths of
dashes and gaps. When the accumulated length equals the value specified by the dash phase,
stroking of the path begins, using the dash array cyclically from that point onward. The table shows
examples of line dash patterns. As can be seen from the table, an empty dash array and zero phase
can be used to restore the dash pattern to a solid line (you can also use ResetLineDashPattern()).

Dash & Phase Appearance Description

(NULL, 0)

No dash; solid, unbroken lines

("3", 0)

3 units on, 3 units off…

("2", 1)

1 on, 2 off, 2 on, 2 off, …

("2 1", 0)

2 on, 1 off, 2 on, 1 off, …

("3 5", 6)

2 off, 3 on, 5 off, 3 on, 5 off, ...

("2 3", 11)

1 on, 3 off, 2 on, 3 off, 2 on, ...

Dashed lines wrap around curves and corners just as solid stroked lines do. The ends of each dash
are treated with the current line cap style, and corners within dashes are treated with the current
line join style. A stroking operation takes no measures to coordinate the dash pattern with features
of the path; it simply dispenses dashes and gaps along the path in the pattern defined by the dash
array. When a path consisting of several sub paths is stroked, each sub path is treated independently
- that is, the dash pattern is restarted and the dash phase is reapplied to it at the beginning of each
sub path.

How to create a dotted line?

As described above, a line dash pattern is drawn by applying the current line cap style and join
style. A round cap is painted as semicircular arc with a diameter equal to the line width. If we set
the length of the first on-state to 0 then we get a circle, or dot. The second number of the dash array
specifies the length of the off-state measured from the centers of our circles.

It is quite easy to draw the line now:

Function Reference Page 772 of 854

...
float dash[2] = {0.0f, 60.0f};
pdfSetLineWidth(pdf, 30);
pdfSetLineCapStyle(pdf, csRoundCap);
pdfSetLineDashPattern2(pdf, dash, 0.0f);
pdfMoveTo(pdf, 50, 50);
pdfLineTo(pdf, 550, 50);
pdfStrokePath(pdf);
...

Output:

 60 Units

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetLineDashPatternEx (obsolete)

Syntax:
LBOOL pdfSetLineDashPatternEx(

const PPDF* IPDF, // Instance pointer
const double* Dash, // Array of doubles representing the pattern
UI32 NumValues, // Array length
SI32 Phase) // Dash phase

This function is obsolete, please use SetLineDashPattern2() instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetLineJoinStyle

Syntax:
LBOOL pdfSetLineJoinStyle(
 const PPDF* IPDF, // Instance pointer
 TLineJoinStyle Style) // see below

typedef enum
{
 jsMiterJoin = 0,
 jsRoundJoin = 1,
 jsBevelJoin = 2
}TLineJoinStyle;

Function Reference Page 773 of 854

The function sets the line join style which specifies how two line segments are connected. The
property must be applied inside an open page, template or pattern.

Style Appearance Description

jsMiterJoin

The outer edges of the strokes for the two segments
are extended until they meet at an angle, as in a
picture frame. If the segments meet at too sharp an
angle (as defined by the miter limit parameter — see
SetMiterLimit(), a bevel join is used instead.

jsRoundJoin

An arc of a circle with a diameter equal to the line
width is drawn around the point where the two
segments meet, connecting the outer edges of the
strokes for the two segments. This pie slice-shaped
figure is filled in, producing a rounded corner.

jsBevelJoin

The two segments are finished with butt caps (see
SetLineCapStyle()) and the resulting notch beyond the
ends of the segments is filled with a triangle.

Default value = jsMiterJoin

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 774 of 854

SetLineWidth

Syntax:
LBOOL pdfSetLineWidth(
 const PPDF* IPDF, // Instance pointer
 double Value) // Line width

The function sets the line width used to stroke paths. The line width is also used to specify the
thickness of the border of annotations and interactive form fields. In the latter case, the line width
should be a multiple of one (or zero) and not exceed 3 units. Larger values are still correctly
rendered by Adobe's Acrobat but the appearance can be changed when a Reset Form Action is
executed or when other changes are made to the document.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetLinkHighlightMode

Syntax:
LBOOL pdfSetLinkHighlightMode(
 const PPDF* IPDF, // Instance pointer
 THighlightMode Mode) // see below

typedef enum
{
 hmNone, // Default
 hmInvert, // Invert the contents of the annotation's bounding box
 hmOutline, // Invert the annotations border
 hmPush, // Simulate a push button effect
 hmPushUpd // Update the appearance stream on changes
}THighlightMode;

The function sets the highlight mode that is used by link annotations. The highlight mode applies a
visual effect when moving the mouse over a link annotation.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 775 of 854

SetListFont

Syntax:
LBOOL pdfSetListFont(

const PPDF* IPDF, // Instance pointer
UI32 Handle) // Font handle

The function marks an arbitrary font as list font. The font is used in WriteFText() when a list
operator was found. The symbol to be used as list symbol can be set with the list operator. See
WriteFText() for further information. The parameter Handle must be a valid font handle that was
returned by SetFont(), SetFontEx(), or LoadFont().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetMatrix

Syntax:
LBOOL pdfSetMatrix(
 const PPDF* IPDF, // Instance pointer
 struct TCTM* Matrix) // Transformation matrix

struct TCTM
{

double a;
double b;
double c;
double d;
double x;
double y;

};

The function left multiplies the current transformation matrix with the new one. The transformation
matrix is part of the graphics state. When changing the coordinate system it is usually best to save
the graphics state beforehand with SaveGraphicState(). This makes it possible to restore the
coordinate system with RestoreGraphicState().

Notice:

The native coordinate system in PDF is bottom up. Changing the base coordinate system with
SetPageCoords() to top down results in a mirrored coordinate system that is applied with the
current transformation matrix. DynaPDF makes sure that text functions and so on produce correct
results in the mirrored coordinate system.

However, when multiplying a new matrix with the already changed transformation matrix
DynaPDF must set the base coordinate system back to bottom up after multiplying the matrices.
This is required because multiplying the transformation matrix again with another one would
otherwise produce incorrect results.

Function Reference Page 776 of 854

Matrix multiplications and every other transformation of the coordinate system should always be
applied in bottom up coordinates. It is the only way to avoid side effects when changing the
coordinate system arbitrary often.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetMaxErrLogMsgCount

Syntax:
void pdfSetMaxErrLogMsgCount(
 const PPDF* IPDF, // Instance pointer
 UI32 Value) // New limit

The function can be used the change the maximum number of error messages which can be stored
in the internal error log. It is normally best to restrict the number of error messages especially when
importing PDF files because damaged PDF files can produce hundreds or thousands of warnings.

See also GetErrLogMessage().

The default value is 100.

SetMaxFieldLen

Syntax:
SI32 pdfSetMaxFieldLen(
 const PPDF* IPDF, // Instance pointer
 UI32 TxtField, // Text field handle
 SI32 MaxLen) // Maximum string length or zero if not restricted

The function changes the maximum count of characters which can be entered into a text field. A
value of zero determines that the string length should not be restricted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 777 of 854

SetMetaConvFlags

Syntax:
SI32 pdfSetMetaConvFlags(
 const PPDF* IPDF, // Instance pointer
 TMetaFlags Flags) // see below

typedef UI32 TMetaFlags;
#define mfDefault 0x00000000 // No flags
#define mfDebug 0x00000001 // Insert debug comments
#define mfShowBounds 0x00000002 // Show the bounding boxes of text
#define mfNoTextScaling 0x00000004 // Do not scale text records
#define mfClipView 0x00000008 // Clip the output rectangle
#define mfUseRclBounds 0x00000010 // Use the raw bounding box rclBounds
#define mfNoClippingRgn 0x00000040 // Ignore clipping regions
#define mfNoFontEmbedding 0x00000080 // Don't embed fonts used by the EMF
#define mfNoImages 0x00000100 // Ignore image records
#define mfNoStdPatterns 0x00000200 // Ignore standard hatch patterns
#define mfNoBmpPatterns 0x00000400 // Ignore bitmap patterns
#define mfNoText 0x00000800 // Ignore text records
#define mfUseUnicode 0x00001000 // Use always Unicode to print text
#define mfUseTextScaling 0x00004000 // Scale text (see description)
#define mfNoUnicode 0x00008000 // Avoid the usage of Unicode fonts
#define mfFullScale 0x00010000 // Scale coordinates to Windows size
#define mfUseRclFrame 0x00020000 // See description
#define mfDefBkModeTransp 0x00040000 // Initial backg. mode is transparent
#define mfApplyBidiAlgo 0x00080000 // Apply the bidirectional algorithm
#define mfGDIFontSelection 0x00100000 // Use the GDI to select fonts
#define mfRclFrameEx 0x00200000 // See description
#define mfSrcCopy_Only 0x00800000 // See description
#define mfClipRclBounds 0x01000000 // See description
#define mfDisableRasterEMF 0x02000000 // Disable the EMF rasterizer
#define mfNoBBoxCheck 0x04000000 // Disable the bbox check
#define mfDontSkipROP_DPa 0x10000000 // If set, the ROP code 0x00A000C9 (DPa) is considered in
 // BitBlt, StretchBlt, TranparentBlt, and AlphaBlend records.
 // This kind of ROP code combines a pattern brush with the
 // backdrop. If the flag mfDisableRasterEMF is absent, the
 // usage of such a ROP code causes that the file is rendered
 // to an image.
#define mfCurrComprFilter 0x20000000 // If set, the currently active compression filter is used to
 // compress the image (see SetCompressionFilter()).
 // This flag is used only if the file is rastered to an image.

// Obsolete flags -> These flags are ignored, do not longer use them!
#define mfUseSpacingArray 0x0020 // Enabled by default
#define mfIntersectClipRect 0x2000 // Enabled by default

The function sets specific flags to control the conversion of metafiles. The flags are described in
detail on the next page. This function cannot fail the return value is always 1.

Flag Description

mfApplyBidiAlgo If set, the bidirectional algorithm is applied on Unicode strings. This
flag must be set to process Hebrew text correctly.

mfClipRclBounds If set, the EMF file is drawn into a clipping rectangle in the size of the
rclBounds rectangle. This flag can be useful if the EMF file contains
objects outside the rclBounds rectangle.

mfClipView If set, the metafile is drawn into a clipping rectangle in the size of the

Function Reference Page 778 of 854

metafile or currently defined view. This flag should always be set if a
user defined view is used. See InsertMetafileExt() for further
information.

mfCurrComprFilter If set, the currently active compression filter is used to compress the image
(see SetCompressionFilter()). This flag is used only if the file is rastered to an
image.

mfDebug If set, the EMF record names are printed to the content stream which
produces a specific output. Open the PDF file in a good text editor
such as Textpad to view the output. The PDF file must not be
compressed if this flag is used, otherwise you can't see the debug
strings. Compression can be disabled with the function
SetCompressionLevel().

mfDefault This is the default behaviour. No specific parameters are used for
metafile conversion.

mfDefBkModeTransp If set, the initial background mode is set to transparent. SetBkMode
records still override this state. The default background mode is
opaque in the GDI. This state causes that a rectangle is printed in
background of any text string, also if the rectangle is not required.
Especially if text strings are printed as single characters the opaque
background can drastically increase the resulting file size due to the
many rectangles. This flag should always be set if the EMF or WMF
files do not initialize the background mode to the required value.

mfDisableRasterEMF If set, EMF files are no longer rastered to an image if the file uses ROP
codes which combine background and foregound colors. Many EMF
files use such ROP codes but it is often not required to raster the EMF
file because many ROP codes which combine background and
foreground colors have no effect if no other object was drawn in
background.

mfDontSkipROP_DPa If set, the ROP code 0x00A000C9 (DPa) is considered in BitBlt, StretchBlt,
TranparentBlt, and AlphaBlend records. This kind of ROP code combines a
pattern brush with the backdrop. If the flag mfDisableRasterEMF is absent,
the usage of such a ROP code causes that the file is rendered to an image.

mfFullScale If set, all coordinates are scaled to the output window size. Set this
flag if the EMF file uses 32 bit coordinates, e.g. large CAD drawings.
Full scaling avoids floating point overflows in PDF viewer
applications because all coordinate transformations are already
applied. The resulting file size is also smaller due to the smaller
coordinate values which must be stored in the PDF file.

Function Reference Page 779 of 854

mfGDIFontSelection If set, DynaPDF uses a GDI device context to select fonts. This flag can
be set to make sure that DynaPDF selects exactly the fonts which the
GDI uses to render to EMF file.

mfNoBBoxCheck If set, the rclBounds and rclFrame rectangles are used as is to calculate the
picture size.

DynaPDF tries to identify invalid bounding boxes by default so that EMF
files with invalid bounding boxes can be converted. The EMF converter uses
the rclBounds rectangle to calculate the picture size if the resolution of the
EMF file seems to be larger as 1800 DPI which is quite unusual.

This is mostly an indication that the rclFrame rectangle was incorrectly
calculated since EMF files are typcially created in a much lower resolution.

If you need to process such high resolution EMF files then disable the
bounding box check.

mfNoBmpPatterns If set, bitmap patterns are ignored.
mfNoClippingRgn If set, clipping regions will be ignored.
mfNoFontEmbedding If set, fonts used by an EMF file are not embedded.
mfNoImages If set, image records are ignored.
mfNoStdPatterns If set, standard hatch patterns are not applied.
mfNoText If set, text records are ignored.
mfNoTextScaling If set, text strings are not scaled and no kerning space will be applied.

EMF files contain sometimes an invalid spacing array especially when
the original string was substituted from an Arabic code page. In such
cases, characters do overlap. To avoid this effect disable the usage of
the intercharacter spacing array; all strings are then printed without
scaling or kerning space.

mfNoUnicode If set, all strings are converted to the code page 1252 and no Unicode
font will be embedded in the PDF file during EMF conversion. This
flag should be set if PDF-1.2 compatibility is recommended because
PDF-1.2 does not support Unicode fonts. However, note that you get
invalid results if the EMF file contains characters outside the code
page 1252.

mfRclFrameEx If set, and if the rclBounds rectangle is larger than rclFrame,
InsertMetafile() extends the output rectangle according to rclBounds
and uses the resulting bounding box to calculate the image size
(rclBounds represents the unscaled image size).

This is probably the correct way to calculate the image size. However,

Function Reference Page 780 of 854

to preserve backward compatibility the default calculation cannot be
changed.

mfShowBounds If set, the bounding boxes of text strings are shown by inserting a
stroked rectangle. Use this flag if text strings appear misplaced.

mfSrcCopy_Only If set, images which use a ROP code other than SRCCOPY are ignored.
This can be useful when processing Excel 2007 spool files.

mfUseRclBounds If set, the bounding box of the EMF picture is used to calculate the
position and picture size. This can be useful if the rclFrame rectangle
contains invalid values which avoid proper positioning and scaling of
the graphic.

mfUseRclFrame If set, the rectangle rclFrame of the EMF header is used to calculate the
picture size. This flag is primarily used to convert EMF files which
were originally created from non-portable WMF files. Set this flag if
the EMF picture appears wrongly scaled.

mfUseTextScaling If set, strings are scaled instead of applying kerning space to get the
correct string width. Text scaling produces often better results due to
limited precision of the integer values of the intercharacter spacing
array. However, text scaling cannot always be used because characters
can be placed individually on the x-axis by applying kerning space. In
the latter case, strings can overlap or single characters appear on a
wrong x-coordinate; do not set this flag in this case.

mfUseUnicode If set, the character set within CreateFont() records will be ignored and
all strings are printed in Unicode mode (EMF files contain Unicode
strings only). This flag can be used to avoid the conversion of strings to
the Ansi character set if Ansi_CHARSET was used in the CreateFont()
record. The character set is often wrongly defined in EMF files so that
characters outside of the Ansi_CHARSET are replaced by question
marks due to the default conversion to Ansi if the character set
Ansi_CHARSET is used.

Function Reference Page 781 of 854

SetMetadata

Syntax:
LBOOL pdfSetMetadata(
 const PPDF* IPDF, // Instance pointer
 TMetadataObj ObjType, // See below
 SI32 Handle, // Object handle or -1 for the catalog object
 const void* Buffer, // Pointer of the stream buffer
 UI32 BufSize) // Buffer size in bytes

typedef enum
{

mdoCatalog, // The global XMP stream of the document (no handle needed)
 mdoFont, // Not yet supported
 mdoImage, // Parameter Handle must be an image handle
 mdoPage, // Parameter Handle must be a page number
 mdoTemplate // Parameter Handle must be a template handle
}TMetadataObj;

The function sets or replaces the XMP metadata stream of a specific object. The function deletes the
XMP stream if no buffer will be provided.

If the global XMP stream of the Catalog object should be replaced then proceed as follows:

• Set the wished output PDF version with SetPDFVersion().
• Get a preview of the XMP stream with GetMetadata().
• Modify the returned stream as needed and save it with SetMetadata(), finished!

The above steps make sure that the XMP metadata and document info contain the same values. This
is especially important for PDF standards like PDF/A or PDF/X. DynaPDF makes sure that the
creation and modification date will not be changed when closing the file.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetMinLineWidth2 (Rendering Engine)

Syntax:
void PDF_CALL rasSetMinLineWidth2(
 IRAS* RasPtr, // Pointer of the rasterizer
 float Value) // Minimum line width (must be positive)

The function sets the minimum line width in which thin lines are rendered. The value should be in
the range 0.1 through 1.0.

Default value: 0.5

Function Reference Page 782 of 854

SetMiterLimit

Syntax:
SI32 pdfSetMiterLimit(
 const PPDF* IPDF, // Instance pointer
 double Value) // New miter limit

When two line segments meet at a sharp angle and mitered joins have been specified as the line join
style (see SetLineJoinStyle()), it is possible for the miter to extend far beyond the thickness of the line
stroking the path. The miter limit imposes a maximum on the ratio of the miter length to the line
width (see Figure below). When the limit is exceeded, the join is converted from a miter to a bevel.

The ratio of miter length to line width is directly related to the angle φ between the segments in user
space by the formula:

miterLength
=

1
lineWidth sin(ϕ/2)

For example, a miter limit of 1.414 convert miters to bevels for φ less than 90 degrees, a limit of 2.0
converts them for φ less than 60 degrees, and a limit of 10.0 converts them for φ less than
approximately 11.5 degrees.
Default value = 10.0

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetNeedAppearance

Syntax:
LBOOL pdfSetNeedAppearance(

const PPDF* IPDF, // Instance pointer
LBOOL Value) // Value -> true or false

The global NeedAppearance flag of an Interactive Form specifies whether a PDF viewer should
rebuild the field appearances when opening the file or whether the existing definitions should be
used. DynaPDF creates always appearance streams for all field types. However, in certain cases it
can be useful to let the viewer render fields with their own algorithms because the exact way how
Adobe’s Acrobat builds the field appearances is not documented.

For example, when editing the contents of a text field in Adobe’s Acrobat the viewer rebuilds first
the field appearance before placing the editing cursor into the field. The new appearance created
from Adobe’s Acrobat can be slightly different in comparison to the one that was created by
DynaPDF. The visible contents, especially of text fields, is sometimes not absolutely stable.

Function Reference Page 783 of 854

If the NeedAppearance flag is set, the viewer uses already its own algorithms to build the field
appearances when opening the file. This avoids visible changes when editing a field. However, the
NeedAppearance flag must not be set to true if a form contains page templates.

Return values:

If the function succeeds the return value is 1. If the function failse the return value is 0.

SetNumberFormat

Syntax:
SI32 pdfSetNumberFormat(
 const PPDF* IPDF, // Instance pointer
 UI32 TxtField, // Text field handle
 TDecSeparator Sep, // Decimal separator
 UI32 DecPlaces, // Number of decimal places
 TNegativeStyle NegStyle, // Negative number format
 const char* CurrStr, // Currency string or NULL
 LBOOL Prepend) // Position of Currency string

// Thousand separator, decimal separator
typedef enum
{
 dsCommaDot,
 dsNoneDot,
 dsDotComma,
 dsNoneComma,
 dsQuoteDot
}TDecSeparator;

typedef enum
{
 nsMinusBlack,
 nsRed,
 nsParensBlack,
 nsParensRed
}TNegativeStyle;

The function restricts the allowed input characters of a text field to numbers and formats the
resulting string as specified. A number format is applied via two separate JavaScript actions in PDF
which are automatically created and added to the text field.

The same formats can also be applied manually by creating two JavaScript actions: one for the
OnKeyStroke event, and one for the OnFormat event of the text field. See AddActionToObj() for a
description of the events.

DynaPDF uses the JavaScript functions AFNumber_Keystroke() / AFNumber_Format() to apply a
number format. The functions are described in the JavaScript scripting reference that is available at
https://www.adobe.com.

https://www.adobe.com/

Function Reference Page 784 of 854

Currency String

The optional currency string is interpreted in the Windows code page 1252 but it is possible to add
arbitrary Unicode code points to the string in form of escape codes. Escape codes have the syntax
backslash + "u" + four hexadecimal digits:

Example:
"\u20ac" = €
"€" = € // Ok, this symbol is available in the code page
"\u0029" = $

Note that the backslash is an escape character in C/C++. The backslash itself must be preceded with
another backslash if the string is defined as string literal. Note also that the lower case 'u' is part of
the syntax and must not be omitted.

If the currency smybol should be separated with a space then add a space character before or after
the symbol depending on Prepend.

The maximum length of the raw currency string including escape characters is 16 bytes. Longer
strings are truncated.

Field value

The value of a text field with a number format must be a pure number with no formatting
characters, e.g. "3445" or "2346.78". The decimal separator (if any) must be a period (.), independent
of the current locale. Note that the Javascript code will fail if the field value contains non-numerical
characters.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 785 of 854

SetOCGContUsage

Syntax:
LBOOL pdfSetOCGContUsage(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG handle
 struct TPDFOCGContUsage* Value) // See below

struct TPDFOCGContUsage
{

UI32 StructSize; // Must be set to sizeof(TPDFOCGContUsage)
 UI32 ExportState; // 0 = Off, 1 = On, PDF_MAX_INT = not set
 const char* InfoCreatorA; // CreatorInfo -> The application that created the group
 const UI16* InfoCreatorW; // CreatorInfo -> The application that created the group
 const char* InfoSubtype; // CreatorInfo -> A name defining the type of content, e.g.
 // Artwork, Technical etc.
 const char* LanguageA; // A language code as described at SetLanguage()
 UI16* LanguageW; // A language code as described at SetLanguage()
 UI32 LangPreferred; // 0 = Off, 1 = On, PDF_MAX_INT = not set. The preffered state if
 // there is a partial but no exact match of the language id.
 TOCPageElement PageElement; // If the group contains a pagination artefact
 UI32 PrintState; // 0 = Off, 1 = On, PDF_MAX_INT = not set
 const char* PrintSubtype; // The type of content that is controlled by the OCG, e.g.
 // Trapping, PrintersMarks or Watermark.
 UI32 UserNamesCount; // The user names can be accessed with GetOCGUsageUserName()
 TOCUserType UserType; // The user for whom the OCG is primarily intendet
 UI32 ViewState; // 0 = Off, 1 = On, PDF_MAX_INT = not set
 float ZoomMin; // Minimum zoom factor at which the OCG should be On. -1 = not set
 float ZoomMax; // Maximum zoom factor at which the OCG should be On. -1 = not set
};

typedef enum
{
 utIndividual,
 utOrganization,
 utTitle,
 utNotSet
}TOCUserType;

The function creates or changes the Content Usage dictionary of an OCG. The structure must be
initialzed with InitOCGContUsage() before certain settings of it can be changed. Do not initialize the
structure with memset() since this would cause unexpected results!

Notice:

If no members of the structure were changed after initialization then the Content Usage
dictionary of the OCG will be deleted, if it contained already one. Since a Content Usage
dictionary is required for OCGs which are included in an application event, the OCG will also
be deleted from all application events in which it was included.

The information in this dictionary serves as pure information as long as the OCG is not added to an
application event (see AddOCGToAppEvent() for further information).

Function Reference Page 786 of 854

PDF supports the following application events which can be used to control the visibility of an OCG
or layer:

• Export
• Print
• View

Each event has corresponding categories or members in the Content Usage dictionary as well as
additional categories, which can be combined with three events, e.g. the viewer language or the
current user.

A viewer, that supports these application events, will change the visibility state according to the
settings in the Content Usage dictionary.

Remarks:

Note that application events are not supported in all viewer applications. If a watermark should
appear when printing, for example, then it is usually best to set the state of such a layer to visible,
and to make it invisible in the View event. A viewer that supports application events will hide the
layer at viewing time but still print it. A viewer that does not support application events will always
display the layer.

If the initial state of the layer would be invisible, then it would also stay invisible at printing time if
the viewer does not support application events but layers.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 787 of 854

SetOCGState

Syntax:
LBOOL pdfSetOCGState(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // OCG handle
 LBOOL On, // Wished state: true = visible, false = invisible
 LBOOL SaveState) // Save the state in the PDF file?

The function changes the visibility state of an OCG or layer. If the parameter SaveState is true, the
new state is also saved in the PDF file. Otherwise, the state is only changed temporarily so that the
wished state can be rendered with RenderPage() or RenderPageToImage() for example.

Note that only the new state of the current OCG will be be saved. If the state of other OCGs were
changed beforehand, while SaveState was set to false, then these changes will not be considered.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetOnErrorProc

Syntax:
LBOOL pdfSetOnErrorProc(
 const PPDF* IPDF, // Instance pointer
 const void* Data, // User defined pointer or NULL
 const void* ErrProc) // Callback function, see below

typedef SI32 PDF_CALL TErrorProc(
 const void* Data, // User defined pointer
 SI32 ErrCode, // Error code starting at zero
 const char* ErrMessage, // Null-terminated error string
 SI32 ErrType); // Error types, see below

#define PDF_CALL __stdcall // Windows only, otherwise empty

The function sets an error callback function which is called by DynaPDF to output error messages
and warnings. The parameter Data holds a user defined pointer which is passed unchanged to the
callback function. If this pointer is not required set it to NULL.

The calling convention of the callback function is standard call under Windows. Note that a wrongly
defined calling convention causes an access violation.

The Visual Basic 6 interface uses events instead of a callback function, see Language Binding Visual
Basic). In VB .Net you can use events or a an error callback function.

ErrCode is a positive error number starting at zero; it is an index into the array of error messages.
The error messages are defined in the file main/drv_base_err_msg.h (this file is included in
DynaPDF Enterprise only). ErrType is a bitmask to determine what kind of error occurred. The
following constants are defined:
#define E_WARNING 0x02000000
#define E_SYNTAX_ERROR 0x04000000

Function Reference Page 788 of 854

#define E_VALUE_ERROR 0x08000000
#define E_FONT_ERROR 0x10000000
#define E_FATAL_ERROR 0x20000000
#define E_FILE_ERROR 0x40000000

At time of publication only one flag is set at any one time. Future versions may be set multiple flags,
e.g. E_SYNTAX_ERROR and E_WARNING. Because of this, it is recommended to mask out the
error type with a bitwise and operator.

If the callback function returns a value other than zero (0), processing stops immediately.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetOnPageBreakProc

Syntax:
LBOOL pdfSetOnPageBreakProc(
 const PPDF* IPDF, // Instance pointer
 const void* Data, // User defined pointer or NULL
 const void* OnBreakProc) // Callback function, see below

#define PDF_CALL __stdcall // Windows only, otherwise empty

typedef SI32 PDF_CALL TOnPageBreakProc(
 const void* Data, // User defined pointer
 double LastPosX, // Last x-coordinate of the string
 double LastPosY, // Last y-coordinate of the string
 LBOOL PageBreak); // True, if a manual page break occurred

The function sets a callback function which is called by WriteFText() when a page break occurred.
The parameter Data holds a user defined pointer which is passed unchanged to the callback
function. If this pointer is not required set it to NULL. The calling convention of the callback
function is standard call on Windows.

The Visual Basic and VB .Net interfaces use events instead of a callback function, see Language
Binding Visual Basic or VB .Net for further information). In VB .Net you can use a callback function
or the event. The OnPageBreakProc event must be connected manually in these interfaces to avoid
different runtime behaviour of the function WriteFText(). To enable the event call the function
ConnectPageBreakEvent() in VB or VB .Net.

The parameter PageBreak of the callback function specifies why the callback function was called:

• If true, a page break tag in the string was found (see WriteFText() for further information).
• If false, the output rectangle was filled with text entirely.

The usage of the callback function is described in detail under WriteFText(). However, the following
return values of the callback function can be used the change the text alignment:
#define NEW_ALIGN_LEFT 1
#define NEW_ALIGN_RIGHT 2
#define NEW_ALIGN_CENTER 3
#define NEW_ALIGN_JUSTIFY 4

Function Reference Page 789 of 854

A return value of zero indicates that the alignment must not be changed. Negative return values
break processing immediately. WriteFText() returns then with a warning.

Remarks:

When the callback function is called, the coordinate system is always bottom-up, it can be changed
to top-down coordinates inside the callback function if necessary. The current page is still open, the
page must be closed with EndPage() before a new page can be added or opened with Append() or
EditPage(). To determine the current page number, call GetPageNum().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetOpacity

Syntax:
LBOOL pdfSetOpacity(
 const PPDF* IPDF, // Instance pointer
 double Value) // 1.0 = opaque, 0.0 = invisible

The function sets the opacity value which is used to render the appearance of a text annotation. The
parameter Value must be in the range 0.0 to 1.0. If Value is zero the annotation is invisible, if Value is
1.0, the annotation is completely opaque.

At time of publication the opacity property is used for text annotations only. Later versions of
DynaPDF use this property may be for other PDF objects too.
Default value = 1.0

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetOrientation

Syntax:
LBOOL pdfSetOrientation(

const PPDF* IPDF, // Instance pointer
SI32 Value) // Orientation of the page

The function sets the orientation of a page. The parameter Value must be a multiple of 90 or 0.
Positive values rotate the page clockwise, negative counter counter clockwise.

The page orientation is a property that is applied dynamically at viewing or printing time. It does
not change the page's coordinate system or any object in the page description.

To create a true landscape paper format the page's coordinate system must be rotated into the
opposite direction. This can be done with SetOrientationEx(). Another way to create a landscape
paper format is to change the bounding box of the page, see SetBBox().

Function Reference Page 790 of 854

Default value = 0 // Portrait

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetOrientationEx

Syntax:
LBOOL pdfSetOrientationEx(

const PPDF* IPDF, // Instance pointer
SI32 Value) // Orientation of the page

The function changes the orientation of a page, incl. important page properties such as the width
and height, and the coordinate system. The parameter Value must be a multiple of 90 or 0. Positive
values rotate the page clockwise, negative values counter clockwise.

The zero point of the coordinate system is set to the upper left or down left point depending on the
current page coordinate system (top down or bottom up, see SetPageCoords()).

When using a landscape paper format the functions GetPageWidth() and GetPageHeight() return
the logical width and height of the page. While the real paper format is not changed the functions
return the paper format as if the page would have a landscape paper format (the width and height
are exchanged).

The coordinate system is also changed so that you can work with the page as if it were not rotated.
Form fields and annotations are automatically rotated with the page; there is no need to rotate them
manually.

Pages which are rotated with this function appear in a viewer application always in the right
orientation. Also if the page is rotated, e.g. by 180 degrees the page is shown as if it were not
rotated.

Notice:

Since landscape or rotated paper formats require a changed coordinate system, care must be taken
into account if further coordinate transformations must be applied. DynaPDF makes sure that one
transformation can be applied without causing errors, e.g. rotating or translating the coordinate
system, but coordinate transformations must not be nested.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 791 of 854

SetPageBBox

Syntax:
LBOOL pdfSetPageBBox(
 IPGE* PagePtr, // Page pointer return by GetPageObject()
 TPageBoundary Boundary, // The bounding box to set
 struct TFltRect* BBox) // Required -> The new bounding box

The function sets or changes the bounding box of a page. This function is intended to be fast as
possible. It requires no open page like SetBBox(), it does not change the default media or crop box,
and it does not adjust the current coordinate system if the media box will be changed.

The function is useful if only one or more bounding boxes must be changed, without editing a page,
or when a specific area of a page should be rendered. In the latter case change the crop box and
restore it to the previous value when finish.

To delete a bounding box set the bounding box to 0, 0, 0, 0. The parameter BBox is required to be
present, it cannot be NULL.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetPageCoords

Syntax:
LBOOL pdfSetPageCoords(
 const PPDF* IPDF, // Instance pointer
 TPageCoord PageCoords) // see below

typedef enum
{

pcBottomUp = 0, // Bottom-up coordinates
 pcTopDown = 1 // Top-down coordinates
}TPageCoord;

The native coordinate system of the Portable Document Format is bottom-up. However, DynaPDF
supports also top-down coordinates to make the usage of the library easier. Top-down coordinates
are then converted to bottom-up coordinates by DynaPDF, the coordinate system in the PDF file will
not be changed by this function.

When changing the coordinate system to top-down, the coordinate origin of text (font origin) will
also be changed to the top-left corner (see also SetFontOrigin()). If the coordinate system will be
changed to bottom-up, the font origin is also changed to the down-left corner too.
Default value = pcBottomUp

Remarks:

The property PageCoords is a global property which can be changed at any time. When transforming
the coordinate system, bottom-up coordinates must be used.

Function Reference Page 792 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetPageFormat

Syntax:
LBOOL pdfSetPageFormat(
 const PPDF* IPDF, // Instance pointer
 TPageFormat Value) // see below

typedef enum
{
 pfDIN_A3 = 0,
 pfDIN_A4 = 1,
 pfDIN_A5 = 2,
 pfDIN_B4 = 3,
 pfDIN_B5 = 4,
 pfDIN_B6 = 5,
 pfDIN_C3 = 6,
 pfDIN_C4 = 7,
 pfDIN_C5 = 8,
 pfDIN_C6 = 9,
 pfDIN_C65 = 10,
 pfDIN_DL = 11,
 pfDIN_E4 = 12,
 pfDIN_E5 = 13,
 pfDIN_E6 = 14,
 pfDIN_E65 = 15,
 pfDIN_M5 = 16,
 pfDIN_M65 = 17,
 pfUS_Legal = 18,
 pfUS_Letter = 19,

pfDIN_A0 = 20,
pfDIN_A1 = 21,

 pfDIN_A2 = 22,
 pfDIN_A6 = 23,
 pfDIN_A7 = 24,
 pfDIN_A8 = 25,
 pfDIN_A9 = 26,
 pfDIN_A10 = 27
}TPageFormat;

The function sets a predefined page or paper format. If an open page can be detected the format of
the page will be changed, the new format will also be used for newly created pages. If no open page
is detected, the default format for new pages will be set only. This function changes the media box
of a page (see SetBBox() for further information).

Paper formats:

Format Size in PDF Units (Width x Height) -> 1 PDF Unit = 1/72 inch

pfDIN_A0 2384.0 x 3370.0

pfDIN_A1 1684.0 x 2384.0

pfDIN_A2 1191.0 x 1684.0

pfDIN_A3 842.0 x 1191.0

pfDIN_A4 595.0 x 842.0

pfDIN_A5 419.0 x 595.0

pfDIN_A6 298.0 x 420.0

Function Reference Page 793 of 854

pfDIN_A7 210.0 x 298.0

pfDIN_A8 147.0 x 210.0

pfDIN_A9 105.0 x 147.0

pfDIN_A10 74.0 x 105.0

pfDIN_B4 709.0 x 1001.0

pfDIN_B5 499.0 x 709.0

pfDIN_B6 354.0 x 499.0

pfDIN_C3 918.0 x 1298.0

pfDIN_C4 649.0 x 918.0

pfDIN_C5 459.0 x 649.0

pfDIN_C6 323.0 x 459.0

pfDIN_C65 323.0 x 649.0

pfDIN_DL 312.0 x 624.0

pfDIN_E4 623.0 x 879.0

pfDIN_E5 439.0 x 624.0

pfDIN_E6 312.0 x 439.0

pfDIN_E65 312.0 x 624.0

pfDIN_M5 439.0 x 632.0

pfDIN_M65 317.0 x 632.0

pfUS_Legal 612.0 x 1008.0

pfUS_Letter 612.0 x 792.0

Default value = pfDIN_A4

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetPageHeight

Syntax:
LBOOL pdfSetPageHeight(
 const PPDF* IPDF, // Instance pointer
 double Value) // New height

The function changes the height of the currently open page if any, or the default height for newly
created pages. This function changes the media box of a page (see also SetBBox()). The page height
must be greater zero.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 794 of 854

SetPageLayout

Syntax:
LBOOL pdfSetPageLayout(
 const PPDF* IPDF, // Instance pointer
 TPageLayout Layout) // see below

typedef enum
{

plSinglePage = 0, // Show one page at time
plOneColumn = 1, // Show the pages continous
plTwoColumnLeft = 2, // Two columns, start with left column
plTwoColumnRight = 3, // Two columns, start with right column
plTwoPageLeft = 4, // PDF 1.5
plTwoPageRight = 5, // PDF 1.5
plDefault = 6 // Use viewer's default settings

}TPageLayout;

The function sets the page layout that is used when opening the document with Adobe's Acrobat.
Default value = plOneColumn

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetPageMode

Syntax:
LBOOL pdfSetPageMode(
 const PPDF* IPDF, // Instance pointer
 TPageMode Mode) // see below

typedef enum
{

pmUseNone = 0, // Default
pmUseOutlines = 1, // Show the outline tree
pmUseThumbs = 2, // Show the thumb nails
pmFullScreen = 3 // Open the document in full-screen mode
pmUseOC = 4, // PDF 1.5
pmUseAttachments = 5 // PDF 1.6

}TPageMode;

The function sets the page mode that is used when opening the document with Adobe's Acrobat.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 795 of 854

SetPageOrientation

Syntax:
LBOOL pdfSetPageOrientation(
 const PPDF* IPDF, // Instance pointer
 IPGE* PagePtr, // Page pointer returned by GetPageObject()
 SI32 Value); // New value

The function changes the orientation of page. This function is intended to be fast as possible. It
requires no open page like SetOrientation() and accesses the property directly.

The parameter PagePtr must be a valid pointer returned by GetPageObject().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetPageWidth

Syntax:
LBOOL pdfSetPageWidth(
 const PPDF* IPDF, // Instance pointer
 double Value) // New page width

The function changes the width of the currently open page if any, or the default width for newly
created pages. This function changes the media box of a page (see also SetBBox()). The page width
must be greater zero.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 796 of 854

SetPDFVersion

Syntax:
LBOOL pdfSetPDFVersion(
 const PPDF* IPDF, // Instance pointer
 TPDFVersion Version) // Output PDF version

typedef enum TPDFVersion
{

pvPDF_1_0 = 0, // PDF 1.0
 pvPDF_1_1 = 1, // PDF 1.1
 pvPDF_1_2 = 2, // PDF 1.2
 pvPDF_1_3 = 3, // PDF 1.3
 pvPDF_1_4 = 4, // PDF 1.4
 pvPDF_1_5 = 5, // PDF 1.5 -> default
 pvPDF_1_6 = 6, // PDF 1.6
 pvPDF_1_7 = 7, // PDF 1.7
 pvPDF_2_0 = 8, // PDF 2.0
 pvReserved = 9, // Reserved for future use
 pvPDFX1a_2001 = 10, // PDF/X-1a:2001
 pvPDFX1a_2003 = 11, // PDF/X-1a:2003
 pvPDFX3_2002 = 12, // PDF/X-3:2002
 pvPDFX3_2003 = 13, // PDF/X-3:2003
 pvPDFA_2005 = 14, // PDF/A-1b
 pvPDFX_4 = 15, // PDF/X-4
 pvPDFA_1a = 16, // PDF/A 1a
 pvPDFA_2a = 17, // PDF/A 2a
 pvPDFA_2b = 18, // PDF/A 2b
 pvPDFA_2u = 19, // PDF/A 2u
 pvPDFA_3a = 20, // PDF/A 3a
 pvPDFA_3b = 21, // PDF/A 3b
 pvPDFA_3u = 22, // PDF/A 3u
 // The following constants are flags which can be combined with pvPDFA_3a, pvPDFA_3b, and
 // pvPDFA_3u. If used stand alone PDF/A 3b with the correspondig ZUGFeRD metadata will be
 // created.
 pvZUGFeRD_Basic = 0x00010000,
 pvZUGFeRD_Comfort = 0x00020000,
 pvZUGFeRD_Extended = 0x00040000,

// Factur-X / ZUGFeRD 2.1, and ZUGFeRD 2.0 profiles. The usage is identically in comparision
 // to the older ZUGFeRD 1.0 flags. That means if used alone, a PDF/A 3b file will be created.
 // ZUGFeRD 2.1 and Factur-X are identically defined in PDF. In order to create a ZUGFeRD 2.1
 // invoice, set one of the Factur-X constants but don't set the flag pvZUGFeRD2_Flag.
 pvFacturX_Minimum = 0x00080000, // Minimum profile
 pvFacturX_Basic = 0x00100000, // Basic profile
 pvFacturX_Basic_WL = 0x00200000, // Basic WL profile
 pvFacturX_Comfort = 0x00400000, // EN 16931 profile
 pvFacturX_Extended = 0x00800000, // Extended profile
 pvZUGFeRD2_Flag = 0x01000000, // If set, a ZUGFeRD 2.0 will be created.
 pvPDFX5g = 23, // PDF/X-5g
 pvPDFX5n = 24, // PDF/X-5n
 pvPDFX5pg = 25, // PDF/X-5pg
 pvPDFX6 = 26, // PDF/X 6
 pvPDFX6n = 27, // PDF/X 6n
 pvPDFX6p = 28, // PDF/X 6p
 pvPDFUA1 = 29, // PDF/UA-1 (ISO 14289-1)
 pvPDFX4p = 30, // PDF/X-4p
 pvPDFVT1 = 0x02000000, // PDF/VT 1 flag. The base version must be a PDF/X version.
 pvPDFVT2 = 0x04000000, // PDF/VT 2 flag. The base version must be a PDF/X version.
 pvPDFVT3 = 0x08000000, // PDF/VT 3 flag. The base version must be a PDF/X version.
 pvPDFVTMask = pvPDFVT1 | pvPDFVT2 | pvPDFVT3,
 pvPDFUAFlag = 0x20000000, // PDF/UA flag. Can be used in addition with other standards.
 // File metadata will contain PDF/A and PDF/UA entries.
 pvPDFA_4 = 31, // PDF/A 4.
 pvPDFA_4e = 32, // PDF/A 4e allows 3D contents in rich media annotations.
 pvPDFA_4f = 33 // PDF/A 4f allows file attach annotations.
}TPDFVersion;

Function Reference Page 797 of 854

The function changes the output file version. The default output version is PDF 1.4. If a PDF file
with a higher version as curently set will be imported, then the file version is adjusted to the version
of the imported file.

Note that not all available versions can be created by DynaPDF. However, DynaPDF is able to
identify all versions listed above when importing a PDF file. A known version will not be stripped
out when saving a PDF file with DynaPDF.

To improve processing speed, the output version is not checked at runtime and no features are
disabled which are maybe not supported by the current PDF version.

However, if a PDF file must be compatible to a specific Acrobat version, change the version and
open the file in Adobe's Acrobat. If error messages or other warnings appear, the file contains
unsupported features. For example, Unicode output is supported since PDF 1.3. If the output
version will be changed to PDF 1.2, you will get an error message in Adobe's Acrobat if the file
contains CID fonts (Unicode fonts). There is no other known feature that causes errors when
opening a PDF file with Acrobat or Reader.

To create PDF/X or PDF/A compatible files we recommended to use a preflight tool to check
whether unsupported features were used or whether additional settings are required to meet the
requirements of the standard. The PDF version should be set at the end of processing, directly
before CloseFile() or CloseFileEx() is called. See also PDF/X and PDF/X Compatibility.

ZUGFeRD, ZUGFeRD 2.0, Factur-X / ZUGFeRD 2.1/2.2

 ZUGFeRD 2.0 and Factur-X are almost identically defined. Both standards support the very same
profiles. To create a ZUGFeRD 2.0 invoice with the profile Basic WL, for example, set the PDF
version as follows:

pdfSetPDFVersion(pdf, TPDFVersion(pvFacturX_Basic_WL | pvZUGFeRD2_Flag));

The PDF version is set to PDF/A 3b in the above example. If you want to create the very same
invoice but as PDF/A 3u file, for example, then set also the whished output PDF version:
 pdfSetPDFVersion(pdf, TPDFVersion(pvPDFA_3u | pvFacturX_Basic_WL | pvZUGFeRD2_Flag));

Note that this function just sets the PDF version. It does not check whether the resulting file is
compatible to the whished output version. Use CheckConformance() to convert arbitrary PDF files
to PDF/A, ZUGFeRD, or Factur-X files.

ZUGFeRD 2.1 or higher

ZUGFeRD is an ever growing standard that is updated every few months. Important to know is that
beginning with ZUGFeRD 2.1 Factur-X and ZUGFeRD are identically defined in PDF. Therefore, the
Factur-X constants can be used to create Factur-X and ZUGFeRD 2.1 or higher files. The PDF
container cannot distiguish between these formats.

ZUGFeRD and Factur-X invoices require an embedded XML invoice. The XML file can be attached
with AttachFile() or AttachFileEx().

Function Reference Page 798 of 854

The XML invoice must be named as follows (case-sensitive and without quotes):

• ZUGFeRD 1.0: "ZUGFeRD-invoice.xml"

• ZUGFeRD 2.0: "zugferd-invoice.xml"

• ZUGFeRD 2.1 or higher: "factur-x.xml"

• Factur-X: "factur-x.xml"

The embedded invoice must also be associated with the Catalog object. This can be done with
AssociateEmbFile(). The parameter RelationShip must be set to arAlternate, arData, or arSource
depending on the used Factur-X or ZUGFeRD profile. See CheckConformance() for further
information.

Examples:
pdfSetPDFVersion(pdf, pvZUGFeRD_Basic); // ZUGFeRD 1.0
pdfSetPDFVersion(pdf, TPDFVersion(pvFacturX_Basic_WL | pvZUGFeRD2_Flag)); // ZUGFeRD 2.0
pdfSetPDFVersion(pdf, pvFacturX_Basic_WL); // ZUGFeRD 2.1 or Factur-X
pdfSetPDFVersion(pdf, pvFacturX_XRechnung); // XRechnung

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 799 of 854

SetPrintSettings

Syntax:
LBOOL pdfSetPrintSettings(
 const PPDF* IPDF, // Instance pointer
 TDuplexMode Mode, // See below
 SI32 PickTrayByPDFSize, // 1 = true, 0 = false, -1 = app default
 UI32 NumCopies, // 0 = app default, max = 5
 TPrintScaling PrintScaling, // See below
 UI32* PrintRanges, // Optional start/end page number pairs
 UI32 NumRanges) // Number of ranges

typedef enum
{
 dpmNone, // Default
 dpmSimplex,
 dpmFlipShortEdge,
 dpmFlipLongEdge
}TDuplexMode;

typedef enum
{
 psAppDefault, // Default
 psNone
}TPrintScaling;

The function adds preferred print settings to the PDF file. Viewer applications use the print settings
to initialize the print dialog. Print ranges, if set, consist of two numbers which define the start and
end page number that should be printed.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetProgressProc

Syntax:
LBOOL pdfSetProgressProc(
 const PPDF* IPDF, // Instance pointer
 const void* Data, // User defined pointer
 const void* InitProgress, // Initialization callback function
 const void* Progress) // Progress callback function

typedef SI32 TProgType;
#define ptImportPage 0 // Start page import
#define ptWritePage 1 // Start writing a page to file or buffer
#define ptPrintPage 2 // Start printing the PDF file
#define ptConvertPage 3 // Start converting the PDF file (Optimize(), CheckConformance())

#define PDF_CALL __stdcall // Windows only, otherwise empty

typedef void PDF_CALL TInitProgressProc(
 const void* Data, // User defined pointer
 TProgType ProgType, // Current process, see above
 SI32 MaxCount); // The number of callback function calls

typedef SI32 PDF_CALL TProgressProc(
 const void* Data, // User defined pointer
 SI32 ActivePage); // Current page number

Function Reference Page 800 of 854

The function sets two callback functions which can be used to control a progress bar. This function is
absent in the Visual Basic interface because this interface uses events instead of callback functions.

The progress callback functions are called by these functions:

• CheckConformance()
• ImportPDFFile()
• Optimize()
• CloseFile(), CloseFileEx(), and so on

The parameter Data is a user defined pointer that is passed unchanged to the callback functions.

The parameter InitProgress defines a callback function that is called before the progress callback
function is called the first time. The parameters of this callback function can be used to initialize a
progress bar. The parameter ProgType of the initialization callback function defines the current
process; this can be either importing, writing, or converting a page.

Other operations do not call the progress callback functions because most operations are too fast as
if they could be used to display the current progress.

The parameter MaxCount defines how often the progress callback function will be called. To disable
the progress callback functions set the parameters InitProgress and Progress to NULL.

Return values of the progress callback function:

The return value of the progress callback function must be 0, any other return value breaks
processing. All functions, except ImportPDFFile(), release the PDF file in memory if a non-zero
value will be returned.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetRenderingIntent

Syntax:
LBOOL pdfSetRenderingIntent(
 const PPDF* IPDF, // Instance pointer
 SI32 ImgHandle, // Image handle
 TRenderingIntent Value) // Rendering intent

Set function sets the rendering intent of an image. The rendering intent describes how colors should
be interpreted.

The parameter ImgHandle must be a valid image handle that was returned by InsertImage() or
InsertImageEx(). Imported images returned by ParseContent(), for example, can be changed too.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 801 of 854

SetResolution

Syntax:
LBOOL pdfSetResolution(
 const PPDF* IPDF, // Instance pointer
 UI32 Value) // Image resolution in DPI

The function sets the resolution in DPI (Dots per Inch), in which images are stored by DynaPDF. The
property will be ignored if the property SaveNewImageFormat was set to false. 1 bit images are
always stored in the original resolution. The image resolution must be in the range 1 to 12000 DPI.
Default value = 150 (DPI)

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetSaveNewImageFormat

Syntax:
LBOOL pdfSetSaveNewImageFormat(
 const PPDF* IPDF, // Instance pointer
 LBOOL Value) // If true, images are downscaled if necessary

The property SaveNewImageFormat specifies whether images should be downscaled if the original
resolution of the image is higher than the value of the property resolution (see also SetResolution()).
If the property SaveNewImageFormat is false, JPEG compressed images will be inserted in pass-
through mode as long as the image is not a CMYK JPEG (such images must be converted because
Acrobat viewer require another byte order).
Default value = true

SetScreenRes (Rendering Engine)

Syntax:
void rasSetScreenRes(
 IRAS* RasPtr, // Pointer of the rasterizer
 UI32 Value) // Screen resolution in DPI

The function sets the screen resolution. The screen resolution is sometimes required, e.g. to render
Text annotations correctly. This type of annotation has a fixed size that is independent of the current
scaling factor. However, the correct size depends on the screen resolution on which the image is
rendered.

Function Reference Page 802 of 854

SetSeparationInfo

Syntax:
LBOOL pdfSetSeparationInfo(

const PPDF* IPDF, // Instance pointer
UI32 Handle) // Separation color space handle

The function sets the separation info of the current open page. The parameter Handle must be a valid
handle of a Separation color space.

Remarks:

In high-end printing workflows, pages are ultimately produced as sets of separations, one per
colorant. Ordinarily, each page in a PDF file is treated as a composite page that paints graphics
objects using all the process colorants and perhaps some spot colorants as well. In other words, all
separations for a page are generated from a single PDF description of that page.

In some workflows, however, pages are pre-separated before generating the PDF file. In a pre-
separated PDF file, the separations for a page are described as separate page objects, each painting
only a single colorant (usually specified in the DeviceGray color space). When this is done,
additional information is needed to identify the actual colorant associated with each separation and
to group together the page objects representing all the separations for a given page. This
information is contained in the separation info of each page object.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetSpaceWidthFactor

Syntax:
LBOOL pdfSetSpaceWidthFactor(
 const PPDF* IPDF,
 double Value)

The function sets the space width factor that is used by ExtractText() to determine whether the
distance between two text records or glyphs should be interpreted as space character.

Background:

PDF files do often not contain space characters. Depending on the font type, i.e. fixed pitch or
proportional fonts, different default widths are used during text extraction. However, the full space
width is mostly too large to find spaces. Therefore, the text extraction algorithm multiplies the
default space width with the space width factor to find suitable values.

The default value is 0.7. Increase the value if too many spaces occur in extracted text and decrease
the value if too few spaces were found.

Function Reference Page 803 of 854

The value must be large zero. Although the upper bound is not restricted, values larger than 2 are
mostly not meaningful.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetStrokeColor

Syntax:
LBOOL pdfSetStrokeColor(
 const PPDF* IPDF, // Instance pointer
 UI32 Color) // Color value defined in the current color space

The function sets the stroke color. The stroke color is also used by text objects if the text rendering
mode is dmStroke or dmFillStroke (see SetTextDrawMode() for further information).

The color value must be defined in the current color space. CMYK colors can be constructed with
the macro PDF_CMYK() or with the function CMYK() which is available in most programming
languages. RGB colors can be constructed with the macro PDF_RGB() or with the function RGB()
which is available in most programming languages.

If the color space contains more than 4 color components use SetStrokeColorEx() instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetStrokeColorEx

Syntax:
LBOOL pdfSetStrokeColorEx(

const PPDF* IPDF, // Instance pointer
const BYTE* Color, // Color to be set
UI32 NumComponents) // Number of componnents

The function sets the stroke color. The color must be defined as an array of bytes in the logical order
of the color space. For example, if the color space is DeviceRGB the array must specify the color
values of the red, green, and blue components in that order. The number of components must be
equal to the one of the corresponding color space.

Lab colors can be defined as signed char as usual. Make a typecast to BYTE* when passing the color
to the function. See CreateCIEColorSpace() for further information.

Function Reference Page 804 of 854

Example (C/C++):
...
char labColor[3] = {50, -34, 77}; // L, *a, *b
pdfSetStrokeColorEx(pdf, (BYTE*)labColor, 3);
...

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetStrokeColorF

Syntax:
LBOOL pdfSetStrokeColorF(
 const PPDF* IPDF, // Instance pointer
 const float* Color, // Array of float values
 UI32 NumComponents) // Must be equal to the underlying color space

The function sets the current stroke color as an array of float values. The components of non-Lab
color spaces must be in the range from 0 through 1. The *a and *b components of a Lab color space
are typically in a range from -128 though 127. The *L component ranges from 0 through 100.

The number of components must match the number of components of the underlying color space.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 805 of 854

SetStrokeColorSpace

Syntax:
LBOOL pdfSetStrokeColorSpace(

const PPDF* IPDF, // Instance pointer
TPDFColorSpace CS) // Color space

The function changes the stroke color space. In PDF, fill and stroke colors use both their own color
spaces. Although it is possible to use different color spaces for strokes and fillings it should be
avoided if possible. The fill color space is the relevant color space when creating interactive objects
such as form field or annotations. See SetFillColorSpace().

Notice:

This function was added to DynaPDF primarily for testing purposes. The color space should be set
with SetColorSpace() which sets always the same color space for fillings and strokes.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetTabLen

Syntax:
LBOOL pdfSetTabLen(
 const PPDF* IPDF, // Instance pointer
 SI32 TabLen) // New tabulator length in number of spaces

The function sets the tabulator length, specified in number of spaces, which will be used to emulate
tabulators during text formatting (see WriteFText() for further information).

Because tabulators are emulated with spaces they have no fixed with. The width of a tabulator
depends on the width of the space character of the active font.
Default value = 3 (min = 1, max = 256)

 Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 806 of 854

SetTemplBBox

Syntax:
LBOOL pdfSetTemplBBox(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Template handle
 TPageBoundary Boundary, // pbMediaBox or pbCropBox
 struct TPDFRect* BBox) // New bounding box or NULL to delete it

The function sets or changes a bounding box of a template. Templates support the bounding boxes
pbMediaBox and pbCropBox only. The latter one is considered by PlaceTemplateEx() only.

A crop box can be set to clip the contents of a template without changing its bounding box. This can
be useful when placing imported pages on another page.

If BBox is set to NULL, the bounding box is deleted. Note that only the crop box can be deleted.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetTextDrawMode

Syntax:
LBOOL pdfSetTextDrawMode(
 const PPDF* IPDF, // Instance pointer
 TDrawMode Mode) // see below

typedef enum
{
 dmNormal = 0, // Default
 dmStroke = 1, // Stroke the text (outlines only)
 dmFillStroke = 2, // Fill and stroke the text
 dmInvisible = 3, // Neither fill nor stroke text (invisible)
 dmFillClip = 4, // Fill text and add to path for clipping
 dmStrokeClip = 5, // Stroke text and add to path for clipping
 dmFillStrokeClip = 6, // Fill & stroke text and add to path for clipping
 dmClipping = 7 // Add the text to path for clipping
}TDrawMode;

The text draw mode specifies how text should be rendered. Texts can be used as clipping paths such
as normal vector graphics; however, the usage is not the same. To use a text as clipping path save
the graphics state, set the text draw mode to a clipping mode, paint the objects which should be
clipped into the path and restore the graphics state.

Note that the functions BeginClipPath() and ClipPath() can not be used to define a text as clipping
path (see the example below).
Default value = dmNormal

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 807 of 854

Draw Mode Description

dmNormal Default, render the text in the usual way. The fill color is used as the text's
color.

dmStroke Tread the glyph outlines as path to be stroked. The current line width and
stroke color are used to paint the path.

dmFillStroke Tread the glyph outlines as path to be stroked and filled. The current line
width, fill color, and stroke color are used to paint the path.

dmInvisible Neither fill nor stroke the text, the text is invisible.

dmFillClip Tread the glyph outlines as path to be filled and add this path to the
current clipping path. The settings of the current line width and fill color
are used to paint the path.

dmStrokeClip Tread the glyph outlines as path to be stroked and add this path to the
current clipping path. The settings of the current line width and stroke
color are used to paint the path.

dmFillStrokeClip Tread the glyph outlines as path to be stroked and filled and add this path
to the current clipping path. The settings of the current line width, fill
color and stroke color are used to paint the path.

dmClipping Tread the glyph outlines as path and add this path to the current clipping
path.

How to use text as clipping path?

As mentioned earlier the usage of text as clipping path is not the same as a normal clipping path.
The following example shows how a text can be used for clipping:

Example (C++):
#include "dynapdf.h"
using namespace DynaPDF;
// First we declare an error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0; // We ignore non-fatal errors
}

int main(int argc, char* argv[])

Function Reference Page 808 of 854

{
 void* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 // The document info entries are changed by the function if set
 pdfSetDocInfo(pdf, diSubject, "Text as clipping path");
 pdfSetDocInfo(pdf, diCreator, "C++ example test project");
 pdfSetDocInfo(pdf, diTitle, "Text as clipping path");
 pdfSetPageCoords(pdf, pcTopDown);

 pdfCreateNewPDF(pdf, "c:/cppout.pdf");

 pdfAppend(pdf);
 pdfSetFont(pdf, "Bookman Old Style", fsBold, 80, true, cp1252);
 // We want to draw an axial shading into the clipping path
 SI32 sh = pdfCreateAxialShading(pdf, 0, 50, 0, 130, 1, PDF_BLUE,
 PDF_YELLOW, false, false);
 // Do not forget to save the graphics state
 pdfSaveGraphicState(pdf);
 pdfSetTextDrawMode(pdf, dmClipping); // Use the text as clipping path
 pdfWriteText(pdf, 50, 50 - (80 - pdfGetCapHeight()), "Clipping");
 pdfApplyShading(pdf, sh);
 // Restore the graphics state now to disable the clipping path
 pdfRestoreGraphicState(pdf);
 EndPage(pdf);

 pdfCloseFile(pdf);
 pdfDeletePDF(pdf); // Do not forget to delete the PDF instance
 return 0;
}

Output:

Function Reference Page 809 of 854

SetTextFieldValue

Sytnax:
SI32 pdfSetTextFieldValue(
 const PPDF* IPDF, // Instance pointer
 UI32 Field, // Text field handle
 const char* Value, // Field's value or NULL
 const char* DefValue, // Field's default value or NULL
 TTextAlign Align) // Text alignment

The function sets or changes the value and default value of a text field. The parameters Value and
DefValue can both be NULL, if both values should be deleted. The parameter DefValue defines the
default value of the field, this value is shown in Adobe's Acrobat as long as the field has no value; it
will be hidden when entering the field.

The strings are drawn with the font that is associated with the field. The font size is taken from the
field settings. If set to “auto”, the font size is computed from the field’s bounding box.

Field format

Text fields can be formatted to certain number formats with Javascript actions that are executed in
the OnFormat event. DynaPDF has limited support for the Javascript functions AFNumber_Format(),
AFPercent_Format(), and AFSpecial_Format().

However, the results of number formats of Adobes Acrobat and DynaPDF are sometimes slightly
different. It is not known whether this is a Javascript or Acrobat issue, but the results shown below
can be reproduced with all known Acrobat versions.

Example number format with two fractional digits:

Value Acrobat DynaPDF
1.45499 1.45 1.45
1.454991 1.46 1.45
1.4549901 1.46 1.45
1.45499001 1.46 1.45
5.0049 5.00 5.00
5.00499 5.01 5.00
5.004989 5.00 5.00

It is possible to deactivate all kinds of number formats by setting the flag gfDisableJavascript with
SetGStateFlags(). The appearance stream of text fields is then created with the raw field value.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 810 of 854

SetTextFieldValueEx

Syntax:
LBOOL pdfSetTextFieldValueEx(
 const PPDF* IPDF, // Instance pointer
 UI32 Field, // Text field handle
 const char* Value) // New value or NULL to delete it

The function changes or sets the value of a text field. If the value is set to NULL, the field's value will
be deleted.

The strings are drawn with the font that is associated with the field. The font size is taken from the
field settings. If set to “auto”, the font size is computed from the field’s bounding box.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

SetTextRect

Syntax:
LBOOL pdfSetTextRect(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height) // Height of output rectangle or -1

The function defines the output rectangle that is used to output formatted text by the function
WriteFText(). The text is not clipped into the rectangle. WriteFText() executes a callback if defined
(see SetOnPageBreakProc()), when the rectangle was filled with text and more text is available for
output. If no callback function is used, the text continues on the next page by using the same output
rectangle. The usage of the function is described in detail under WriteFText().

The parameter Height can be set to -1 to determine that no page break should occur.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetTextRise

Syntax:
LBOOL pdfSetTextRise(
 const PPDF* IPDF, // Instance pointer
 double Value) // Text rise in units

Text rise specifies the distance, to move the baseline up or down from its default location. Positive
values of text rise move the baseline up. Adjustments to the baseline are useful for drawing
superscripts or subscripts. The default location of the baseline can be restored by setting the text rise

Function Reference Page 811 of 854

to 0. The figure below illustrates the effect of the text rise. Text rise always applies to the vertical
coordinate in text space.

The text moves around the baseline.
Default value = 0

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetTextScaling

Syntax:
LBOOL pdfSetTextScaling(
 const PPDF* IPDF, // Instance pointer
 double Value) // Horizontal text scaling

The scaling value adjusts the width of glyphs by stretching or compressing them in the horizontal
direction. Its value is specified as a percentage of the normal width of the glyphs, with 100 being the
normal width.
Default value = 100

Value = 100 Word
Value = 50 WordWord

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetTransparentColor

Syntax:
LBOOL pdfSetTransparentColor(
 const PPDF* IPDF, // Instance pointer
 UI32 AColor) // Color value defined in current color space

The function sets the transparent color which is used for newly inserted images. Due to color
interpolation during decompression of JPEG images, it not always possible to mask JPEG
compressed images correctly.
Default value = 0x00FFFFFF (RGB White)

Function Reference Page 812 of 854

SetTrapped

Syntax:
void pdfSetTrapped(

const PPDF* IPDF, // Instance pointer
LBOOL Value) // True or false

The function sets the trapped key of the document. Trapping is a technique to avoid unwanted
visual artifacts such as brightly colored gaps or bands around the edges of printed objects. In high-
quality reproduction of color documents, such artifacts are commonly avoided by creating an
overlap, called a trap, between areas of adjacent color.

The trapped key determines whether the document was trapped. The default value is unknown that
means no value is written to the file. The trapped key should be set if possible.

SetUseExactPwd

Syntax:
LBOOL pdfSetUseExactPwd(
 const PPDF* IPDF, // Instance pointer
 LBOOL Value) // True or false

If the property UseExactPwd is false, an encrypted PDF file can always be decrypted, if either the
open or owner password in the file is an empty string. If true, the open or owner password must be
known to open the PDF file.
Default value = 1 (true)

Remarks:

If your application should allow the modification of encrypted PDF files, you may check the access
permissions to grant user rights, if the file was opened with the open password instead of the owner
password (see also GetUserRights()).

Due to the license agreement of Adobe, all manufacturers of applications which make the treatment
of encrypted PDF files possible, must respect the access permissions of a PDF file, if the file was
opened with the open password.

Only if the file was opened with the owner password, all rights should be granted. See PDF
Reference 1.5 for further information. This document is available at www.adobe.com.

The property UseExactPwd should be true, if the application is a commercial product.

Function Reference Page 813 of 854

SetUseGlobalImpFiles

Syntax:
LBOOL pdfSetUseGlobalImpFiles(
 const PPDF* IPDF, // Instance pointer
 LBOOL Value) // True or false

The property can be used to load one or more external PDF files permanent into memory, e.g. to
split a large PDF file into smaller pieces. The next PDF file that will be opened with the function
OpenImportFile() or OpenImportBuffer() will not be closed when CloseFile() or FreePDF() is called.
When creating a new PDF file the previously opened import file is still open and it is possible to
import pages from this file without loading the file again.

If more than one file should be loaded permanent into memory then set also the flag if2UseProxy
with SetImportFlags2(). PDF files which are no longer needed can be closed with CloseImportFile()
or CloseImportFileEx().

Return values:

This function cannot fail, the return value is always 1.

Example (Delphi):

In this example we have a large PDF file that should be splitted into separate files which should
contain one page each.

If we would not use the property UseGlobalImpFiles we must read the entire file structure each time a
page was extracted because the import file would be closed when CloseFile() is called. Splitting a
large file in this way would be extremely slow. To improve processing speed we set the property
UseGlobalImpFiles to true so that we must open the import file only one time.
// This is our error callback function
function ErrProc(const Data: Pointer; ErrCode: Integer; const ErrMessage:
PAnsiChar; ErrType: Integer): Integer; stdcall;
var s: String;
begin
 s := ErrMessage + #13#13'Abort processing?';
 if MessageDlg(s, mtError, [mbYes, mbNo], 0) = mrYes then
 Result := 1
 else
 Result := 0;
end;

procedure TForm1.Button2Click(Sender: TObject);
var pdf: TPDF; i: Integer;
begin
 pdf := nil;
 try
 pdf := TPDF.Create;
 pdf.SetOnErrorProc(nil, @ErrProc);

Function Reference Page 814 of 854

 pdf.SetUseGlobalImpFiles(true);
 // No conversion to templates is required. In addition, we need the
 // page contents only.
 pdf.SetImportFlags(ifImportAsPage);
 pdf.OpenImportFileA('c:/test.pdf', ptOpen, '');
 // In the following loop we create a new PDF file, import one page
 // and close the new file. We continue until all pages are stored
 // in a new PDF file each.
 // We store the files in the directory c:/SplitOut. Note that the
 // size of all single page files is many times larger as the size
 // of the original import file because used fonts and other
 // resources must be exported to each file, they cannot be shared.
 for i := 1 to pdf.GetInPageCount do begin
 pdf.CreateNewPDFA(Format('c:/SplitOut/split%.4d.pdf', [i]));
 pdf.Append;
 pdf.ImportPageEx(i, 1.0, 1.0); // Import a page
 pdf.EndPage;
 pdf.CloseFile;
 end;
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOK], 0);
 end;
 if pdf <> nil then pdf.Free;
end;

SetUseImageInterpolation

Syntax:
LBOOL pdfSetUseImageInterpolation(
 const PPDF* IPDF, // Instance pointer
 UI32 Handle, // Image handle
 LBOOL Value) // Value

The function enables or disables image interpolation explictely for a given image. If nothing was
specified (this is the default), a viewer application can only use a heuristic to determine whether
image interpolation should be enabled or not. The result is then of course application specific.

The parameter Handle must be a valid image handle that was returned by a DynaPDF function like
InsertImage(), InsertImageEx(), or InsertImageFromBuffer(), for example.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 815 of 854

SetUseImageInterpolationEx

Syntax:
LBOOL pdfSetUseImageInterpolationEx(
 PIMG* Image, // Image pointer
 LBOOL Value) // Value

The function enables or disables image interpolation explictely for a given image exactly like
SetUseImageInterpolation() but accepts an image pointer as input. The pointer of an image object is
provided in the TInsertImage callback function of ParseContent().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetUserUnit

Syntax:
LBOOL pdfSetUserUnit(
 const PPDF* IPDF, // Instance pointer
 float Value) // Must be in the range 0.01..75.0

The function sets the user unit of the current open page. A user unit is a scaling factor. The page
format and all page coordinates are multiplied with this factor in a viewer application. The default
size of a PDF unit is 1/72 inch. User units can be useful if the page format would be too large to be
expressed in standard PDF units. The largest page format in PDF is limited to 14,400 units or 200
inches. This limit can be extended with the user unit.

The largest value that is supported is 75.0 which results in a maximum page format of 15,000 x
15,000 inches or 1,800,000 units. Note that all functions which return page coordinates or page
properties do not consider the user unit.

The page format must still be in the range 3..14400 units. It is also strongly recommended to set the
user unit only if necessary. This is only the case if the required page format is larger 14400 units.
Default value = 1.0

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 816 of 854

SetUseStdFonts

Syntax:
LBOOL pdfSetUseStdFonts(
 const PPDF* IPDF, // Instance pointer
 LBOOL Value) // If false, the 14 standard fonts are disabled

The function can be used to disable the 14 standard fonts temporarily. PDF viewer applications
support 14 standard fonts, these fonts are not embedded by default, also if the parameter Embed of
the function SetFont() is true.

If certain standard fonts are available on the system, then they have typically a higher search
priority but it is still possible to select a standard font. This can occur, for example, if the font weight
of the system font does not exactly match the requested weight. If a standard font represents a better
match, then this font would be selected.

To avoid unwanted font selections it is possible to disable the standard fonts from font selection.
The value can be changed whenever necessary.

Default value = 1 (true)

SetUseSwapFile (obsolete)

Syntax:
LBOOL pdfSetUseSwapFile(
 const PPDF* IPDF, // Instance pointer
 LBOOL SwapContents, // If true, content streams are paged out too
 UI32 SwapLimit) // Memory limit in KB

This function is obsolete and should no longer be used. Beginning with DynaPDF 3.0, more efficient
features are available to restrict the memory usage.

When importing large PDF files, the flag if2UseProxy should be set to drastically reduce the
memory usage (see SetImportFlags2() for furhter information). When this flag is set, PDF files of
arbitrary size can be imported with minimal memory usage. The only restriction is that the
imported PDF file(s) cannot be deleted before CloseFile() or CloseFileEx() was called.

To enable the creation of large PDF files (up to 4 GB), it is possible to write finished pages into the
output file with FlushPages(). This is much more efficient and reduces the memory usage
drastically.

Beginning with DynaPDF 3.0, this function writes only images into the temp file. The parameter
SwapContents is no longer considered.

Remarks:

The function tmpfile() creates the temp file usually in the system's root directory. If you want to use
your own directory into which the temp file can be created then use the function
SetUseSwapFileEx() instead.

Function Reference Page 817 of 854

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetUseSwapFileEx (obsolete)

Syntax:
LBOOL pdfSetUseSwapFileEx(
 const PPDF* IPDF, // Instance pointer
 LBOOL SwapContents, // If true, content streams are paged out too
 UI32 SwapLimit, // Memory limit in KB
 const char* SwapDir) // Destination directory of the temp file

This function is obsolete and should no longer be used. Beginning with DynaPDF 3.0, more efficient
features are available to restrict the memory usage. See SetUseSwapFile() for further information.

Beginning with DynaPDF 3.0, the function writes only images into the temp file. The parameter
SwapContents is no longer considered.

The temp file will be created in the directory SwapDir. This directory must exist when the function is
called.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetUseSystemFonts

Syntax:
LBOOL pdfSetUseSystemFonts(
 const PPDF* IPDF, // Instance pointer
 LBOOL Value) // see description

The property specifies whether the system fonts should be automatically loaded. On Windows all
fonts in the Windows/Fonts directory will be loaded as well as shared fonts listed in the Registry.
On Mac OS X the following font paths will be added to the list of font search paths:
 /System/Library/Fonts
 /Library/Fonts
~/Library/Fonts

Additional font paths can be added with AddFontSearchPath().
Default value = 1 (true)

The fonts are loaded when SetFont() is called the first time. The property is ignored on Linux or
UNIX.

Remarks:

Please note that the internal font list is not automatically updated when the system's font pool
changes. Windows operating systems send a WM_FONTCHANGE message if the font pool was

Function Reference Page 818 of 854

modified. In this case, the application should call ClearHostFonts() before calling SetFont() the next
time so that the list of available system fonts can be updated.

On Mac OS X there is no notification when the font database changes. Mac OS X applications need
to use functions of the font manager to determine whether font database has been modified.

SetUseTransparency

Syntax:
LBOOL pdfSetUseTransparency(
 const PPDF* IPDF, // Instance pointer
 LBOOL Value) // If false, images appears opaque

The property specifies whether images should be masked with the current transparent color to make
this color transparent, see also SetTransparentColor(). This technique is known as color key
masking.

The default transparent color is white.

1 bit images are inserted as an image mask if this property is true. Non-zero pixels of an image mask
are rendered with the current fill color. See InsertImageEx() for further information.

Default value = 1 (true)

Remarks:

Color key masking is never applied on images with an alpha channel.

SetUseVisibleCoords

Syntax:
LBOOL pdfSetUseVisibleCoords(
 const PPDF* IPDF, // Instance pointer
 LBOOL Value) // See description

The property specifies whether DynaPDF should consider the coordinate origin and the crop box of
a page to calculate the position of an object. The crop box crops a page, but the paper format (media
box) is left unchanged. The media box represents the coordinate system of the page. The bounding
boxes are described in detail at SetBBox().

The coordinate origin of the media box or the crop box (if specified) must normally be considered
when drawing contents on a page. SetUseVisibleCoords() simplifies page editing since no further
considerations are required to place arbitrary contents on a page.

The functions GetPageWidth() and GetPageHeight() return the logical width and height if
SetUseVisibleCoords() is true. However, only these two functions consider this property. Functions
like GetBBox() or GetInBBox() return still the original values.
Default value = 0 (false)

Function Reference Page 819 of 854

SetViewerPreferences

Syntax:
LBOOL pdfSetViewerPreferences(
 const PPDF* IPDF, // Instance pointer
 TViewerPreference Value, // Preference
 TViewPrefAddVal AddVal) // Parameter of the preference if any

typedef SI32 TViewerPreference;
#define vpUseNone 0x00000000 // No preference is set
#define vpHideToolBar 0x00000001 // No parameter
#define vpHideMenuBar 0x00000002 // No parameter
#define vpHideWindowUI 0x00000004 // No parameter
#define vpFitWindow 0x00000008 // No parameter
#define vpCenterWindow 0x00000010 // No parameter
#define vpDisplayDocTitle 0x00000020 // (PDF 1.4) No parameter
#define vpNonFullScrPageMode 0x00000040 // Key, values see below
#define vpDirection 0x00000080 // (PDF 1.3)
#define vpViewArea 0x00000100 // (PDF 1.4)
#define vpViewClip 0x00000200 // (PDF 1.4)
#define vpPrintArea 0x00000400 // (PDF 1.4)
#define vpPrintClip 0x00000800 // (PDF 1.4)

typedef SI32 TViewPrefAddVal;
#define avNone 0x00000000
#define avNonFullScrUseNone 0x00000001
#define avNonFullScrUseOutlines 0x00000002
#define avNonFullScrUseThumbs 0x00000004
#define avNonFullScrUseOC 0x00000400 // PDF 1.6
#define avDirectionL2R 0x00000008
#define avDirectionR2L 0x00000010
#define avViewPrintArtBox 0x00000020
#define avViewPrintBleedBox 0x00000040
#define avViewPrintCropBox 0x00000080
#define avViewPrintMediaBox 0x00000100
#define avViewPrintTrimBox 0x00000200

The function sets the viewer preferences which control certain features in PDF viewers, such as
hiding the toolbar or menu bar. The parameters Value and AddVal are both bitmasks. Multiple values
can be set by using a bitwise or operator. It is also possible to call the function multiple times to set
each preference separately; the flags are combined with already existing one in this case. Already
defined flags can be deleted with the flag vpUseNone. A few flags require an additional parameter
that must be added to AddVal.

The flags are described in detail on the next page.
Default value = vpUseNone

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 820 of 854

Preference Description

vpUseNone This is the default behaviour; the flag can also be used to delete all
flags which were set beforehand.

vpHideToolBar If set, the toolbar is hidden in Acrobat when the document is active.

vpHideMenuBar If set, the menubar is hidden in Acrobat when the document is active.

vpHideWindowUI If set, scrollbars and navigation controls are hidden when the
document is active.

vpDisplayDocTitle (PDF 1.4) If set, Acrobat displays the document's title in the window's
title bar.

vpNonFullScrPageMode (PDF 1.4) The parameter AddVal specifies how to display the
document in non-fullscreen mode. This flag is meaningful only if the
page mode was set to pmFullscreen (see SetPageMode()).

vpDirection (PDF 1.4) The parameter AddVal defines the natural reading order of
the document. This entry has no direct effect on the document’s
contents or page numbering, but can be used to determine the relative
positioning of pages when displayed side by side or printed n-up.
Default value: L2R.

vpViewArea (PDF 1.4) The parameter AddVal specifies the name of the page
boundary representing the area of a page to be displayed when
viewing the document on the screen. The value is the key designating
the relevant page boundary in the page object (see SetBBox() for
further information). Default value: CropBox.

vpViewClip (PDF 1.4) The parameter AddVal specifies the name of the page
boundary to which the contents of a page are to be clipped when
viewing the document on the screen. The value is the key designating
the relevant page boundary in the page object (see SetBBox() for
further information). Default value: CropBox.

vpPrintArea (PDF 1.4) The parameter AddVal specifies the name of the page
boundary representing the area of a page to be rendered when
printing the document. The value is the key designating the relevant
page boundary in the page object (see SetBBox() for further
information). Default value: CropBox.

Function Reference Page 821 of 854

vpPrintClip (PDF 1.4) The parameter AddVal specifies name of the page boundary
to which the contents of a page are to be clipped when printing the
document. The value is the key designating the relevant page
boundary in the page object (see SetBBox() for further information).
Default value: CropBox.

SetWMFDefExtent

Syntax:
LBOOL pdfSetWMFDefExtent(
 const PPDF* IPDF, // Instance pointer
 UI32 Width, // Width in 0.01 millimetres
 UI32 Height) // Height in 0.01 millimetres

The function sets the default size which is used to convert non-portable WMF files to EMF. See
InsertMetafile() for further information.
Default value:
Width = 0;
Height = 0;

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetWMFPixelPerInch

Syntax:
LBOOL pdfSetWMFPixelPerInch(
 const PPDF* IPDF, // Instance pointer
 UI32 Value) // Pixels per inch of the y-axis see description

The function sets the default pixels per inch of the y-axis which are used to convert portable WMF
files to EMF. DynaPDF uses a corrected value to get exact proportions. See InsertMetafile() for
further information. The value must be in the range 2000 to 3000.
Default value = 2400

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 822 of 854

SetWordSpacing

Syntax:
double pdfGetWordSpacing(
 const PPDF* IPDF, // Instance pointer
 double Value) // Word spacing

The function sets the word spacing.
Default value = 0

Value = 0 Word Space
Value = 80 Word Space

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SetXFAStream

Syntax:
LBOOL pdfSetXFAStream(
 const PPDF* IPDF, // Instance pointer
 UI32 Index, // Stream index
 const void* Buffer, // XFA buffer
 UI32 BufSize) // Buffer size in bytes

The function replaces the contents of an XFA stream with new contents. Index must be a valid XFA
resource index. XFA streams can be enumerated with GetXFAStream() / GetXFAStreamCount().

The function does not check whether the provided XFA buffer is valid. The buffer is written to the
stream as is.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 823 of 854

SkewCoords

Syntax:
LBOOL pdfSkewCoords(
 const PPDF* IPDF, // Instance pointer
 double alpha, // Angle alpha in degrees
 double beta, // Angle beta in degrees
 double OriginX, // Origin of the x-axis
 double OriginY) // Origin of the y-axis

The function skews the coordinate system and sets the coordinate origin to the point OriginX,
OriginY. It is highly recommended to save the graphics state beforehand, otherwise it is very
difficult or impossible to restore the coordinate system later.

After the coordinate system was changed by the function, bottom-up coordinates are active. It is not
possible to use top-down coordinates with a skewed coordinate system.

Skewing is internally calculated as follows:
TCTM M; // Transformation matrix, the data type is declared in dynapdf.h
M.a = 1.0;
M.b = tan(alpha / 180 * PI);
M.c = tan(beta / 180 * PI);
M.d = 1.0;
M.x = OriginX;
M.y = OriginY;

Because the tangent of the angles alpha and beta represent the skewed coordinate system, the angles
must not be 90, 180, 270, or 360 degrees.

Remarks:

If the graphics state was not saved beforehand the function sets a warning but the transformation is
applied.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0. Use an error
callback function or check whether an error occurred with the function GetErrorMessage(). See
Exception handling for further information.

Skewing:

Function Reference Page 824 of 854

SortFieldsByIndex

Syntax:
LBOOL pdfSortFieldsByIndex(
 const PPDF* IPDF) // Instance pointer

The function sorts the interactive form fields of a page by comparing the internal indices which can
be set for each field separately (see SetFieldIndex() for further information). The field's index
represents the tab order of a field.

If the field indices were not changed beforehand, sorting makes no sense.

To sort the fields of a page, open the page for editing beforehand with EditPage().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SortFieldsByName

Syntax:
LBOOL pdfSortFieldsByName(
 const PPDF* IPDF) // Instance pointer

The function sorts the interactive form fields of a page in ascending order by field name. To sort the
fields of a page, open the page for editing beforehand with EditPage(). The order in which fields
appear in the page's field array specify the tab order of the fields.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

SquareAnnot

Syntax:
SI32 pdfSquareAnnot(
 const PPDF* IPDF, // Instance pointer
 double PosX, // y-coordinate of the annotation
 double PosY, // x-coordinate of the annotation
 double Width, // Width of the annotation
 double Height, // Height of the annotation
 double LineWidth, // Line width of the circle or ellipse
 UI32 FillColor, // Fill color or NO_COLOR. See description
 UI32 StrokeColor, // Stroke color or NO_COLOR. See description
 TPDFColorSpace CS, // Color space of the fill and stroke colors
 const char* Author, // Optional author
 const char* Subject, // Optional subject
 const char* Comment) // Optional comment

Function Reference Page 825 of 854

The function draws a square annotation on the current open page. If the parameters Width and
Height are equal the function draws a square, a rectangle otherwise. If the annotation should be
drawn without a border, set the parameter LineWidth zo zero or StrokeColor to the special constant
NO_COLOR.

If the interior should be transparent set FillColor to the special constant NO_COLOR.

Although the line width can be set to any positive floating point value, Adobe’s Acrobat or Reader
restrict the line width to 0 through 12 units. The line width should be restricted in the same way to
avoid issues in Adobe viewer products.

Remarks:

This function is implemented in an Ansi and Unicode compatible variant. Ansi strings are
interpreted in the Windows code page 1252.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails, the return value is a negative error code.

StampAnnot

Syntax:
LBOOL pdfStampAnnot(
 const PPDF* IPDF, // Instance pointer
 TRubberStamp SubType, // Stamp type
 double PosX, // x-coordinate
 double PosY, // y-coordinate
 double Width, // Stamp width
 double Height, // Stamp height
 const char* Author, // Optional
 const char* Subject, // Optional
 const char* Comment) // Optional

typedef enum
{
 rsApproved,
 rsAsIs,
 rsConfidential,
 rsDepartmental,
 rsDraft,
 rsExperimental,
 rsExpired,
 rsFinal,
 rsForComment,
 rsForPublicRelease,
 rsNotApproved,
 rsNotForPublicRelease,
 rsSold,
 rsTopSecret,
 rsUserDefined // See below
}TRubberStamp;

Function Reference Page 826 of 854

The function creates a stamp annotation. The function is able to create appearance streams for the
predefined stamps in English, German, and France. The default language is English.

In order to create a stamp in a different language than English, set the language identifier with
SetLanguage() before creating the annotation. StampAnnot() supports only the notation as country
key, e.g. "EN", "FR", "DE-de", and so on. Only the first two characters are used to identify the wished
language. The comparison is non-case-sensitive.

The default stamps are drawn in the following default colors:

Stamp Default color
rsApproved PDF_RGB(62, 172, 72)
rsAsIs PDF_RGB(240, 64, 36)
rsConfidential PDF_RGB(240, 64, 36)
rsDepartmental PDF_RGB(0, 112, 186)
rsDraft PDF_RGB(240, 64, 36)
rsExperimental PDF_RGB(0, 112, 186)
rsExpired PDF_RGB(240, 64, 36)
rsFinal PDF_RGB(240, 64, 36)
rsForComment PDF_RGB(62, 172, 72)
rsForPublicRelease PDF_RGB(62, 172, 72)
rsNotApproved PDF_RGB(240, 64, 36)
rsNotForPublicRelease PDF_RGB(240, 64, 36)
rsSold PDF_RGB(0, 112, 186)
rsTopSecret PDF_RGB(240, 64, 36)

The default color can be changed if necessary with SetAnnotColor(). The color type must be set to
fcBorderColor.

A user defined stamp can be created as follows:

• Create the stamp with SubType set to rsUserDefined.
• Call CreateAnnotAP() with the handle of the stamp annotation to create a user defined

appearance stream.
• Draw arbitrary contents and close the template finally with EndTemplate(), finished!

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

StrokePath

Syntax:
LBOOL pdfStrokePath(
 const PPDF* IPDF) // Instance pointer

The function strokes the current path without closing it. If no open path can be detected the function
returns with a warning.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 827 of 854

TestGlyphs

Syntax:
SI32 pdfTestGlyphs(
 const PPDF* IPDF, // Instance pointer
 SI32 FontHandle, // Font handle
 const char* Text) // Text that should be tested

The function checks whether all glyphs of the text are available in the specified font. The return
value is the position of the first missing glyph, or -1 if all glyphs are available.

If the font uses a mixed 8/16 bit CJK code page that requires a conversion to Unicode (a code page
that ends with "_Uni"), the return value corresponds to the converted Unicode string and not to the
CJK input string.

TestGlyphsEx

Syntax:
SI32 pdfTestGlyphsEx(
 const PPDF* IPDF, // Instance pointer
 SI32 FontHandle, // Font handle
 const char* Text, // Text that should be tested
 UI32 Len) // Text length in characters

The function checks whether all glyphs of the text are available in the specified font like
TestGlyphs() but it accepts a non-null-terminated string as input. The return value is the position of
the first missing glyph, or -1 if all glyphs are available.

If the font uses a mixed 8/16 bit CJK code page that requires a conversion to Unicode (a code page
that ends with "_Uni"), the return value corresponds to the converted Unicode string and not to the
CJK input string.

TextAnnot

Syntax:
SI32 pdfTextAnnot(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the annotation
 double PosY, // Y-Coordinate of the annotation
 double Width, // Width of the window in open state
 double Height, // Height of the window in open state
 const char* Author, // Author of the annotation or NULL
 const char* Text, // The annotation's Text or NULL
 TAnnotIcon Icon, // Annotation icon, see below
 LBOOL Open) // Should the annotation appear open or closed?

typedef enum
{

aiComment,
aiHelp,

Function Reference Page 828 of 854

aiInsert,
aiKey,
aiNewParagraph,
aiNote,
aiParagraph,
aiUserDefined // Internal, not usable!

}TAnnotIcon;

The function creates a text annotation. The parameters Width and Height define the size of the
annotation's window. The window is shown in the open state of the annotation.

PosX / PosY represents always the upper left corner of the annotation, independent of the used
coordinate system. This is different in comparison to all other annotations because text annotations
are never scaled or rotated with a page. The upper left corner of the scaled bounding box is the
reference point on which the icon is rendered. Therefore, this is the only stable point at different
zoom factors.

If the parameter Open is true, the annotation appears in its open state when opening the document.

The parameters Author and Text are optional, they can be NULL.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. The Ansi Version
supports Ansi strings of the code page 1252 only. To create a text annotation in an arbitrary
encoding convert the string to Unicode with the function ConvToIncode()and use the Unicode
version to create the annotation.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

Function Reference Page 829 of 854

TranslateCoords

Syntax:
LBOOL pdfTranslateCoords(
 const PPDF* IPDF, // Instance pointer
 double OriginX, // New coordinate origin of the x-axis
 double OriginY) // New coordinate origin of the y-axis

The function translates the coordinate system to the new origin OriginX, OriginY. Save the graphics
state beforehand and restore it when finish.

After the coordinate system was changed by the function, bottom-up coordinates are active. It is not
possible to use top-down coordinates with a transformed coordinate system.

Remarks:

If the graphics state was not saved beforehand the function set a warning but the transformation
will be applied.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0. Use an error
callback function or check whether an error occurred with the function GetErrorMessage(). See
Exception handling for further information.

TranslateRawCode (Font API)

Syntax:
UI32 fntTranslateRawCode(
 const void* IFont, // Pointer of the active font
 const BYTE* Text, // Raw text to be converted
 UI32 Len, // Text length in bytes
 double ADDR Width, // The width of the character
 UI16 OutText[32], // Static Unicode output buffer
 SI32 ADDR OutLen, // Number of characters copied to OutText
 LBOOL ADDR Decoded, // If false, Width, OutText, OutLen must be ignored
 float CharSpacing, // Current character spacing
 float WordSpacing, // Current word spacing
 float TextScale) // Current text scaling

The function converts a source character to Unicode. The code length of a character depends on the
font's encoding. PDF supports encodings with fixed and variable code lengths from one through
four bytes per character. The return value is the number of bytes which were consumed to convert
the character to Unicode; this value must be used to increment the text pointer and to decrement the
remaining text length.

The resulting Unicode character or sequence is stored in the parameter OutText, as well as the
corresponding output text length and the character width.

Function Reference Page 830 of 854

The parameter Decoded is set to true if the source character could be sucsessfully converted to
Unicode. If Decode is false the output string and character width contain no meaningful values.

The function can only fail when processing strings of CID fonts, e.g. if the font depends on an
external CMap that could not be loaded, or if the font uses a damaged CMap. The search path(s) to
external CMaps should always be set before extracting text from PDF files with SetCMapDir().

Passing an invalid or undefined code sequence to the function does not result in an error. In this
case the notdef character is added to the output string (this is usually 0 or 0xFFFD if the font
contains a ToUnicode CMap).

Notice:

To improve processing speed the function does not check whether the parameters are valid.

Remarks:

This function was designed to convert raw strings on a per character basis to Unicode which were
returned by ParseContent() or GetPageText(). The parameters CharSpacing, WordSpacing, and
TextScale must be taken from the current graphics state or from the structure TPDFStack.

Return values:

The return value of this function is always greater or equal to one. Check the parameter Decoded to
determine whether the function succeed.

TranslateString (obsolete)

Syntax:
SI32 fntTranslateString(

struct TPDFStack* Stack, // Structure which holds the current text
stack

UI16* OutText, // Output Unicode buffer
UI32 Size, // Length of the Unicode buffer in characters
UI32 Flags) // No flags are defined at this time

The function converts a binary string to Unicode that was returned by GetPageText(). This function
is marked as obsolete because the member Kerning of the structure TPDFStack contains already the
converted Unicode string. See GetPageText() for further information.

The converted string is copied to the parameter OutText. The output buffer must be allocated by the
caller. Note that the string buffer is a Unicode string in UTF-16 format. The parameter Size
represents the length of the buffer in characters, it must be long enough to hold the entire string.

The output buffer should be at least stack.TextLen * 16 / 10 + 32 characters long. However, to avoid
unnecessary memory allocation calls it is usually best to use a static conversion buffer with a length
of about 2048 or 4096 characters. Longer strings can normally not occur in well formatted PDF files
because a huge paper format would be required to display such a long string.

Function Reference Page 831 of 854

The parameter Flags was defined for future use. No flags are defined at this time, the parameter is
ignored.

Remarks:

The output string buffer is automatically allocated in VB .Net and C#. The parameter OutText
should be initialized with null or Nothing when using these programming languages.

This function should not be used to convert strings of CID fonts. To process strings of CID fonts use
the function TranslateRawCode().

Notice:

To improve processing speed the function does not check whether the parameters are valid.

In C/C++ and Delphi the output string buffer is not null-terminated and the function does not use
the exception handling of DynaPDF. In VB .Net and C# the function returns a native .Net string. No
error message is returned on failure. However, the only possible error is out of memory.

Return values:

If the function succeeds the return value is the number of Unicode characters copied into the buffer.
If the function fails the return value is zero.

TranslateString2 (Font API)

Syntax:
SI32 fntTranslateString2(

const void* IFont, // Pointer of the active font
const BYTE* Text, // Raw text to be converted
UI32 Len, // Text length in bytes
UI16* OutText, // Output Unicode buffer
UI32 Size, // Length of the Unicode buffer in characters
UI32 Flags); // No flags are defined at this time

The function converts a binary string to Unicode that was returned by ParseContent() or
GetPageText(). The converted string is copied to the parameter OutText. The output buffer must be
allocated by the caller. Note that the string buffer is a Unicode string in UTF-16 format. The
parameter Size represents the length of the buffer in characters, it must be long enough to hold the
entire string.

The output buffer should be at least Len * 16 / 10 + 32 characters long. However, to avoid
unnecessary memory allocation calls it is usually best to use a static conversion buffer with a length
of about 2048 or 4096 characters. Longer strings can normally not occur in well formatted PDF files
because a huge paper format would be required to display such a long string. The maximum
allowed string length in PDF is 32767 characters.

Function Reference Page 832 of 854

Remarks:

The output string buffer is automatically allocated in VB .Net and C#. The parameter OutText
should be initialized with null or Nothing when using these programming languages.

This function should not be used to convert strings of CID fonts. To process strings of CID fonts use
the function TranslateRawCode().

Notice:

To improve processing speed the function does not check whether the parameters are valid.

In C/C++ and Delphi the output string buffer is not null-terminated and the function does not use
the exception handling of DynaPDF. In VB .Net and C# the function returns a native .Net string. No
error message is returned on failure. However, the only possible error is out of memory.

Return values:

If the function succeeds the return value is the number of Unicode characters copied into the buffer.
If the function fails the return value is zero.

Triangle

Syntax:
LBOOL pdfTriangle(
 const PPDF* IPDF, // Instance pointer
 double x1, // X-Coordinate of the first point
 double y1, // Y-Coordinate of the first point
 double x2, // X-Coordinate of the second point
 double y2, // y-Coordinate of the second point
 double x3, // X-Coordinate of the third point
 double y3, // Y-Coordinate of the third point
 TPathFillMode FillMode) // Fill mode

The function draws a triangle.

The draw direction can be changed with the function SetDrawDirection().

A triangle is a closed path that can be filled, stroked or both. It is also possible to draw a triangle
invisible to apply the filling rules nonzero winding number or even-odd. The filling rules are
described under ClipPath(). The parameter FillMode is ignored if the triangle is drawn inside a
clipping path. The fill modes are described under ClosePath().

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 833 of 854

UnLockLayer

Syntax:
LBOOL pdfUnLockLayer(
 const PPDF* IPDF, // Instance pointer
 UI32 Layer) // Handle of an OCG

The function removes a layer from the list of locked layers. See also LockLayer() for further
information.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

UTF16ToUTF32

Syntax:
UI32* pdfUTF16ToUTF32(
 const PPDF* IPDF, // Instance pointer
 const UI16* Source) // Null-terminated UTF-16 Unicode string

The function converts a UTF-16 Unicode string to UTF-32. UTF-32 is the default Unicode format on
Linux and UNIX operating systems. The input string must be defined in the CPU's byte ordering
(little-endian on a little-endian machine and big-endian on a big-endian machine), the output string
is also returned in the CPU's byte ordering.

The return value is a pointer to the original conversion buffer; it must not be freed or changed. The
function can be called multiple times without causing a memory leak. However, if the conversion
buffer is no longer needed it can be released with the function FreeUniBuf(). The buffer is
automatically released when CloseFile() or FreePDF() is called.

The function requires no open PDF file; it can be used at any time. Invalid character sequences are
skipped by the algorithm, they do not break conversion.

Return values:

If the function succeeds the return value is a pointer to the converted UTF-32 Unicode string. If the
function fails the return value is NULL. The only possible error during conversion is out of memory.

UTF16ToUTF32Ex
UI32* pdfUTF16ToUTF32Ex(
 const PPDF* IPDF, // Instance pointer
 const UI16* Source, // UTF-16 Unicode string
 UI32 ADDR Len) // String length in characters

The function converts a UTF-16 Unicode string to UTF-32. UTF-32 is the default Unicode format on
Linux and UNIX operating systems. The input string must be defined in the CPU's byte ordering
(little-endian on a little-endian machine and big-endian on a big-endian machine), the output string
is also returned in the CPU's byte ordering.

Function Reference Page 834 of 854

The used conversion algorithm is binary save. The parameter Len holds the string length in
characters before and after conversion. The new string length is normally not longer then original
one, but it is possible that the new string length will be shorter because surrogates are expressed as
two character sequence in UTF-16, but as one character in UTF-32.

The return value is a pointer to the original conversion buffer; it must not be freed or changed. The
function can be called multiple times without causing a memory leak. However, if the conversion
buffer is no longer needed it can be released with the function FreeUniBuf(). The buffer is
automatically released when CloseFile() or FreePDF() is called.

The function requires no open PDF file; it can be used at any time. Invalid character sequences are
skipped by the algorithm, they do not break conversion.

Return values:

If the function succeeds the return value is a pointer to the converted UTF-32 Unicode string. If the
function fails the return value is NULL. The only possible error during conversion is out of memory.

UTF32ToUTF16

Syntax:
UI16* pdfUTF32ToUTF16(
 const PPDF* IPDF, // Instance pointer
 const UI32* Source) // Null-terminated UTF-32 Unicode string

The function converts a UTF-32 Unicode string to UTF-16. UTF-32 is the default Unicode format on
Linux and UNIX operating systems. This function uses the macro ToUTF16() which can be used to
convert UTF-32 strings to UTF-16.

The macro is mostly used to convert literal strings in parameterized function calls which can contain
more than one Unicode parameter. To enable the usage in functions with more than one string
parameter, the function holds an array of six separate conversion buffers so that a second or third
call of the macro does not override or free the buffer of a previous call.

Example:
// Linux uses UTF-32 as Unicode string format
Anyfunction(pdf, ToUTF16(pdf, L"First"), ToUTF16(pdf, L"Second"),
ToUTF16(pdf, L"Third!"));

The code above produces no access violation because each call of the macro ToUTF16() uses its own
conversion buffer. DynaPDF contains no function that supports more than three Unicode string
parameters so that the number of six separate conversion buffers is large enough for all functions
which are currently defined in DynaPDF.

The number of conversion buffers is defined by the constant PDF_UTF16_BUF_COUNT in the
header file pdf_main.h; it can be changed if necessary (you need the source code of DynaPDF and
the library must be recompiled when changing the value).

Function Reference Page 835 of 854

The input string must be defined in the CPU's byte ordering (little-endian on a little-endian machine
and big-endian on a big-endian machine), the output string is also returned in the CPU's byte
ordering.

The return value is a pointer to the original conversion buffer; it must not be freed or changed. The
function can be called multiple times without causing a memory leak. However, if the conversion
buffers are no longer needed they can be released with FreeUniBuf() (this will free all four buffers).
The buffers are automatically released when CloseFile() or FreePDF() is called.

The function requires no open PDF file; it can be used at any time. Invalid character sequences are
skipped by the algorithm, they do not break conversion.

Return values:

If the function succeeds the return value is a pointer to the converted UTF-16 Unicode string. If the
function fails the return value is NULL. The only possible error during conversion is out of memory.

UTF32ToUTF16Ex

Syntax:
UI16* pdfUTF32ToUTF16Ex(
 const PPDF* IPDF, // Instance pointer
 const UI32* Source, // UTF-32 Unicode string
 UI32 ADDR Len) // String length in characters

The function converts a UTF-32 Unicode string to UTF-16. UTF-32 is the default Unicode format on
Linux and UNIX operating systems. The input string must be defined in the CPU's byte ordering
(little-endian on a little-endian machine and big-endian on a big-endian machine), the output string
is also returned in the CPU's byte ordering.

The used conversion algorithm is binary save. The parameter Len holds the string length in
characters before and after conversion. The new string length can be longer then original one
because surrogates are expressed as two character sequence in UTF-16, but as one character in
UTF-32.

The return value is a pointer to the original conversion buffer; it must not be freed or changed. The
function can be called multiple times without causing a memory leak. However, if the conversion
buffer is no longer needed it can be released with the function FreeUniBuf(). The buffer is
automatically released when CloseFile() or FreePDF() is called.

The function requires no open PDF file; it can be used at any time. Invalid character sequences are
skipped by the algorithm, they do not break conversion.

Return values:

If the function succeeds the return value is a pointer to the converted UTF-32 Unicode string. If the
function fails the return value is NULL. The only possible error during conversion is out of memory.

Function Reference Page 836 of 854

WatermarkAnnot

Syntax:
SI32 pdfWatermarkAnnot(
 const PPDF* IPDF, // Instance pointer
 double PosX, // x-coordinate
 double PosY, // y-coordinate
 double Width, // Annotation width
 double Height) // Annotation height

The function creates a Watermark annotation. Watermark annotations have no interactive elements
like other annotation types. This property is useful in many cases because it is usually not possible
to select or change the contents of a watermark annotation in viewer applications.

The annotation has no appearance after it was created. Call CreateAnnotAP() to create an
appearance template for the annotation. After the appearance template was created you can draw
text, images or vector graphics into it. The template must be closed with EndTemplate() when
finished. It is also possible to import an external page or EMF contents into the template.

Watermark annotations can be shared on multiple pages. To place the annotation on other pages call
AddAnnotToPage().

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

WebLink

Syntax:
SI32 pdfWebLink(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of bounding rectangle
 double PosY, // Y-Coordinate of bounding rectangle
 double Width, // Width of bounding rectangle
 double Height, // Height of bounding rectangle
 const char* URL) // URL defined as null-terminated 7 bit ASCII string

The function inserts a web link onto the current open page. The parameter URL holds the URL
defined as 7 bit ASCII string. A uniform resource locator (URL) is a string that resolves to a resource
on the internet - typically a file that is the destination of a hypertext link, although it can also resolve
to a query or other entity. A web link opens the standard browser to view the resource by default.
The full version of Adobes Acrobat enables you also to embed a reverenced html resource in your
document.

If the coordinate system is bottom-up the point PosX, PosY defines the lower left corner of the
bounding rectangle. If the coordinate system is top-down it defines the upper left corner.

Function Reference Page 837 of 854

The border of the link annotation is drawn by using the current line width, stroke color and line
dash pattern. If the link should appear without a border set the line width to zero beforehand.

When clicking on a link annotation the rectangle is highlighted, that is a simple visual effect. Several
highlight modes are supported, see SetLinkHighlightMode() for further information.

Remarks:

This function is implemented in an Ansi and Unicode compatible version. Because the URL must be
defined as 7 bit ASCII string, a Unicode URL must not contain characters outside of 7 bit ASCII.

Return values:

If the function succeeds the return value is the annotation handle, a value greater or equal zero. If
the function fails the return value is a negative error code.

WriteAngleText

Syntax:
LBOOL pdfWriteAngleText(
 const PPDF* IPDF, // Instance pointer
 const char* AText, // Text to be printed
 double Angle, // Angle alpha in degrees
 double PosX, // X-Coordinate of the text
 double PosY, // Y-Coordinate of the text
 double Radius, // Output radius or 0, see below
 double YOrigin) // Origin of the y-axis, see below

The function draws text in a user defined angle around a radius. If the coordinate system is bottom-
up the point PosX, PosY defines the lower-left corner of the text, otherwise the top-left corner. The
parameter Radius moves the text in the rotated coordinate system on the x-axis so that the string will
be printed on a radius. The parameter YOrigin moves the string also in the rotated coordinate
system, but on the y-axis; the origin is measured in bottom-up coordinates independently of the
current coordinate system. The y-origin is required when the text should be centered on the y-axis.

For instance, if the coordinate system is bottom-up, the point PosX, PosY defines the baseline of the
text that is the center of the rotation. If the text should be centred on the y-axis the origin of the y-
axis must be moved downward by the half cap height of the current font (see example below).

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 838 of 854

Example (C++):
#include "dynapdf.h"
using namespace DynaPDF;
// First we declare an error callback function
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char*
ErrMessage, SI32 ErrType)
{
 printf("%s\n", ErrMessage);
 return 0;
}

int main(int argc, char* argv[])
{
 double alpha = 0.0;
 double y, pageCenter;
 SI32 i;
 void* pdf = pdfNewPDF();
 if (!pdf) return 2; // Out of memory?
 pdfSetOnErrorProc(pdf, NULL, PDFError);
 pdfSetPageCoords(pdf, pcTopDown);
 pdfCreateNewPDF(pdf, "c:/cppout.pdf");
 pdfAppend(pdf);
 pdfSetFont(pdf, "Arial", fsNone, 20.0, true, cp1252);
 pageCenter = pdfGetPageWidth(pdf) / 2.0;
 y = -(20.0 + pdfGetDescent(PDF)) / 2.0; // Font size + descent
 for (i = 0; i < 12; i++)
 {
 pdfSetFillColor(pdf, (0x00C08080 | ((SI32)alpha) << 6));
 pdfWriteAngleText(pdf,"Circular Text",alpha,pageCenter,300,24,y);
 alpha += 30.0;
 }
 pdfEndPage(pdf);
 pdfCloseFile(pdf);
}

Output:

Circular Text
Circular T

ext

C
irc

ul
ar

 T
ex

t

C
irc

ul
ar

 T
ex

t
C

irc
ul

ar
 T

ex
t

Circular T
ext

Circular Text
Circular Text

C
ircular Text

C
ircular T

ext
C

ircular Text

Circular Text

Function Reference Page 839 of 854

WriteFText

Syntax:
LBOOL pdfWriteFText(
 const PPDF* IPDF, // Instance pointer
 TTextAlign Align, // Base alignment
 const char* AText) // Null-terminated string to be printed

typedef enum
{

taLeft = 0, // Left aligned text
taCenter = 1, // Centered text
taRight = 2, // Right aligned text
taJustify = 3, // Justified text
taPlainText = 0x10000000 // Process the text as is

}TTextAlign;

Instead of drawing text on a line by line basis it is also possible to output text into a rectangle by
applying a formatting algorithm. The parameter Align defines the base alignment of the text to be
drawn. The alignment can be changed inside the text by using an alignment tag.

The parameter Text holds a null-terminated string which can contain optional format tags to enable
more complex formattings.

WriteFText() supports a callback function as well as several format tags which can be used to apply
more complex formattings. The following sections describe the formatting options and the usage of
the function in detail, please read these sections carefully.

Output rectangle

The output rectangle that is used by the function must be defined with the function SetTextRect(). If
no output rectangle was set beforehand the function uses a default rectangle that is defined as
follows:

• If the page contains a crop box the output rectangle becomes the dimension of the crop box
with a border of 50 units (width - 100, height -100).

• If no crop box is present the output rectangle becomes the dimension of the media box with
a border of 50 units (width - 100, height -100).

The bounding boxes are described in detail at SetBBox().

WirteFText() supports a callback function which is called when the output rectangle was filled with
text and if more text is available for output (see SetOnPageBreakProc() for further information). If no
callback was set, the text continues on the next page by using the same output rectangle.

To avoid page breaks set the height of the output rectangle to -1. Note that the Visual Basic and VB
.Net interfaces use events instead of callback functions. The OnPageBreak event must be manually
connected with the function ConnectPageBreakEvent().

Function Reference Page 840 of 854

Text formatting

WriteFText() can be used to output simple formatted text such as right aligned or justified text, but it
is also possible to use certain format tags to create a list or other specific formattings. It is also
possible to use a callback function to create multi-column text or other more complex formattings.
First, we want to see how the text alignment can be changed inside a text block. WriteFText()
supports 4 format tags which can be used to do this, we call these tags alignment tags.

Alignment tags

An alignment tag changes the text alignment in a text block. The base alignment that is used by the
function was already defined by the parameter Align. The base alignment can also be changed inside
the text by inserting an alignment tag. The following tags are available:

• \le# // Left aligned text

• \re# // Right aligned text

• \ce# // Centred text

• \ju# // Justified text

Like all format tags, an alignment tag begins with a backslash (character code 92) and ends with a
numbersign (character code 35).

It is not possible to use multiple alignments in one text line. When an alignment tag is found the
current line is closed and the cursor moves to the next line and continues with the new alignment.

Example:
char fText[] = "Left aligned text, this is left aligned text, this is "
"left aligned text...\\ju#\\FC[255]This is justified text, this is "
"justified text, this is justified text, this is justified text, this "
"is justified text, this is justified text, this is justified text, "
"this is justified text...\\re#\\FC[165536]This is right aligned text, "
"this is right aligned text, this is right aligned text..."
"\\le#\\FC[233512]Back to left aligned text, we go back to left "
"aligned text...";

pdfSetTextRect(pdf, 50, 50, 150, -1);
pdfWriteFText(pdf, taLeft, fText);
double height = pdfGetPageHeight(pdf) - pdfGetLastTextPosY(pdf) - 50;
pdfRectangle(pdf, 50, 50, 150, height, fmStroke);
...

Note that the above string is a literal string defined in C/C++. Because the backslash is an escape
character in C/C++ it must be added twice. "\\le#" is resolved to "\le#". The latter string is what the
compiler passes to WriteFText(). The same string read from a file requires no escaping with
additional backslashes!

Function Reference Page 841 of 854

Output:

As you can see above, the string is not delimited, each alignment tag follows just a string without a
carriage return or line feed. We use the command tag "\FC[]" to change the text color so that we
can better distinguish between the alignments. However, after changing the alignment the cursor
moves always to the next line and the text is printed in the new alignment.

You can also see how the rectangle was filled with text. The function GetLastTextPosY() returns the
baseline of the last text line in bottom-up coordinates . We use this value to calculate the height of
the rectangle. However, the last baseline is often required to place other objects onto the page after
the text was printed.

The x-coordinate can also be determined by the function GetLastTextPosX() so that it is quite easy to
get the exact position of the end of the string.

The text alignment is active until it will be changed by an alignment tag. If the string contains no
alignment tag, the entire text is printed in the same alignment. Now we want to see what kind of
command tags are available. You have already seen a command tag (\FC[]), let's take a look on
the other tags.

Command tags

A command tag is a tag that causes the execution of a function. This function can change a property,
set a font, create a bookmark, or other things.

• \ul# // Underline

• \dl# // Double underline

• \st# // Strikeout

• \us# // Underline + strikeout

• \np# // New page

• \BM[char*] // Add a bookmark

• \CS[float] // Char spacing

• \EH# // End highlight text

• \EK# // End link

Function Reference Page 842 of 854

• \EL# // End list

• \FC[UI32] // Font color

• \FS[float] // Font size

• \FT[various] // See description below

• \HA[int, int] // Highlight annot, see description

• \LD[letter 't' or float] // Leading or line height, see description

• \LI[float, int, float] // List, see description on the next page

• \LK[bool, bool, bool, // Add a link, see description
char*]

• \TL[int] // Tab length

• \TR[float] // Text rise

• \TS[float] // Text scaling

Two categories of command tags are available, those without a parameter and the others which
require one or more parameters. The tags which require no parameter end with a numbersign
(character code 35). Parameters are always encapsulated into brackets. The values inside the
brackets must be defined without trailing spaces or other characters. Note that all characters before
and after a tag will be printed.

Note that the backslash is an escape character in C/C++ literal strings. For better readability the
second backslash is omitted. Note also that the backslash must be escaped in literal strings only.

Example:

"This is a \ul#\FC[255]red\FC[0]\ul# string!" = This is a red string!

Tag Description

\ul# Draw the following text as underlined text. The next \ul# tag deactivates underlined
output:

"This is \ul#underlined\ul# text!" = This is underlined text!

\st# Draw the following text as strikeout text. The next \st# tag deactivates underlined output:

"This is \st#strikout\st# text!" = This is strikeout text!

\us# Draw the following text as underlined and strikeout text. The next \us# tag deactivates the
tag:

"This is \us#underlined + strikeout\us# text!" = This is underlined +
strikeout text!

\np# This tag creates a page break event. If the OnPageBreak callback function was set, the
function is called without leaving the current page. The current page is still open, so that it
is possible to make arbitrary changes inside the callback function such as changing the font,
the output rectangle or closing the current page and opening another one so that the
remaining text can be printed.

Function Reference Page 843 of 854

If no callback function was set, the current page will be closed and the remaining text will
be printed on the next page by using the same output rectangle. See also
SetOnPageBreakProc(), ConnectPageBreakEvent().

\BM[char*] WriteFText adds a bookmark with a destination of type dtXY_Zoom, and the x, y
coordinate will be set to the position where this tag appears (the y-coordinate system is the
baseline plus leading), the zoom factor is left unchanged. The parameter of the tag is the
bookmark's title. Note that the title is not printed onto the page. To print the bookmarks
title onto the page, add the string behind the tag again:

"\BM[My first bookmark...]My first bookmark..."

The bookmark title and the string that appears on the page can be different.

\CS[float] The tag changes the current character spacing. The value must be in the range -1000 to 1000
units. Note that negative values push the characters into the others. See also
SetCharacterSpacing().

\EH# End of highlight annotation. It requires a preceding \HA[] tag.

\EK# This is an end of link tag. It requires a preceding \LK[] tag.

\EL# This is an end of list marker. It requires a preceding create list tag, see above. The tag turns
off the current list so that the following text can be printed in the usual way.

\FC[UI32] The tag changes the current font color. The color value must be defined in the current color
space. See also SetFillColor().

\FS[float] The tag changes the current font size. The new font size must be greater zero.

\FT[various] This tag changes the current font. The font can be changed by using a font handle or a font
name. If a font handle is used, the font(s) must be loaded beforehand with SetFont(),
SetFontEx(), or SetCIDFont(). Unused fonts are removed by DynaPDF, they will not be
added to the file.

The second way to change the font is by using a font name. If nothing else is specified, the
specified name is interpreted as Postscript name.

Example: "\FT[ArialMT]Some text..."

Since DynaPDF 4.0.46.132 it is also possible to specify the font name as Family Name or
Full Name. In addition, it is possible to define up to three alternate fonts. The search run
continues until a font of the list can be successfully loaded.

It is possible to combine all formats as needed. That means every font can be specified
either as font handle, PostScript Name, Family Name, or Full Name.

The tag will be output as plain text if it contains errors. Font loading errors are not passed
to the error callback function (if set), if a font of the list can be loaded.

A family name must be terminated with a colon and followed by the style flags as an

Function Reference Page 844 of 854

integer or hexadecimal number. A hexadecimal number must be preceeded with '0x' or '0X'.
The very same syntax is used in C/C++, or C#, for example.

Example Family Name:

• "\FT[Courier New:0x2BC00001]" -> Ok (fsBold | fsItalic)

• "\FT[Courier New : 0]" -> Ok (fsNone)

• "\FT[Courier New : 419430400] -> Ok (fsRegular as Integer)

• "\FT[CourierNewPSMT, 0]Some text..." -> Ok

• "\FT[CourierNewPSMT: 0]Some text..." -> Wrong!

The last example is wrong because a Postscript name was combined with style flags. Note
that there is no way to distinguish between the different font names. The font cannot be
found if a wrong name is provided.

Spaces between the font or style flags and the colon are ignored.

A Full Name must be terminated with a colon and followed by the keyword "full" (case-
insensitive).

Example Full Name:

• "\FT[Courier New Bold:full]Some text..." -> Ok

• "\FT[Courier New Bold : FULL]Some text..." -> Ok

Example alternate fonts:

• "\FT[Arial Bold:full, Helvetica: 734003200, Verdana Bold :
full, Segoe UI :0x2BC00000, 4]" -> Ok

• "\FT[3, Arial Bold:full, Helvetica: 734003200]" -> Wrong!
Since font handles must be valid, no alternate font can ever
be loaded. A font handle should be the last entry in the
list.

The style flags of the fonts Helvetica and Segoe UI are identically but defined one time as
an integer number and another time as hexadecimal number.

Examples:

• Font handle: "\FT[3]Some text..."

• Font handle: "\FT[3:0x2BC00001]Some text..." (fsBold|fsItalic)

• Postscript name: "\FT[ArialMT]Some text..."

• Family name: "\FT[Courier New:0]Some text..."

• Full name: "\FT[Arial Bold:full]Some text..."

• Alternate font: "\FT[Arial Italic:full, Helvetica:1, 5]"

The second example combines a font handle with style flags. Although a font handle
specifies the font to use, the style flags enable bold and italic emulation if needed.

The last example means: use the font with handle 5 if Arial Italic or Helvetica Italic cannot
be found.

Notice:

Font names are case-sensitive, they must be specified exactly. Although the keyword "full"

Function Reference Page 845 of 854

or the prefix of hexadecimal numbers can be specified case insensitive, this is not the case
for the font name.

The recommended function to enumerate available fonts is GetSysFontInfo(). It is also
possible to use EnumHostFonts() or EnumHostFontsEx() but these functions do not return
the Full Name of a font.

\HA[int,
int]

This tag creates a Highlight, Underline, Strikeout, or Squiggly annotation. All these types
are subtypes of a highlight annotation. The first parameter is the subtype that should be
created. Valid values are:

4 = atHighlight
12 = atSquiggly
14 = atStrikeOut
16 = atUnderline

The second parameter is the highlight color. Both parameters are optional but note that the
brackets are part of the syntax and therfore are required. If no parameter is provided then
the subtype atHighlight in the color yellow will be created. The color can be defined as an
integer or hexadecimal value. The latter one must be prefixed with "0x" or "0X" (without
quotation marks).

The tag must be terminated with the tag \EH.

Example:

"This is a \HA[0xFF]Test...\EH#".

Result = This is a Test...

In the above example, the parameter subtype was omitted. It defaults to 4 = atHighlight.

\LD['t' or
float]

This tag changes the current leading. The value can be a positive floating point number or
the letter 't' (non-case sensitive and without quotes, e.g. "\LD[t]"). The letter 't' stands for
typographic leading. The typographic leading or line height is available in newer TrueType
and OpenType fonts which contain metrics for TypoAscender, TypoDescender, and
TypoLineGap. Type1 fonts do not support these metrics.

If the metrics are not available, leading is set to Ascent – Descent. Descent is usually a
negative number. If the calculated leading is smaller than the font size, the font size is used
as leading. See also SetLeading().

\LI[float,

int,float]

This tag creates a list. The tag has three parameters which must be delimited with a comma.
The first parameter defines the left margin of the list character measured from the x-
coordinate of the output rectangle. Positive values move the list character to right, negative
values move it to left.

The second and third parameters are optional; they define the list character that should be
used and the distance between the list character and the text. The list character must be a
valid character index of the font Wingdings-Regular, or it must be an index into the current
list font if set (see SetListFont()).

Function Reference Page 846 of 854

It is also possible to create a numbered list:

• If no value is defined, the character index 159 of the font Wingdings-Regular is used
as list symbol. This is the same character as you see in this list.

• A value between 32 to 255 is treated as character index of the current list font. If no
list font was set it defaults to the font Wingdings-Regular which is normally
available on all Windows operating systems. Make sure that this font is available
under Linux or UNIX.

• Values in the ranges 0 to 31 and 256 to 999 are not valid; the list will not be created.

• Since the Unicode index of the bullet character is above 1000 (decimal 8226 or hex
2022), the Unicode version of WriteFText() supports also an arbitrary Unicode
character after the comma to specify the list symbol. The Unicode index of this
character must be greater 33 and no number (48..57).

• Values greater or equal 1000 are used to create a numbered list. The function
subtracts 1000 from the number and prints the resulting number as list symbol plus
a dot using the current font:

"\\LI[10,1001]This is a numbered list!\\EL#" =

1. This is a numbered list!

A list supports the alignments left and justified text only. Right aligned or centred text
produce unpredictable output. A list must be finished with the tag \EL#. The default
distance between the list character and the text is 10 units.

\LK[bool,
bool,bool,
char*,char*]

This tag adds a link to a page. The parameters are as follows:

• IsNamedDest (false or 0, true or 1)
• IsExternalLink (false or 0, true or 1)
• OpenInNewWindow (false or 0, true or 1)
• URL or name of a named destination (see CreateNamedDest())
• PDF file in which the named destination is located

Link annotations support more properties which must be set before calling WriteFText():

• Border width -> SetLineWidth()
• Border dash pattern -> SetLineDashPattern()
• Border color -> SetStrokeColor()
• Border color space -> SetStrokeColorSpace()
• Highlight mode -> SetLinkHighlightMode()

The first four parameters are required. The last parameter is required only if IsNamedDest
and IsExternalLink are both true.

The path to an external PDF file should be a relative path. Although Unicode paths are
supported since Acrobat 8, it is usually best to restrict the character set to plain english.

This tag must be terminated with a \EK# tag. At least one character must occur between
\LK[...] and the corresponding \EK# tag. The link is created over these characters. If a line

Function Reference Page 847 of 854

or page break occurs before the terminating \EK# tag, the link annotation is created over
multiple text lines. This results maybe also in multiple link annotations if a page break
occurs.

Parameters of type bool can be defined as integer value 0 = false, 1 = true, or as string (non-
case-sensitive). Unlike other command tags, whitespace between values are ignored and
does not result in an error. All character codes below 33 are considered as whitespace.

The parameter URL is passed to WebLink() if IsNamedDest is false. If IsNamedDest is true,
URL must be the name of a named destination. If IsExternalLink is false, URL is passed to
PageLink3(). If true, the function creates a link annotation and a Go To Remote Action with
CreateGoToRActionEx(). The Unicode version of WriteFText() calls
CreateGoToRActionExU() to preserve the Unicode file name.

Examples:

• \LK[false, TRUE, false, https://www.dynaforms.com]Test\EK# // Ok
• \LK[0,1,0,https://www.dynaforms.com]Test\EK# // Same as above
• \LK[true, true, true, NameOfADestination, test.pdf]Test\EK# // Ok
• \LK[false, true, false, www.dyna forms.com]Test\EK# // Invalid URL!
• \LK[true, true, true, DestName, file name with spaces.pdf]Test\EK# // Ok

The file name in the last example is treated as "file name with spaces.pdf". Leading and
trailing spaces are ignored.

\TL[int] The tag changes the current tabulator length. The value must be in the range 1 to 255. See
also SetTabLen().

\TR[float] The tag changes the current text rise. Text rise can be used to create superscript or subscript
text parts inside a text block. The value must be in the range -1000 to 1000 units.

\TS[float] The tag changes the current horizontal text scaling. The value must be greater zero. See also
SetTextScaling().

Special characters

The following list defines special characters which can be used to insert new lines, tabulators and so
on. Bidirectional characters require enabled complex text layout. See SetGStateFlags() for further
information.

Character code (Hex) Description

0x10 or 0x13 or
0x13 + 0x10

New line or end-of-line character code. The combination of a carriage return plus
a line feed will be treaded as single end-of-line character.

0x09 A tabulator is emulated by inserting a variable count of space characters. The
number of characters can be adjusted inside the text with the command tag
\TL[] or outside with the property SetTabLen().

Function Reference Page 848 of 854

The function supports also specific Unicode characters which are used to control the bidirectional
algorithm. The bidirectional formatting codes are also supported by all other text functions.

Character code (Hex) Description

0x202A LRE Left-to-Right Embedding (treat the following text as embedded left-to-right)

0x202B RLE Right-to-Left Embedding (treat the following text as embedded right-to-left)

0x202C PDF Pop Directional Format (restore the bidirectional state to what it was before
the last LRE, RLE, LRO or RLO)

0x202D LRO Left-to-Right Override (force the following characters to be treated as
strong left-to-right characters)

0x202E RLO Right-to-Left Override (force the following characters to be treated as
strong right-to-left characters)

0x200E LRM Left-to-Right Mark (left-to-right zero-width character)

0x200F RLM Right-to-Left Mark (right-to-left zero-width character)

0x200C Zero width non-joiner

0x200D Zero width joiner

The bidirectional code pages 1255 and 1256 support the character codes 0x200E and 0x200F only (the
mapped codes are 253 and 254).

Note that the Unicode character codes are supported by the Unicode version of the function only.

Escape Sequences

In situations where an alignement or command tag should be output as plain text it is possible to
precede the tag with an additional backslash. This marks the string as plain text and the function
does not interpret it as command or alignment tag. The first backslash is treated as escape character
and will be removed.

Example:
\\ = \\
\\ce# = \ce#
\\\le# = \\le#
\\LI [...] = \\LI [...] // No valid tag -> always processed as text
\\LI[...] = \LI[...]

The function compares the first four characters of command tags which accept parameters . If the
sequence matches a command tag an additional backslash is required if the string should be output
as text.

It is also possible to fully disable alignment and command tags with the flag taPlainText that can be
passed to the parameter Align. Combine the flag with the wished alignment constant with a binary
or operator, e.g. (TTextAlign)(taRight | taPlainText). This can be useful when it is known that the

Function Reference Page 849 of 854

incomming text cannot contain alignment or command tags. Line breaks and so on are still
processed as usual but all kinds of alignment and command tags will be interpreted as plain text.

How to create multi-column text?

WriteFText() supports a callback function which can be used to create various formattings. The
callback function is required to print text into multiple columns.

The Visual Basic and VB .Net interfaces use events instead of callback functions. However, the usage
is identical but the event must be manually connected with the function ConnectPageBreakEvent()
so that the event can be raised.

A good example to demonstrate the usage of the callback function is the output of multi-column
text. In the following example we have a text file that contains the text that should be printed. The
text that we use in this example is not of interest, it must only be large enough so that WriteFText()
generates an OnPageBreak event. Note that it is also possible to create this event manually with the
command tag \np#.

Example (C++):

First, we define a structure which contains all variables we need to calculate the output rectangle.
We pass this structure to the SetOnPageBreakProc() function so that we don't need any global data.
struct TOutRect
{
 void* iPDF; // Active PDF instance
 double PosX; // X-coordinate of first output rectangle
 double PosY; // Y-coordinate of first output rectangle
 double Width; // Original width of the output rectangle
 double Height; // Original height of the output rectangle
 double Distance; // Space between columns
 SI32 Column; // Current column
 SI32 ColCount; // Number of columns
};

// This is our callback function
SI32 PDF_CALL OnPageBreakProc(const void* Data, double LastPosX, double LastPosY, SI32 PageBreak)
{
 TOutRect* r = (TOutRect*)Data; // get a pointer to our structure
 pdfSetPageCoords(r->iPDF, pcTopDown); // we use top-down coordinates
 if (!PageBreak && r->Column < r->ColCount -1)
 {
 ++r->Column;
 // Calculate the x-coordinate of the column
 double posX = r->PosX + r->Column * (r->Width + r->Distance);
 // change the output rectangle, do not close the page!
 pdfSetTextRect(r->iPDF, posX, r->PosY, r->Width, r->Height);
 switch(r->Column)
 {
 case 1: return NEW_ALIGN_JUSTIFY;
 case 2: return NEW_ALIGN_RIGHT;
 default: return 0; // do not change the alignment
 }
 }else
 { // the page is full, close the current one and append a new page
 pdfEndPage(r->iPDF);
 pdfAppend(r->iPDF);
 pdfSetTextRect(r->iPDF, r->PosX, r->PosY, r->Width, r->Height);
 r->Column = 0;
 return NEW_ALIGN_LEFT;

Function Reference Page 850 of 854

 }
}
// First we declare an error callback function.
SI32 PDF_CALL PDFError(const void* Data, SI32 ErrCode, const char* ErrMessage, SI32 ErrType)
{

printf("%s\n", ErrMessage); return 0;
}

int main(int argc, char* argv[])
{

// The structure TOutRect holds all required variables to calculate
// the output rectangle.
TOutRect r;

// The text is stored in a text file
FILE* f = fopen("c:/sample.txt", "rb");
if (f == NULL) return 2;

char* fText;
UI32 bufSize;
fseek(f, 0, SEEK_END);
bufSize = ftell(f);
fseek(f, 0, SEEK_SET);

// allocate one more character for the null-terminator
fText = (char*)malloc(bufSize +1);
fread(fText, 1, bufSize, f);
fclose(f);
fText[bufSize] = 0; // Do NOT forget to add a null-terminator!!!

r.iPDF = pdfNewPDF(); // Get a new PDF instance

if (!r.iPDF) // Out of memory?
{

free(fText);
return 2;

}
pdfSetOnErrorProc(r.iPDF, NULL, PDFError);
pdfSetDocInfo(r.iPDF, diCreator, "C++ test app");
pdfSetDocInfo(r.iPDF, diSubject, "Multi-column text");
pdfSetDocInfo(r.iPDF, diTitle, " Multi-column text ");

// We use top-down coordinates
pdfSetPageCoords(r.iPDF, pcTopDown);
pdfCreateNewPDF(r.iPDF, "c:/cppout.pdf");
pdfAppend(r.iPDF);
pdfSetFont(r.iPDF, "Arial", fsNone, 8.0, true, cp1252);
r.ColCount = 3;
r.Column = 0;
r.Distance = 5.0;
r.PosX = 50.0;
r.PosY = 50.0;
r.Height = 150.0;
r.Width = (pdfGetPageWidth(r.iPDF) - 100.0 - (r.ColCount -1) * r.Distance) / r.ColCount;
// The structure is passed to the callback function now
pdfSetOnPageBreakProc(r.iPDF, &r, OnPageBreakProc);
// Set the output rectangle first
pdfSetTextRect(r.iPDF, r.PosX, r.PosY, r.Width, r.Height);
pdfWriteFText(r.iPDF, taLeft, fText); // Now we can print the text

free(fText); // free the text buffer

pdfEndPage(r.iPDF); // Close the last page
pdfCloseFile(r.iPDF); // Close the file
pdfDeletePDF(r.iPDF); // Delete the PDF instance

}

Function Reference Page 851 of 854

The output of the previous example could look like this:
Bruder Lustig

Es war einmal ein großer Krieg, und als der
Krieg zu Ende war, bekamen viele Soldaten
ihren Abschied. Nun bekam der Bruder
Lustig auch seinen Abschied und sonst
nichts als ein kleines Laibchen Kommißbrot
und vier Kreuzer an Geld; damit zog er
fort. Der heilige Petrus aber

hatte sich als ein armer Bettler an den Weg
gesetzt, und wie der Bruder Lustig
daherkam, bat er ihn um ein Almosen. Er
antwortete: "Lieber Bettelmann, was soll ich
dir geben? Ich bin Soldat gewesen und habe
meinen Abschied bekommen, und habe
sonst nichts als das kleine Kommißbrot und
vier Kreuzer Geld, wenn das all ist, muß ich
betteln, so gut wie du.

Doch geben will ich dir was." Darauf teilte
er den Laib in vier Teile und gab davon

dem Apostel einen und auch einen
Kreuzer. Der heilige Petrus bedankte sich

und ging weiter, setzte sich aber zum
dritten Mal in einer andern Gestalt als ein

Bettler an den Weg und sprach den Bruder
Lustig an.

As you can see, the first column is left aligned, the second is justified and the third is right aligned.
By using manual page breaks it is possible to get full control over the formatting algorithm.

The parameter PageBreak of the callback is set to true if a page break tag was found, otherwise it is
always false. Because of this, it is possible to distinguish between a manual page break and a page
break that occurred due to a filled rectangle.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 852 of 854

WriteFTextEx

Syntax:
LBOOL pdfWriteFTextEx(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of output rectangle
 double PosY, // Y-Coordinate of output rectangle
 double Width, // Width of output rectangle
 double Height, // Height of output rectangle or -1
 TTextAlign Align, // Base alignment
 const char* AText) // Null-terminated string to be printed

The function prints a formatted text exactly in the same way as WriteFText(). However, the function
contains already the parameters to set the output rectangle. The function supports a callback
function to enable the output of multi-column text in the same way as WriteFText(). However, if no
callback function is set, the text continues on the next page by using the same output rectangle.

To avoid a page break set the parameter Height to -1. Manual page breaks which can be created
with the command tag \np# are still executed. See WriteFText() for further information.

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

WriteText

Syntax:
LBOOL pdfWriteText(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the text
 double PosY, // Y-Coordinate of the text
 const char* AText) // Null-terminated string to be printed

The function prints a text on the current open page, template, or pattern. The point PosX, PosY
defines the baseline of the text if the coordinate system is bottom-up, otherwise the baseline lies at
PosY + FontSize . The font origin can be changed with the function SetFontOrigin().

The function requires a font that must be set with the function SetFont() beforehand.

This function is implemented in an Ansi and Unicode compatible version. If non-null-terminated
strings must be printed use WriteTextEx() instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 853 of 854

WriteTextEx

Syntax:
LBOOL pdfWriteTextEx(
 const PPDF* IPDF, // Instance pointer
 double PosX, // X-Coordinate of the text

double PosY, // Y-Coordinate of the text
const char* AText, // Text to be printed
UI32 Len) // Text length in characters

The function prints a text on the current open page, template, or pattern. The point PosX, PosY
defines the baseline of the text if the coordinate system is bottom-up, otherwise the top-left corner of
the text's bounding box. The font origin can be changed with the function SetFontOrigin().

The function requires a font that must be set with the function SetFont() beforehand.

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

WriteTextMatrix

Syntax:
LBOOL pdfWriteTextMatrix(
 const PPDF* IPDF, // Instance pointer
 struct TCTM* M, // Transformation matrix
 const char* AText) // Null-terminated string to be printed

The function draws text on the current open page, template, or pattern by using a transformation
matrix to calculate the position of the string. This function can be used in combination with
GetPageText() to print a text on the same position as the original text that was found. The usage of
the function is described at GetPageText().

Remarks:

This function is implemented in an Ansi and Unicode compatible version. If non-null-terminated
strings must be printed use WriteTextMatrixEx() instead.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

Function Reference Page 854 of 854

WriteTextMatrixEx

Syntax:
LBOOL pdfWriteTextMatrixEx(
 const PPDF* IPDF, // Instance pointer
 struct TCTM* M, // Transformation matrix

const char* AText, // Text to be printed
UI32 Len) // Text length in characters

The function draws text on the current open page, template, or pattern by using a transformation
matrix to calculate the position of the string. This function can be used in combination with
GetPageText() to print a text on the same position as the original text that was found. The usage of
the function is described at GetPageText().

Remarks:

This function is implemented in an Ansi and Unicode compatible version.

Return values:

If the function succeeds the return value is 1. If the function fails the return value is 0.

	Legal Notices
	Table of Contents
	Data types
	Var Parameters
	Structures
	Multi-byte Strings
	Unicode
	Unicode File Paths
	CJK Multi-byte Strings

	Data types used by different programming languages

	Exception handling
	Exception handling in C, C++, C#, Delphi
	Exception handling in Visual Basic, Visual Basic .Net
	Special issues in Visual Basic and .Net
	Customized Exception handling

	Custom Library Changes
	Compiler Switches
	Main object types
	General design requirements
	Requirements to add your own code to DynaPDF

	DPI Aware .Net applications
	Enabling High DPI support in Windows Forms Apps
	Scrolling issues on high dpi devices
	Static contents in dpi aware applications

	Language bindings
	Differences between DynaPDF interfaces
	Embarcadero C++ Builder
	Microsoft Visual C++
	Microsoft Visual Basic 6.0
	Exception handling in Visual Basic
	The DoEvents problem

	Visual Basic .Net
	64 Bit Applications
	General Note:
	Data types used by DynaPDF
	Exception handling in VB .Net
	The DoEvents problem

	Visual C#
	.Net Core compatibility
	Using DynaPDF with Visual Studio
	64 Bit Applications
	General Note:
	Data types in C#

	Embarcadero Delphi
	64 Bit Applications
	General Usage
	Exception handling in Delphi
	Using DynaPDF in Multithreading Applications

	Compiling DynaPDF on Linux / UNIX
	System requirements:
	Build process
	Changing the configuration scripts
	Linker flags
	Compiler flags
	Optimization Level
	Recommended compiler version

	Compiling DynaPDF on macOS
	Compiling with XCode
	Compiling on the Command Line

	Content parsing & editing
	Include files
	Abort
	ChangeAltFont
	ClearSelection
	CreateParserContext
	DeleteOperator
	DeleteOperatorInObject
	DeleteParserContext
	DeleteText
	ExtractText
	FindText
	Optional search area

	GetSelBBox
	GetSelBBox2
	GetSelText
	ParsePage
	ReplaceSelText
	Font substitution

	SetAltFont
	WriteToPage

	Complex Text Layout
	How to enable Complex Text Layout?
	Automatic Font Substitution
	Alternate font lists

	Font embedding
	Complex text layout and form fields

	JSON Parser
	Interactive Forms
	Field Appearance
	Important field properties when creating new fields

	Field Properties
	What is a Group Type?
	How to create a Field Group?

	How to change the tabulator order?
	Field Names
	Fields with identical names

	Actions
	Digital Signatures
	Supported Certificate Formats
	External Signatures
	How to export a Windows Certificate?
	Importing signed PDF files
	How to sign a PDF file?
	How to create a signature field?
	How to modify the appearance of a signature field?
	What is stored in a signature field?
	How to validate a signature?

	PDF/A and PDF/X Compatibility
	PDF/X
	PDF/A

	Path Painting and Construction
	Nonzero Winding Number Rule
	Even-Odd Rule

	Color Spaces
	Device Color Spaces
	Device Independent Color Spaces
	Special Color Spaces
	Indexed Color Space
	Separation Color Space
	DeviceN Color Space

	Color Spaces and Images
	Handling of non-device color spaces
	Special treatment of 1 bit images
	How to preserve the image color space?
	Image Resolution

	Layers (Optional Content)
	PDF Transparency
	Alpha Blending
	Transparency Groups / Soft Masks
	Blend Modes

	Tables
	General properties
	Error Handling
	Borders, Cell Spacing, Cell Padding
	Background Objects
	Foreground Objects
	Cell Alignment and Orientation
	ColSpan, RowSpan
	Page breaks
	Table and cell properties
	Table color spaces
	Table Creation

	Table Functions
	AddColumn
	AddRow
	AddRows
	ClearColumn
	ClearContent
	ClearRow
	CreateTable
	DeleteCol
	DeleteRow
	DeleteRows
	DeleteTable
	DrawTable
	GetFirstRow
	GetFlags
	GetNextHeight
	GetNextRow
	GetNumCols
	GetNumRows
	GetPDFInstance
	GetTableHeight
	GetTableWidth
	HaveMore
	SetBoxProperty
	SetCellAction
	SetCellDashPattern
	SetCellImage
	SetCellImageEx
	SetCellOrientation
	SetCellTable
	SetCellTemplate
	SetCellText
	SetColor
	SetColorEx
	SetColWidth
	SetFlags
	SetFont
	SetFontSelMode
	SetFontSize
	SetGridWidth
	SetPDFInstance
	SetRowHeight
	SetTableWidth

	Function Reference
	Abort (Rendering Engine)
	ActivateAltFontList
	AddActionToObj
	AddAnnotToPage
	AddArticle
	AddBookmark
	AddBookmarkEx
	AddBookmarkEx2
	AddButtonImage
	AddButtonImageEx
	AddButtonImageEx2
	AddContinueText
	AddDeviceNProcessColorants
	AddDeviceNSeparations
	Encoding of Colorant Names

	AddDPartNode
	Document Part Metadata (DPM)
	How to create DPM?

	AddFieldToFormAction
	AddFieldToHideAction
	AddFileComment
	AddFontSearchPath
	AddHeaderFooter
	Font selection
	Text color
	Bates numbering
	Date formats
	Page numbering
	Header / footer text
	Header / footer types

	AddImage
	AddInkList
	AddJavaScript
	AddLayerToDisplTree
	AddMaskImage
	AddObjectToLayer
	AddOCGToAppEvent
	AddOutputIntent
	AddOutputIntentEx
	AddPageLabel
	AddRasImage (Rendering Engine)
	1 bit image output
	Compression filters
	Embedding ICC Profiles

	AddRenderingIntent (obsolete)
	AddRenderingIntentEx (obsolete)
	AddValToChoiceField
	Append
	ApplyAppEvent
	ApplyPattern
	ApplyShading
	AssociateEmbFile
	AttachFile
	AttachFileEx
	AttachImageBuffer (Rendering Engine)
	AutoTemplate
	BeginClipPath (Obsolete)
	BeginContinueText
	BeginLayer
	BeginPageTemplate
	BeginPattern
	Colored Tiling Patterns
	Uncolored Tiling Patterns

	BeginTemplate
	BeginTransparencyGroup
	The Group's Bounding Box
	Stand alone transparency groups
	Soft masks
	Coordinates and bounding box of a soft mask:

	Isolated and Non-Isolated Groups
	Knockout Groups
	Color Spaces
	How to use a Transparency Group?

	Bezier_1_2_3
	Bezier_1_3
	Bezier_2_3
	BuildFamilyNameAndStyle
	CalcPagePixelSize (Rendering Engine)
	CalcWidthHeight
	CaretAnnot
	ChangeAnnotName
	ChangeAnnotPos
	ChangeBookmark
	ChangeNamedDest
	ChangeFont
	ChangeFontEx
	ChangeFontSize
	ChangeFontStyle
	ChangeFontStyleEx
	ChangeJavaScript
	ChangeJavaScriptAction
	ChangeJavaScriptName
	ChangeLinkAnnot
	ChangeOCGName
	ChangeSeparationColor
	CheckCollection
	CheckConformance
	Notice
	Important callback functions
	OnFontNotFound
	OnReplaceICCProfile

	General requirements when creating PDF/A files:
	Type3 font conversion
	Summay

	Normalization
	Font embedding

	PDF/A 1b:
	PDF/A 2b, 2u, 3b, 3u
	PDF/A 4, 4e, 4f
	ZUGFeRD, ZUGFeRD 2.0, Factur-X / ZUGFeRD 2.1, XRechnung
	Return values

	CheckFieldNames
	CircleAnnot
	ClearAutoTemplates
	ClearErrorLog
	ClearHostFonts
	ClipPath
	CloseAndSignFile
	Importing signed PDF files
	Possible function errors

	CloseAndSignFileEx
	Importing signed PDF files
	Possible function errors

	CloseAndSignFileExt
	Supported PKCS#7 Format
	Hardware Certificates

	CloseFile
	CloseFileEx
	Passwords
	Password encodings
	UTF-8 Passwords

	Encryption flags

	CloseImage
	CloseImportFile
	CloseImportFileEx
	ClosePath
	CloseTag
	ComputeBBox
	ConnectPageBreakEvent
	ConvColor
	ConvertColors
	ConvertEMFSpool
	ConvToUnicode
	CopyChoiceValues
	Create3DAnnot
	Create3DBackground
	Create3DGotoViewAction
	Create3DProjection
	Perspective projection
	Orthographic projection

	Create3DView
	CreateAltFontList
	CreateAnnotAP
	CreateArticleThread
	CreateAxialShading
	CreateBarcodeField
	CreateButton
	CreateCheckBox
	CreateCIEColorSpace
	How to define CalGray colors?
	How to define CalcRGB colors?
	How to define Lab colors?

	CreateColItemDate
	CreateColItemNumber
	CreateColItemString
	CreateCollection
	CreateCollectionField
	CreateComboBox
	CreateDeviceNColorSpace
	Encoding of Colorant Names
	DeviceN Attributes
	Spot colorant attributes
	Process colorant attributes

	How to create the PostScript Calculator Function?
	Example 1:
	Example 2:

	CreateDPartRoot
	CreateExtGState
	CreateGeospatialMeasure
	CreateGoToAction
	CreateGoToActionEx
	CreateGoToEAction
	CreateGoToRAction
	CreateGoToRActionEx
	CreateGroupField
	Field names and Group fields

	CreateHideAction
	CreateICCBasedColorSpace
	CreateICCBasedColorSpaceEx
	CreateImage
	CreateImportDataAction
	CreateIndexedColorSpace
	CreateJSAction
	CreateLaunchAction
	CreateLaunchActionEx
	CreateListBox
	CreateNamedAction
	CreateNamedDest
	CreateNewPDF
	CreateOCG
	How to make content optional?

	CreateOCMD
	CreateRadialShading
	CreateRadioButton
	CreateRasterizer (Rendering Engine)
	CreateRasterizerEx (Rendering Engine)
	CreateRectilinearMeasure
	CreateResetAction
	CreateSeparationCS
	Encoding of Colorant Names

	CreateSetOCGStateAction
	CreateSigField
	How to lock an Interactive Form after signing?

	CreateSigFieldAP
	CreateSoftMask
	Soft mask types
	Possible rendering issues
	How to activate a soft mask?

	CreateStdPattern
	CreateStructureTree
	CreateStructureTreeEx
	CreateSubmitAction
	The standard date format

	CreateTextField
	Specific flags supported by text fields:

	CreateURIAction
	CreateViewport
	CreateXFAStream
	DecryptPDF
	DeleteAcroForm
	DeleteActionFromObj
	DeleteActionFromObjEx
	DeleteAltFontList
	DeleteAnnotation
	DeleteAnnotationFromPage
	DeleteAppEvents
	DeleteBookmark
	DeleteDPartNode
	DeleteEmbeddedFile
	DeleteField
	DeleteFieldEx
	DeleteJavaScripts
	DeleteNamedDest
	DeleteNamedDestByIndex
	DeleteOCGFromAppEvent
	DeleteOCGFromDisplayTree
	DeleteOCUINode
	DeleteOutputIntent
	DeletePage
	DeletePageLabels
	DeletePDF
	DeleteRasterizer (Rendering Engine)
	DeleteSeparationInfo
	DeleteTemplate
	DeleteTemplateEx
	DeleteWatermark
	DeleteXFAForm
	DrawArc
	DrawArcEx
	DrawChord
	DrawCircle
	DrawNGon
	DrawPie
	EditPage
	EditTemplate
	EditTemplate2
	Ellipse
	EnableImageCache (Rendering engine)
	EncryptPDF
	EndContinueText (obsolete)
	EndLayer
	EndPage
	EndPattern
	EndTemplate
	EnumDocFonts
	EnumHostFonts
	EnumHostFontsEx
	ExchangeBookmarks
	ExchangePages
	ExtractText
	FileAttachAnnot
	FileAttachAnnotEx
	FileLink
	FindBookmark
	FindEmbeddedFile
	FindField
	FindLinkAnnot
	FindNextBookmark
	FinishSignature
	FlattenAnnotOrField
	FlattenAnnots
	FlattenForm
	FlushPageContent
	FlushPages
	FlushPagesEx
	FreeImageBuffer
	FreeImageObj
	FreeImageObjEx
	FreePDF
	FreeTextAnnot
	FreeUniBuf
	Get3DAnnotStream
	GetActionCount
	GetActionHandle
	GetActionType
	GetActionTypeEx
	GetActiveFont
	GetAllocBy
	GetAnnot (obsolete)
	GetAnnotBBox
	GetAnnotCount
	GetAnnotEx
	Optional Content
	Migration states

	GetAnnotFlags
	GetAnnotLink
	GetAnnotType
	GetAscent
	GetBarcodeDict
	GetBBox
	Bounding boxes:

	GetBidiMode
	GetBookmark (obsolete)
	GetBookmarkEx
	GetBookmarkCount
	GetBorderStyle
	GetBuffer
	GetCapHeight
	GetCharacterSpacing
	GetCheckBoxChar
	Check box characters

	GetCheckBoxCharEx
	GetCheckBoxDefState
	GetCMap
	GetCMapCount
	GetCollectionInfo
	GetColorSpace
	GetColorSpaceCount
	GetColorSpaceObj
	GetColorSpaceObjEx
	GetCompressionFilter
	GetCompressionLevel
	GetContent
	GetDefBitsPerPixel
	GetDescent
	GetDeviceNAttributes
	GetDocInfo
	GetDocInfoCount
	GetDocInfoEx
	GetDocUsesTransparency
	GetDrawDirection
	GetDynaPDFVersion
	GetDynaPDFVersionInt
	GetEmbeddedFile
	GetEmbeddedFileCount
	GetEmbeddedFileNode
	GetEMFPatternDistance
	GetErrLogMessage
	GetErrLogMessageCount
	GetErrorMessage
	GetErrorMode
	GetField (obsolete)
	GetFieldBackColor
	GetFieldBorderColor
	GetFieldBorderStyle
	GetFieldBorderWidth
	GetFieldCalcOrder
	GetFieldChoiceValue
	GetFieldColor
	GetFieldCount
	GetFieldEx
	Radio Buttons
	Formatted Text Field Value
	Optional Content

	GetFieldEx2
	GetFieldExpValCount
	GetFieldExpValue
	GetFieldExpValueEx
	GetFieldFlags
	GetFieldGroupType
	GetFieldHighlightMode
	GetFieldIndex
	GetFieldMapName
	GetFieldName
	GetFieldOrientation
	GetFieldTextAlign
	GetFieldTextColor
	GetFieldToolTip
	GetFieldType
	GetFileSpec
	GetFillColor
	GetFont (obsolete)
	GetFontCount
	GetFontEx (obsolete)
	GetFontInfo
	GetFontInfoEx
	GetFontOrigin
	GetFontMetrics
	GetFontSearchOrder
	GetFontSelMode
	GetFontSize
	GetFontWeight
	Font weights:

	GetFTextHeight
	GetFTextHeightEx
	GetFullyQualifiedFieldName
	GetGlyphIndex
	GetGlyphOutline
	C, C++, Delphi
	C#, VB 6, VB .Net, PHP
	Outline format

	GetGoToAction
	GetGoToRAction
	GetGStateFlags
	GetHideAction
	GetIconColor
	GetImageBuffer
	GetImageCount
	GetImageCountEx
	GetImageHeight
	GetImageObj
	GetImageObjCount
	GetImageObjEx
	GetImageWidth
	GetImportDataAction
	GetImportFlags
	GetImportFlags2
	GetInBBox
	GetInDocInfo
	GetInDocInfoCount
	GetInDocInfoEx
	GetInEncryptionFlags
	GetInFieldCount
	GetInIsCollection
	GetInIsEncrypted
	GetInIsSigned
	GetInIsTaggedPDF
	GetInIsTrapped
	GetInIsXFAForm
	GetInkList
	GetInMetadata
	GetInNamedDest (obsolete)
	GetInNamedDestCount (obsolete)
	GetInOrientation
	GetInPageCount
	GetInPDFVersion
	GetInPDFVersionEx
	GetInPrintSettings
	GetInRepairMode
	GetIsFixedPich
	GetIsTaggingEnabled
	GetItalicAngle
	GetJavaScript
	GetJavaScriptAction (obsolete)
	GetJavaScriptAction2 (obsolete)
	GetJavaScriptActionEx
	GetJavaScriptCount
	GetJavaScriptEx
	GetJavaScriptName
	GetJPEGQuality
	GetLanguage
	GetLastTextPosX, GetLastTextPosY
	GetLaunchAction
	GetLayerConfig
	GetLayerConfigCount
	GetLeading
	GetLineCapStyle
	GetLineJoinStyle
	GetLineWidth
	GetLinkHighlightMode
	GetLogMetafileSize
	GetLogMetafileSizeEx
	GetMatrix
	GetMaxFieldLen
	GetMeasureObj
	GetMetaConvFlags
	GetMetadata
	GetMissingGlyphs
	GetMiterLimit
	GetMovieAction
	GetNamedAction
	GetNamedDest
	GetNamedDestCount
	GetNeedAppearance
	GetNumberFormatObj
	GetObjActionCount (obsolete)
	GetObjActions
	GetObjEvent
	GetOCG
	GetOCGContUsage
	GetOCGCount
	GetOCGUsageUserName
	GetOCHandle
	GetOCUINode
	GetOpacity
	GetOrientation
	GetOutputIntent
	GetOutputIntentCount
	GetPageAnnot (obsolete)
	GetPageAnnotEx
	GetPageAnnotCount
	GetPageBBox (Rendering Engine)
	GetPageCoords
	GetPageCount
	GetPageField (obsolete)
	GetPageFieldCount
	GetPageFieldEx
	GetPageHeight
	GetPageLabel
	GetPageLabelCount
	GetPageLayout
	GetPageMode
	GetPageNum
	GetPageObject (Rendering Engine)
	GetPageOrientation (Rendering Engine)
	GetPageText
	External CMaps
	Order of Text records
	Organization of content streams and pages
	Organization of text objects
	Possible encoding issues
	How to calculate the absolute string position?
	How to caluculate the font size?
	How to calculate the rotation angle?
	How to find and replace text in a page?

	GetPageWidth
	GetPDFVersion
	GetPDFVersionEx
	ZUGFeRD, Factur-X, XRechnung
	VersionConst
	Not implemented

	GetPrintSettings
	GetPtDataArray
	GetPtDataObj
	GetRelFileNode
	GetResetAction
	GetResolution
	GetSaveNewImageFormat
	GetSeparationInfo
	GetSigDict
	GetSpaceWidth
	GetStrokeColor
	GetSubmitAction
	GetSysFontInfo
	GetTabLen
	GetTemplCount
	GetTemplHandle
	GetTemplHeight
	GetTemplWidth
	GetTextDrawMode
	GetTextFieldValue
	GetTextRect
	GetTextRise
	GetTextScaling
	GetTextWidth
	GetTextWidth (Font API)
	GetTextWidthEx
	GetTransparentColor
	GetTrapped
	GetTypoLeading
	GetURIAction
	GetUseExactPwd
	GetUseGlobalImpFiles
	GetUserRights
	GetUserUnit
	GetUseStdFonts
	GetUseSystemFonts
	GetUsesTransparency
	GetUseTransparency
	GetUseVisibleCoords
	GetViewerPreferences
	GetViewport
	GetViewportCount
	GetWMFDefExtent
	GetWMFPixelPerInch
	GetWordSpacing
	GetXFAStream
	GetXFAStreamCount
	HaveDPartRoot
	HaveOpenDoc
	HaveOpenPage
	HighlightAnnot
	ImportBookmarks
	ImportCatalogObjects
	ImportDocInfo
	ImportEncryptionSettings
	ImportOCProperties
	ImportPage
	Bounding boxes

	ImportPageEx
	Calling the function inside of an open page
	Calling the function outside of an open page

	ImportPDFFile
	InitBarcode2
	InitColorManagement
	InitColorManagementEx
	InitExtGState
	InitHeaderFooter
	InitOCGContUsage
	InitStack
	InkAnnot
	InsertBarcode
	Output position and orientation
	Vector vs. Image Barcodes
	Output resolution
	Background and foreground colors
	Human readable text
	Outer border
	Scaling details
	Special options

	InsertBMPFromBuffer (obsolete)
	InsertBMPFromHandle
	InsertBookmark
	InsertBookmarkEx
	InsertImage (obsolete)
	InsertImageEx
	Supported image formats
	How to get the image format?
	Color spaces
	How to change the color depth?
	Duplicate check
	Compression Filters
	Flate Encode
	CCITT Fax G3/4
	JBIG2
	JPEG Encode
	Real pass-through mode
	Embedded ICC profiles
	Optimized Huffmann encoding

	JPEG 2000
	Setting the image quality
	Quality comparison against JPEG
	Embedded ICC profiles
	Pass-through mode

	Why does DynaPDF not support LZW compression?

	TIFF images
	1 Bit TIFF images

	Bitmap images
	GIF images
	How to calculate the image size?
	Image Resolution
	Transparent images (Color Key Masking)
	Images with an alpha channel

	InsertImageFromBuffer
	InsertMetafile
	Bounding box check
	How to calculate the image size?
	Font selection in EMF files
	Character sets
	Non-portable WMF files
	Portable WMF files
	ROP Codes (Raster Operation Codes)
	How to convert spool EMF files?
	Compatibility Note:

	InsertMetafileEx
	InsertMetafileExt
	InsertMetafileExtEx
	InsertMetafileFromHandle
	InsertMetafileFromHandleEx
	InsertRawImage
	Color spaces
	How to calculate the image size?

	InsertRawImageEx
	Color Key Masking
	How to calculate the image size?

	IsBidiText
	IsColorPage
	IsEmptyPage
	IsWrongPwd
	LineAnnot
	Measure lines

	LineTo
	LoadCMap
	Embedding CMap Files
	Predefines CMaps
	Working with External CMaps

	LoadFont
	TrueType Collections

	LoadFontEx
	LoadFDFData
	LoadFDFDataEx
	LoadHeaderFooterSettings
	Header / footer types
	Loading header / footer or bates number settings
	How to check whether a file contains headers or footers?

	LoadLayerConfig
	LockLayer
	MarkTemplateAsWatermark
	MovePage
	MoveTo
	MultiplyMatrix
	NewPDF
	Thread-safety

	OpenImportBuffer
	How to keep multiple memory based PDF files open?

	OpenImportFile
	Recommended settings to split PDF files
	How to keep multiple PDF files open?
	Editing encrypted PDF files
	Damaged PDF files

	OpenOutputFile
	OpenOutputFileEncrypted
	OpenTag
	OpenTagBBox
	OpenTagEx
	Optimize
	Usage
	Re-compressing 1 bit images with JBIG2
	Text to outline conversion
	Color conversion
	Color conversion rules
	Overprinting
	Recommended compression filters
	Special compression filter flags:

	Image size check

	Converting gray images to 1 bit (black & white)
	Image scaling
	Spot color spaces
	Image size check
	Masked images (color key masking)

	Hairline correction
	Possible issues

	Special flags
	Recommendations
	Error handling

	PageLink
	PageLink2
	PageLink3
	PageLinkEx
	ParseContent
	The Graphics State
	Coordinate Spaces
	Working with Transformation Matrices
	Helper Functions
	Text Coordinates and Metrics
	Font Size
	Text Width
	Character Spacing
	Word Spacing
	Text Scaling
	Sub string coordinates

	Using the Content Parser
	Text Extraction or Text Search Algorithms
	Unicode conversion
	External CMaps

	Inside the Callback Functions
	TBeginTemplate
	TMulMatrix
	TSetFont
	TRestoreGraphicState
	TSaveGraphicState
	TShowTextArrayA
	TShowTextArrayW

	Image Extraction
	Physical organization of images
	Image coordinate space
	Helper functions
	16 bit images

	Vector Graphics

	PlaceImage
	PlaceSigFieldValidateIcon
	PlaceTemplate
	PlaceTemplateEx
	PlaceTemplByMatrix
	PolygonAnnot
	PolyLineAnnot
	PrintPage
	PrintPDFFile
	Output color format
	Progress callback functions
	Print flag pffNoStartPage
	Maximum output resolution
	Print parameters
	Visual Basic 6 interface

	ReadImageFormat (obsolete)
	ReadImageFormat2
	1 bit images

	ReadImageFormatEx
	ReadImageFormatFromBuffer
	ReadImageResolution
	ReadImageResolutionEx
	Rectangle
	Redraw (Rendering Engine)
	ReEncryptPDF
	RenameSpotColor
	RenderAnnotOrField
	The Button State (parameter State)
	Raw image output
	How to create image files

	RenderPage (Rendering Engine)
	Minimal initialization
	Basics
	Pixel Formats
	Blending Color Spaces
	Rendering PDF Pages
	The Transformation Matrix
	The OnUpdateWindow Event
	The update area
	UpdateOnPathCount limit
	UpdateOnImageCoverage limit
	The return value

	Multi-Threading strategies
	How to save the image on disk?

	RenderPageEx (Rendering Engine)
	RenderPageToImage (Rendering Engine)
	1 Bit Rendering
	Dithering

	RenderPDFFile (obsolete)
	RenderPDFFileEx
	ReplaceFont
	ReOpenImportFile
	ReplaceFontEx
	ReplaceICCProfile
	ReplaceICCProfileEx
	ReplaceImage
	ReplaceImageEx
	ReplacePageText
	ReplacePageTextEx
	ResetAnnotAP
	ResetEncryptionSettings
	ResetLineDashPattern
	ResizeBitmap (Rendering Engine)
	RestoreGraphicState
	RotateCoords
	RoundRect
	RoundRectEx
	SaveGraphicState
	ScaleCoords
	SelfTest
	Set3DAnnotProps
	Set3DAnnotScript
	SetAllocBy
	SetAltFonts
	SetAnnotBorderEffect
	SetAnnotBorderStyle
	SetAnnotBorderWidth
	SetAnnotColor
	SetAnnotFlags
	SetAnnotFlagsEx
	SetAnnotHighlightMode
	SetAnnotIcon
	SetAnnotLineEndStyle
	SetAnnotLineDashPattern
	SetAnnotMigrationState
	SetAnnotOpacity
	SetAnnotOpenState
	SetAnnotOrFieldDate
	SetAnnotQuadPoints
	SetAnnotString
	SetAnnotSubject
	SetBBox
	Bounding boxes:

	SetBidiMode
	SetBookmarkDest
	SetBookmarkStyle
	SetBorderStyle
	SetCharacterSpacing
	SetCheckBoxChar
	Check box characters

	SetCheckBoxDefState
	SetCheckBoxState
	SetCIDFont
	Word Spacing
	Vertical Writing Mode
	Encodings Identity-H and Identity-V

	SetCMapDir
	SetColDefFile
	SetColSortField
	SetColorMask
	SetColors
	SetColorSpace
	SetCompressionFilter
	SetCompressionLevel
	SetContent
	SetDateTimeFormat
	SetDefBitsPerPixel
	SetDocInfo
	SetDocInfoEx
	SetDrawDirection
	SetEMFFrameDPI
	SetEMFPatternDistance
	SetErrorMode
	SetExtColorSpace
	SetExtFillColorSpace
	SetExtGState
	SetExtStrokeColorSpace
	SetFieldBackColor
	SetFieldBBox
	SetFieldBorderColor
	SetFieldBorderStyle
	SetFieldBorderWidth
	SetFieldCalcOrder
	SetFieldColor
	SetFieldExpValue
	SetFieldExpValueEx
	SetFieldFlags
	SetFieldFont
	SetFieldFontEx
	SetFieldFontSize
	SetFieldHighlightMode
	SetFieldIndex
	SetFieldMapName
	SetFieldName
	SetFieldOrientation
	SetFieldTextAlign
	SetFieldTextColor
	SetFieldToolTip
	SetFillColor
	SetFillColorEx
	SetFillColorF
	SetFillColorSpace
	SetFloatPrecision
	SetFont
	Font enumeration
	Font Search Order
	Font names
	Family name
	Full name
	PostScript name

	Font Styles
	Supported font formats
	Font Subsetting
	Font Embedding
	The 14 Standard Fonts
	Code pages versus character sets
	How to use CJK encodings?
	GDI Font selection in comparison to DynaPDF
	nHeight
	nWidth
	nEscapement
	nOrientation
	nWeight
	fdwCharSet
	fdwPitchAndFamily
	lpszFace

	SetFontEx
	SetFontOrigin
	SetFontSearchOrder
	Compatibility Note:

	SetFontSearchOrderEx
	SetFontSelMode
	SetFontWeight
	Font weights:

	SetGStateFlags
	SetIconColor
	SetImportFlags
	SetImportFlags2
	SetItalicAngle
	SetJPEGQuality
	SetLanguage
	Language Identifiers

	SetLeading
	SetLicenseKey
	SetLineAnnotParms
	SetLineCapStyle
	SetLineDashPattern (obsolete)
	SetLineDashPattern2
	How to create a dotted line?

	SetLineDashPatternEx (obsolete)
	SetLineJoinStyle
	SetLineWidth
	SetLinkHighlightMode
	SetListFont
	SetMatrix
	SetMaxErrLogMsgCount
	SetMaxFieldLen
	SetMetaConvFlags
	SetMetadata
	SetMinLineWidth2 (Rendering Engine)
	SetMiterLimit
	SetNeedAppearance
	SetNumberFormat
	Currency String
	Field value

	SetOCGContUsage
	SetOCGState
	SetOnErrorProc
	SetOnPageBreakProc
	SetOpacity
	SetOrientation
	SetOrientationEx
	SetPageBBox
	SetPageCoords
	SetPageFormat
	Paper formats:

	SetPageHeight
	SetPageLayout
	SetPageMode
	SetPageOrientation
	SetPageWidth
	SetPDFVersion
	ZUGFeRD, ZUGFeRD 2.0, Factur-X / ZUGFeRD 2.1/2.2
	ZUGFeRD 2.1 or higher

	SetPrintSettings
	SetProgressProc
	Return values of the progress callback function:

	SetRenderingIntent
	SetResolution
	SetSaveNewImageFormat
	SetScreenRes (Rendering Engine)
	SetSeparationInfo
	SetSpaceWidthFactor
	SetStrokeColor
	SetStrokeColorEx
	SetStrokeColorF
	SetStrokeColorSpace
	SetTabLen
	SetTemplBBox
	SetTextDrawMode
	How to use text as clipping path?

	SetTextFieldValue
	Field format

	SetTextFieldValueEx
	SetTextRect
	SetTextRise
	SetTextScaling
	SetTransparentColor
	SetTrapped
	SetUseExactPwd
	SetUseGlobalImpFiles
	SetUseImageInterpolation
	SetUseImageInterpolationEx
	SetUserUnit
	SetUseStdFonts
	SetUseSwapFile (obsolete)
	SetUseSwapFileEx (obsolete)
	SetUseSystemFonts
	SetUseTransparency
	SetUseVisibleCoords
	SetViewerPreferences
	SetWMFDefExtent
	SetWMFPixelPerInch
	SetWordSpacing
	SetXFAStream
	SkewCoords
	SortFieldsByIndex
	SortFieldsByName
	SquareAnnot
	StampAnnot
	StrokePath
	TestGlyphs
	TestGlyphsEx
	TextAnnot
	TranslateCoords
	TranslateRawCode (Font API)
	TranslateString (obsolete)
	TranslateString2 (Font API)
	Triangle
	UnLockLayer
	UTF16ToUTF32
	UTF16ToUTF32Ex
	UTF32ToUTF16
	UTF32ToUTF16Ex
	WatermarkAnnot
	WebLink
	WriteAngleText
	WriteFText
	Output rectangle
	Text formatting
	Alignment tags
	Command tags
	Special characters
	Escape Sequences

	How to create multi-column text?

	WriteFTextEx
	WriteText
	WriteTextEx
	WriteTextMatrix
	WriteTextMatrixEx

	ImgBtn1:
	Group1:
	Check0: ON
	Check1: ON
	Check2: ON
	Check3: ON
	Check4: ON
	Check5: ON
	Check6: ON
	Check7: ON
	Check8: ON

	Group2:
	Check0: ON
	Check1: ON
	Check2: ON
	Check3: ON
	Check4: ON
	Check5: ON
	Check6: ON
	Check7: ON
	Check8: ON

