
MBS Xojo Encryption Kit 

Version 1.1, © 2014-2019 by Christian Schmitz

About the MBS Xojo Encryption Kit 2
CommonCrypto 3
Zip 4
Database Connector 5

Interfaces 6
CommonCryptoExceptionMB 6
CommonCryptoHashMB 6
CommonCryptoHMACMB 7
CommonCryptoMB 8
CommonCryptorMB 13
ZipMB 18
ZipExceptionMB 18

AES with 28 rounds 19
Example for AES CBC 20
Version History 21
Installation 22
Requirements 23
License 24
Contact 25

Encryption Kit Manual, Page � of �1 25

About the MBS Xojo Encryption Kit
The MBS Xojo Encryption Kit provides you with a few useful classes and modules to easily
add encryption to your Xojo iOS application.

The Kit contains:

• Wrapper for OS X and iOS CommonCrypto framework
• Compression/Decompression functions using zlib
• Database Connector for encrypted database queries from iOS to server app

Encryption Kit Manual, Page � of �2 25

CommonCrypto
The Encryption Kit contains a complete wrapper for CommonCrypto, Apple's encryption
library on OS X and iOS:

Features

• Hashes with various algorithms:  
MD2, MD4, MD5, SHA1, SHA224, SHA384, SHA256 and SHA512

• Key derivation with PBKDF2
• Encryption with AES, Blowfish, DES and others
• Hardware accelerated
• Key wrapping with AES

Wrapper Features

• For old and new Xojo framework
• Using exception handling to track error
• Using enums for saver constant passing
• Test code included
• Convenience functions to pass values as text or string instead of MemoryBlocks
• Parameter validation
• All classes with MB postfix to avoid name conflicts.
• Includes EncodeHex function
• Compiles for all targets
• All module definitions are protected to avoid conflicts
• Inline documentation
• Full Source code, no encryption
• Works for 32bit and 64bit targets.
• Projects for Desktop, iOS, Web and Console using our classes.

Encryption Kit Manual, Page � of �3 25

Zip
For our database connector we added compression functions, so we can compress our
recordsets for the transmission.

• Zlib wrapper for Compression and Decompression of memory blocks in memory.
• for Win/Linux with MBS Compression Plugin

Encryption Kit Manual, Page � of �4 25

Database Connector

As Xojo for iOS does not support direct database server queries, we provide a sample
implementation for a secure connection. Database query is encoded with JSON and sent
to server compressed and encrypted. Server will connect to database, run the query, pack
the recordset and send it back to client.

Features Server:

• Console application for running in background on server
• Reads preferences file for database name, password, user and server port
• Using ServerSocket for taking queries
• Code to Encrypt & Decrypt, Compress & Uncompress messages

Features Client Desktop:

• Using Sockets for synchronous queries, 3 attempts
• Classes for RecordSet in memory
• Query window to run queries.

Features Client iOS:

• Socket for connecting to server and running queries asynchronously
• Query view to run queries and show result in table.
• Delegate to inform about query finished/failed
• Classes for RecordSet in memory

Possible future features:
• Automatic Key exchange instead of shared key.
• Reuse connection
• Logins

Encryption Kit Manual, Page � of �5 25

Interfaces
CommonCryptoExceptionMB

Class CommonCryptoExceptionMB Inherits RuntimeException
Sub Constructor(m as string, e as Integer = 0)

The exception class if something went wrong with encryption
Sub Constructor(m as text, e as Integer = 0)

The exception class if something went wrong with encryption
End Class

CommonCryptoHashMB

Class CommonCryptoHashMB
Sub Constructor(h as CommonCryptoMB.hashes)
Sub Destructor()

Explicit Cleanup
Function Final1() As xojo.Core.MemoryBlock

Returns final hash
Function Final2() As MemoryBlock

Returns final hash
Function Update(Data as MemoryBlock) As MemoryBlock

Process some data.

data Data to process.

This can be called multiple times.
Sub Update(Data as string)

Process some data.

data Data to process.

This can be called multiple times.
Sub Update(Data as text)

Process some data.

data Data to process.

This can be called multiple times.
Sub Update(Data as xojo.Core.MemoryBlock)

Process some data.

data Data to process.

This can be called multiple times.
End Class

Encryption Kit Manual, Page � of �6 25

CommonCryptoHMACMB

Class CommonCryptoHMACMB
Sub Constructor(type as CommonCryptoMB.HMacAlgorithm, key as MemoryBlock)

Initialize an CCHmacContext with provided raw key bytes.
algorithm HMAC algorithm to perform.
key Raw key bytes.

Sub Constructor(type as CommonCryptoMB.HMacAlgorithm, key as string)
Initialize an CCHmacContext with provided raw key bytes.
algorithm HMAC algorithm to perform.
key Raw key bytes.

Sub Constructor(type as CommonCryptoMB.HMacAlgorithm, key as text)
Initialize an CCHmacContext with provided raw key bytes.
algorithm HMAC algorithm to perform.
key Raw key bytes.

Sub Constructor(type as CommonCryptoMB.HMacAlgorithm, key as xojo.Core.MemoryBlock)
Initialize an CCHmacContext with provided raw key bytes.
algorithm HMAC algorithm to perform.
key Raw key bytes.

Sub Destructor()
Explicit Cleanup

Function Final1() As xojo.Core.MemoryBlock
Obtain the final Message Authentication Code.

Function Final2() As MemoryBlock
Obtain the final Message Authentication Code.

Sub Update(Data as MemoryBlock)
Process some data.

data Data to process.

This can be called multiple times.
Sub Update(Data as string)

Process some data.

data Data to process.

This can be called multiple times.
Sub Update(Data as text)

Process some data.

data Data to process.

This can be called multiple times.
Sub Update(Data as xojo.Core.MemoryBlock)

Process some data.

data Data to process.

This can be called multiple times.
End Class

Encryption Kit Manual, Page � of �7 25

CommonCryptoMB

Module CommonCryptoMB
Const CC_MD2_DIGEST_LENGTH = 16
Const CC_MD4_DIGEST_LENGTH = 16
Const CC_MD5_DIGEST_LENGTH = 16
Const CC_SHA1_DIGEST_LENGTH = 20
Const CC_SHA224_DIGEST_LENGTH = 28
Const CC_SHA256_DIGEST_LENGTH = 32
Const CC_SHA384_DIGEST_LENGTH = 48
Const CC_SHA512_DIGEST_LENGTH = 64
Const kCCAlignmentError = -4303
Const kCCBufferTooSmall = -4301
Const kCCDecodeError = -4304
Const kCCMemoryFailure = -4302
Const kCCOptionECBMode = 2
Const kCCOptionPKCS7Padding = 1
Const kCCOverflow = -4306
Const kCCParamError = -4300
Const kCCRNGFailure = -4307
Const kCCSuccess = 0
Const kCCUnimplemented = -4305
Const kLibrary =
Enum CryptBlockSize

kCCBlockSizeAES128 = 16
kCCBlockSizeDES = 8
kCCBlockSize3DES = 8
kCCBlockSizeCAST = 8
kCCBlockSizeRC2 = 8
kCCBlockSizeBlowfish = 8

End Enum
Enum CryptKeySize

kCCKeySizeAES128 = 16
kCCKeySizeAES192 = 24
kCCKeySizeAES256 = 256
kCCKeySizeDES = 8
kCCKeySize3DES = 24
kCCKeySizeMinCAST = 5
kCCKeySizeMaxCAST = 16
kCCKeySizeMinRC4 = 1
kCCKeySizeMaxRC4 = 512
kCCKeySizeMinRC2 = 1
kCCKeySizeMaxRC2 = 128
kCCKeySizeMinBlowfish = 8
kCCKeySizeMaxBlowfish = 56

End Enum
Enum CryptoAlgorithm

AES128 = 0
AES = 0
DES = 1
ThreeDES = 2
CAST = 3
RC4 = 4
RC2 = 5
Blowfish = 6

End Enum
Enum CryptoMode

kCCModeECB = 1
kCCModeCBC = 2
kCCModeCFB = 3
kCCModeCTR = 4
kCCModeF8 = 5
kCCModeLRW = 6
kCCModeOFB = 7
kCCModeXTS = 8
kCCModeRC4 = 9

Encryption Kit Manual, Page � of �8 25

kCCModeCFB8 = 10
End Enum
Enum CryptoOperation

Encrypt = 0
Decrypt = 1

End Enum
Enum CryptoPadding

No = 0
PKCS7 = 1

End Enum
Enum HMacAlgorithm

SHA1 = 0
MD5 = 1
SHA256 = 2
SHA384 = 3
SHA512 = 4
SHA224 = 5

End Enum
Enum Hashes

MD2 = 2
MD4 = 4
MD5 = 5
SHA1 = 1
SHA224 = 224
SHA384 = 384
SHA256 = 256
SHA512 = 512

End Enum
Enum PseudoRandomAlgorithm

SHA1 = 1
SHA224 = 2
SHA256 = 3
SHA384 = 4
SHA512 = 5

End Enum
Enum WrappingAlgorithm

AES = 1
End Enum
Protected Function CalibratePBKDF2(passwordLength as Integer, SaltLength as Integer, algorithm as

PseudoRandomAlgorithm, msec as Integer = 1000) As Integer
Determine the number of PRF rounds to use for a specific delay on the current platform.

algorithm Currently only PBKDF2 is available via kCCPBKDF2
passwordLen The length of the text password in bytes.
saltLen The length of the salt in bytes.
prf The Pseudo Random Algorithm to use for the derivation iterations.
derivedKeyLen The expected length of the derived key in bytes.
msec The targetted duration we want to achieve for a key derivation with these parameters.

the number of iterations to use for the desired processing time.
Protected Function Crypt(Operation as CryptoOperation, Algorithm as CryptoAlgorithm, Options as Integer,

key as MemoryBlock, Data as MemoryBlock, IV as MemoryBlock = nil) As MemoryBlock
Protected Function Crypt(Operation as CryptoOperation, Algorithm as CryptoAlgorithm, Options as Integer,

key as xojo.core.MemoryBlock, Data as xojo.core.MemoryBlock, IV as xojo.core.MemoryBlock = nil) As xojo.core.MemoryBlock
Protected Function EncodeHex(data as xojo.Core.MemoryBlock) As text

encodes MemoryBlock as text
Protected Function HMAC(HashType as HMacAlgorithm, Key as MemoryBlock, Data as MemoryBlock) As

MemoryBlock
Stateless, one-shot HMAC function.
Returns hash as memoryblock

Protected Function HMAC(HashType as HMacAlgorithm, Key as String, Data as string) As MemoryBlock
Stateless, one-shot HMAC function.
Returns hash as memoryblock

Protected Function HMAC(HashType as HMacAlgorithm, Key as Text, Data as text) As
xojo.Core.MemoryBlock

Stateless, one-shot HMAC function.

Encryption Kit Manual, Page � of �9 25

Returns hash as memoryblock
Protected Function HMAC(HashType as HMacAlgorithm, Key as Xojo.Core.MemoryBlock, Data as

xojo.Core.MemoryBlock) As xojo.Core.MemoryBlock
Stateless, one-shot HMAC function.
Returns hash as memoryblock

Protected Function HMacHashSize(h as HMacAlgorithm) As integer
size of hash in bytes

Protected Function Hash(HashType as Hashes, Data as MemoryBlock) As MemoryBlock
one shot hash function
calculates hash for given data

Protected Function Hash(HashType as Hashes, Data as string) As MemoryBlock
one shot hash function
calculates hash for given data

Protected Function Hash(HashType as Hashes, Data as text) As xojo.Core.MemoryBlock
one shot hash function
calculates hash for given data

Protected Function Hash(HashType as Hashes, Data as xojo.Core.MemoryBlock) As xojo.Core.MemoryBlock
one shot hash function
calculates hash for given data

Protected Function KeyDerivationPBKDF2(password as MemoryBlock, salt as MemoryBlock, algorithm as
PseudoRandomAlgorithm, rounds as Integer) As MemoryBlock

Derive a key from a text password/passphrase

algorithm Currently only PBKDF2 is available via kCCPBKDF2
password The text password used as input to the derivation function. The actual octets present in

this string will be used with no additional processing. It's extremely important that the same encoding and normalization be used
each time this routine is called if the same key is expected to be derived.

salt The salt byte values used as input to the derivation function.
prf The Pseudo Random Algorithm to use for the derivation iterations.
rounds The number of rounds of the Pseudo Random Algorithm to use.

The following values are used to designate the PRF:

* PseudoRandomAlgorithm.SHA1
* PseudoRandomAlgorithm.SHA224
* PseudoRandomAlgorithm.SHA256
* PseudoRandomAlgorithm.SHA384
* PseudoRandomAlgorithm.SHA512

Raises exception with Parameter error in case of bad values for the password, salt, and unwrapped key
pointers as well as a bad value for the prf function.

PS: Maybe before putting password or salt here, push them through hash function first?
Protected Function KeyDerivationPBKDF2(password as xojo.core.MemoryBlock, salt as

xojo.core.MemoryBlock, algorithm as PseudoRandomAlgorithm, rounds as Integer) As xojo.core.MemoryBlock
Derive a key from a text password/passphrase

algorithm Currently only PBKDF2 is available via kCCPBKDF2
password The text password used as input to the derivation function. The actual octets present in

this string will be used with no additional processing. It's extremely important that the same encoding and normalization be used
each time this routine is called if the same key is expected to be derived.

salt The salt byte values used as input to the derivation function.
prf The Pseudo Random Algorithm to use for the derivation iterations.
rounds The number of rounds of the Pseudo Random Algorithm to use.

The following values are used to designate the PRF:

* PseudoRandomAlgorithm.SHA1
* PseudoRandomAlgorithm.SHA224
* PseudoRandomAlgorithm.SHA256
* PseudoRandomAlgorithm.SHA384
* PseudoRandomAlgorithm.SHA512

Raises exception with Parameter error in case of bad values for the password, salt, and unwrapped key
pointers as well as a bad value for the prf function.

Encryption Kit Manual, Page � of �10 25

PS: Maybe before putting password or salt here, push them through hash function first?
Protected Function SymmetricKeyUnwrap(algorithm as WrappingAlgorithm, IV as MemoryBlock, kek as

MemoryBlock, wrappedKey as MemoryBlock) As MemoryBlock
Unwrap a symmetric key with a Key Encryption Key (KEK).

algorithm Currently only AES Keywrapping (rfc3394) is available via WrappingAlgorithm.AES
iv The initialization value to be used. rfc3394_iv1 is available as a constant for the standard IV

to use.
kek The Key Encryption Key to be used to unwrap the raw key.
wrappedKey The wrapped key bytes.

The algorithm chosen is determined by the algorithm parameter and the size of the key being wrapped
(ie aes128 for 128 bit keys).

May raise CommonCryptoExceptionMB with BufferTooSmall indicates insufficent space in the
rawKey buffer.

ParamError can result from bad values for the kek, rawKey, and wrappedKey key pointers.
Protected Function SymmetricKeyUnwrap(algorithm as WrappingAlgorithm, IV as xojo.Core.MemoryBlock,

kek as xojo.Core.MemoryBlock, wrappedKey as xojo.core.MemoryBlock) As xojo.core.MemoryBlock
Unwrap a symmetric key with a Key Encryption Key (KEK).

algorithm Currently only AES Keywrapping (rfc3394) is available via WrappingAlgorithm.AES
iv The initialization value to be used. rfc3394_iv1 is available as a constant for the standard IV

to use.
kek The Key Encryption Key to be used to unwrap the raw key.
wrappedKey The wrapped key bytes.

The algorithm chosen is determined by the algorithm parameter and the size of the key being wrapped
(ie aes128 for 128 bit keys).

May raise CommonCryptoExceptionMB with BufferTooSmall indicates insufficent space in the
rawKey buffer.

ParamError can result from bad values for the kek, rawKey, and wrappedKey key pointers.
Protected Function SymmetricKeyWrap(algorithm as WrappingAlgorithm, IV as MemoryBlock, kek as

MemoryBlock, rawKey as MemoryBlock) As MemoryBlock
Wrap a symmetric key with a Key Encryption Key (KEK).

algorithm Currently only AES Keywrapping (rfc3394) is available via WrappingAlgorithm.AES
iv The initialization value to be used. rfc3394iv1 is available as a constant for the standard IV

to use.
kek The Key Encryption Key to be used to wrap the raw key.
rawKey The raw key bytes to be wrapped.

Returns the wrapped key as memoryblock.

Can raise CommonCryptoExceptionMB with BufferTooSmall indicates insufficent space in the
wrappedKey buffer.

ParamError can result from bad values for the kek, rawKey, and wrappedKey key pointers.
Protected Function SymmetricKeyWrap(algorithm as WrappingAlgorithm, IV as xojo.Core.MemoryBlock, kek

as xojo.Core.MemoryBlock, rawKey as xojo.core.MemoryBlock) As xojo.core.MemoryBlock
Wrap a symmetric key with a Key Encryption Key (KEK).

algorithm Currently only AES Keywrapping (rfc3394) is available via WrappingAlgorithm.AES
iv The initialization value to be used. rfc3394iv1 is available as a constant for the standard IV

to use.
kek The Key Encryption Key to be used to wrap the raw key.
rawKey The raw key bytes to be wrapped.

Returns the wrapped key as memoryblock.

Can raise CommonCryptoExceptionMB with BufferTooSmall indicates insufficent space in the
wrappedKey buffer.

ParamError can result from bad values for the kek, rawKey, and wrappedKey key pointers.
Protected Sub TestRandom()

test random function
Protected Sub checkResult(e as Int32)

Encryption Kit Manual, Page � of �11 25

raises exception in case something went wrong
Protected Function generateBytes1(count as integer) As xojo.core.MemoryBlock

Return random bytes in a buffer allocated by the caller.
The PRNG returns cryptographically strong random bits suitable for use as cryptographic keys, IVs,

nonces etc.
count Number of random bytes to return.
Returns MemoryBlock with data or raises exception
available in Mac OS X 10.10 or iOS 8.0

Protected Function generateBytes2(count as integer) As MemoryBlock
Return random bytes in a buffer allocated by the caller.
The PRNG returns cryptographically strong random bits suitable for use as cryptographic keys, IVs,

nonces etc.
count Number of random bytes to return.
Returns MemoryBlock with data or raises exception
available in Mac OS X 10.10 or iOS 8.0

Protected Function rfc3394iv1() As xojo.Core.MemoryBlock
returns RFC 3394 Initial Vector

Protected Function rfc3394iv2() As MemoryBlock
returns RFC 3394 Initial Vector

Protected Sub test()
Protected Sub testCrypt()

test encryption
Protected Sub testHMAC()

test hmac functions
Protected Sub testHash()

test hash functions
Protected Sub testKeyGen()

test key derivation
Protected Sub testKeyWrap()
Note "Info"

This is a complete wrapper for CommonCrypto, Apple's encryption library on OS X and iOS

Features

* Hashes with various algorithms
* Key derivation with PBKDF2
* Encryption with AES, Blowfish, DES and others
* Hardware accelerated
* Key wrapping with AES

Wrapper Features

* For old and new framework
* using exception handling to track error
* using enums for saver constant passing
* test code included
* convenience functions to pass values as text or string instead of MemoryBlocks
* parameter validation
* all classes with MB postfix to avoid conflicts
* EncodeHex function
* Compiles for all targets
* All module definitions are protected to avoid conflicts
* Inline documentation
* Full Source code, no encryption

Note "License"
todo

End Module

Encryption Kit Manual, Page � of �12 25

CommonCryptorMB

Class CommonCryptorMB
Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Algorithm as

CommonCryptoMB.CryptoAlgorithm, Options as Integer, key as MemoryBlock, iv as MemoryBlock = nil)
Create a cryptographic context.

op Defines the basic operation: Encrypt or Decrypt.
alg Defines the algorithm.
options A word of flags defining options. can be 0, kCCOptionPKCS7Padding and/or

kCCOptionECBMode.
key Raw key material. Must be appropriate in length for the selected operation and algorithm.

Some algorithms provide for varying key lengths.
iv Initialization vector, optional. Used by block ciphers when Cipher Block Chaining (CBC)

mode is enabled. If present, must be the same length as the selected algorithm's block size.
If CBC mode is selected (by the absence of the kCCOptionECBMode bit in the options flags) and no
IV is present, a NULL (all zeroes) IV will be used.
This parameter is ignored if ECB mode is used or if a stream cipher algorithm is selected.

Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Algorithm as
CommonCryptoMB.CryptoAlgorithm, Options as Integer, key as Xojo.Core.MemoryBlock, iv as xojo.core.MemoryBlock = nil)

Create a cryptographic context.

op Defines the basic operation: Encrypt or Decrypt.
alg Defines the algorithm.
options A word of flags defining options. can be 0, kCCOptionPKCS7Padding and/or

kCCOptionECBMode.
key Raw key material. Must be appropriate in length for the selected operation and algorithm.

Some algorithms provide for varying key lengths.
iv Initialization vector, optional. Used by block ciphers when Cipher Block Chaining (CBC)

mode is enabled. If present, must be the same length as the selected algorithm's block size.
If CBC mode is selected (by the absence of the kCCOptionECBMode bit in the options flags) and no
IV is present, a NULL (all zeroes) IV will be used.
This parameter is ignored if ECB mode is used or if a stream cipher algorithm is selected.

Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Algorithm as
CommonCryptoMB.CryptoAlgorithm, Options as Integer, key as string, iv as MemoryBlock = nil)

Create a cryptographic context.

op Defines the basic operation: Encrypt or Decrypt.
alg Defines the algorithm.
options A word of flags defining options. can be 0, kCCOptionPKCS7Padding and/or

kCCOptionECBMode.
key Raw key material. Must be appropriate in length for the selected operation and algorithm.

Some algorithms provide for varying key lengths.
iv Initialization vector, optional. Used by block ciphers when Cipher Block Chaining (CBC)

mode is enabled. If present, must be the same length as the selected algorithm's block size.
If CBC mode is selected (by the absence of the kCCOptionECBMode bit in the options flags) and no
IV is present, a NULL (all zeroes) IV will be used.
This parameter is ignored if ECB mode is used or if a stream cipher algorithm is selected.

Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Algorithm as
CommonCryptoMB.CryptoAlgorithm, Options as Integer, key as text, iv as xojo.core.MemoryBlock = nil)

Create a cryptographic context.

op Defines the basic operation: Encrypt or Decrypt.
alg Defines the algorithm.
options A word of flags defining options. can be 0, kCCOptionPKCS7Padding and/or

kCCOptionECBMode.
key Raw key material. Must be appropriate in length for the selected operation and algorithm.

Some algorithms provide for varying key lengths.
iv Initialization vector, optional. Used by block ciphers when Cipher Block Chaining (CBC)

mode is enabled. If present, must be the same length as the selected algorithm's block size.
If CBC mode is selected (by the absence of the kCCOptionECBMode bit in the options flags) and no
IV is present, a NULL (all zeroes) IV will be used.
This parameter is ignored if ECB mode is used or if a stream cipher algorithm is selected.

Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Mode as CommonCryptoMB.CryptoMode,
Algorithm as CommonCryptoMB.CryptoAlgorithm, Padding as CommonCryptoMB.CryptoPadding, key as MemoryBlock, Tweak
as Memoryblock = nil, iv as MemoryBlock = nil, NumRounds as Integer = 0, Options as Integer = 0)

Encryption Kit Manual, Page � of �13 25

Create a cryptographic context.
Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Mode as CommonCryptoMB.CryptoMode,

Algorithm as CommonCryptoMB.CryptoAlgorithm, Padding as CommonCryptoMB.CryptoPadding, key as
Xojo.Core.MemoryBlock, Tweak as xojo.core.Memoryblock = nil, iv as xojo.core.MemoryBlock = nil, NumRounds as Integer = 0,
Options as Integer = 0)

Create a cryptographic context.
Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Mode as CommonCryptoMB.CryptoMode,

Algorithm as CommonCryptoMB.CryptoAlgorithm, Padding as CommonCryptoMB.CryptoPadding, key as string, Tweak as
Memoryblock = nil, iv as MemoryBlock = nil, NumRounds as Integer = 0, Options as Integer = 0)

Create a cryptographic context.
Sub Constructor(Operation as CommonCryptoMB.CryptoOperation, Mode as CommonCryptoMB.CryptoMode,

Algorithm as CommonCryptoMB.CryptoAlgorithm, Padding as CommonCryptoMB.CryptoPadding, key as text, Tweak as
xojo.core.Memoryblock = nil, iv as xojo.core.MemoryBlock = nil, NumRounds as Integer = 0, Options as Integer = 0)

Create a cryptographic context.
Sub Destructor()

Cleanup
Function Final1() As xojo.Core.MemoryBlock

Finish an encrypt or decrypt operation, and obtain the (possible)
final data output.

Returns final bytes of the encrypted/decrypted data. This can be empty memoryblock.

Raises exceptions on error. kCCBufferTooSmall indicates insufficent space in the dataOut buffer.
kCCAlignmentError When decrypting, or when encrypting with a block cipher with padding disabled,
kCCAlignmentError will be returned if the total number of bytes provided to Update is
not an integral multiple of the current algorithm's block size.
kCCDecodeError Indicates garbled ciphertext or the wrong key during decryption. This can only
be returned while decrypting with padding enabled.

Except when kCCBufferTooSmall is returned, the Cryptor
can no longer be used for subsequent operations unless
Reset() is called on it.

It is not necessary to call Final() when performing
symmetric encryption or decryption if padding is disabled, or
when using a stream cipher.

It is not necessary to call Final() when aborting an operation.
Function Final2() As MemoryBlock

Finish an encrypt or decrypt operation, and obtain the (possible)
final data output.

Returns final bytes of the encrypted/decrypted data. This can be empty memoryblock.

Raises exceptions on error. kCCBufferTooSmall indicates insufficent space in the dataOut buffer.
kCCAlignmentError When decrypting, or when encrypting with a block cipher with padding disabled,
kCCAlignmentError will be returned if the total number of bytes provided to Update is
not an integral multiple of the current algorithm's block size.
kCCDecodeError Indicates garbled ciphertext or the wrong key during decryption. This can only
be returned while decrypting with padding enabled.

Except when kCCBufferTooSmall is returned, the Cryptor
can no longer be used for subsequent operations unless
Reset() is called on it.

It is not necessary to call Final() when performing
symmetric encryption or decryption if padding is disabled, or
when using a stream cipher.

It is not necessary to call Final() when aborting an operation.
Sub Reset(iv as MemoryBlock)

Reinitializes an existing CCCryptorRef with a (possibly)
new initialization vector. Not implemented for stream ciphers.

iv Optional initialization vector; if present, must
be the same size as the current algorithm's block size.

Encryption Kit Manual, Page � of �14 25

The the only possible errors are kCCParamError and kCCUnimplemented which cause exceptions.

This can be called on a cryptor with data pending (i.e.
in a padded mode operation before Final is called);
however any pending data will be lost in that case.

Sub Reset(iv as xojo.core.memoryblock = nil)
Reinitializes an existing CCCryptorRef with a (possibly)
new initialization vector. Not implemented for stream ciphers.

iv Optional initialization vector; if present, must
be the same size as the current algorithm's block size.

The the only possible errors are kCCParamError and kCCUnimplemented which cause exceptions.

This can be called on a cryptor with data pending (i.e.
in a padded mode operation before Final is called);
however any pending data will be lost in that case.

Function Update(Data as MemoryBlock) As MemoryBlock
Process (encrypt, decrypt) some data. The result, if any, is returned as memoryblock.

data: Data to process.

Returns data. The result memoryblock can be smaller or bigger due to alignment.

Can raise error. kCCBufferTooSmall indicates insufficent space in the dataOut buffer.

This routine can be called multiple times. The caller does not need to align input data lengths to block
sizes; input is

bufferred as necessary for block ciphers.

When performing symmetric encryption with block ciphers,
and padding is enabled via kCCOptionPKCS7Padding, the total
number of bytes provided by all the calls to this function
when encrypting can be arbitrary (i.e., the total number
of bytes does not have to be block aligned). However if
padding is disabled, or when decrypting, the total number
of bytes does have to be aligned to the block size; otherwise
Final() will return kCCAlignmentError.

Generally, when all data has been processed, call Final().

In the following cases, the CCCryptorFinal() is superfluous as
it will not yield any data nor return an error:
1. Encrypting or decrypting with a block cipher with padding
 disabled, when the total amount of data provided to
 Update() is an integral multiple of the block size.
2. Encrypting or decrypting with a stream cipher.

Function Update(Data as string) As MemoryBlock
Process (encrypt, decrypt) some data. The result, if any, is returned as memoryblock.

data: Data to process.

Returns data. The result memoryblock can be smaller or bigger due to alignment.

Can raise error. kCCBufferTooSmall indicates insufficent space in the dataOut buffer.

This routine can be called multiple times. The caller does not need to align input data lengths to block
sizes; input is

bufferred as necessary for block ciphers.

When performing symmetric encryption with block ciphers,
and padding is enabled via kCCOptionPKCS7Padding, the total
number of bytes provided by all the calls to this function
when encrypting can be arbitrary (i.e., the total number
of bytes does not have to be block aligned). However if

Encryption Kit Manual, Page � of �15 25

padding is disabled, or when decrypting, the total number
of bytes does have to be aligned to the block size; otherwise
Final() will return kCCAlignmentError.

Generally, when all data has been processed, call Final().

In the following cases, the CCCryptorFinal() is superfluous as
it will not yield any data nor return an error:
1. Encrypting or decrypting with a block cipher with padding
 disabled, when the total amount of data provided to
 Update() is an integral multiple of the block size.
2. Encrypting or decrypting with a stream cipher.

Function Update(Data as text) As xojo.Core.MemoryBlock
Process (encrypt, decrypt) some data. The result, if any, is returned as memoryblock.

data: Data to process.

Returns data. The result memoryblock can be smaller or bigger due to alignment.

Can raise error. kCCBufferTooSmall indicates insufficent space in the dataOut buffer.

This routine can be called multiple times. The caller does not need to align input data lengths to block
sizes; input is

bufferred as necessary for block ciphers.

When performing symmetric encryption with block ciphers,
and padding is enabled via kCCOptionPKCS7Padding, the total
number of bytes provided by all the calls to this function
when encrypting can be arbitrary (i.e., the total number
of bytes does not have to be block aligned). However if
padding is disabled, or when decrypting, the total number
of bytes does have to be aligned to the block size; otherwise
Final() will return kCCAlignmentError.

Generally, when all data has been processed, call Final().

In the following cases, the CCCryptorFinal() is superfluous as
it will not yield any data nor return an error:
1. Encrypting or decrypting with a block cipher with padding
 disabled, when the total amount of data provided to
 Update() is an integral multiple of the block size.
2. Encrypting or decrypting with a stream cipher.

Function Update(Data as xojo.Core.MemoryBlock) As xojo.Core.MemoryBlock
Process (encrypt, decrypt) some data. The result, if any, is returned as memoryblock.

data: Data to process.

Returns data. The result memoryblock can be smaller or bigger due to alignment.

Can raise error. kCCBufferTooSmall indicates insufficent space in the dataOut buffer.

This routine can be called multiple times. The caller does not need to align input data lengths to block
sizes; input is

bufferred as necessary for block ciphers.

When performing symmetric encryption with block ciphers,
and padding is enabled via kCCOptionPKCS7Padding, the total
number of bytes provided by all the calls to this function
when encrypting can be arbitrary (i.e., the total number
of bytes does not have to be block aligned). However if
padding is disabled, or when decrypting, the total number
of bytes does have to be aligned to the block size; otherwise
Final() will return kCCAlignmentError.

Generally, when all data has been processed, call Final().

Encryption Kit Manual, Page � of �16 25

In the following cases, the CCCryptorFinal() is superfluous as
it will not yield any data nor return an error:
1. Encrypting or decrypting with a block cipher with padding
 disabled, when the total amount of data provided to
 Update() is an integral multiple of the block size.
2. Encrypting or decrypting with a stream cipher.

Note "About"
Generic interface for symmetric encryption.

This interface provides access to a number of symmetric encryption
algorithms. Symmetric encryption algorithms come in two "flavors" - block
ciphers, and stream ciphers. Block ciphers process data (while both
encrypting and decrypting) in discrete chunks of data called blocks;
stream ciphers operate on arbitrary sized data.

The object declared in this interface, CCCryptor, provides access to both
block ciphers and stream ciphers with the same API; however some options
are available for block ciphers that do not apply to stream ciphers.

The general operation of a CCCryptor is: initialize it with raw key data
and other optional fields with Constructor; process input data via one or
more calls to Update(), each of which may result in output data being
returned as memoryblock; and obtain possible remaining output data with
Final functions. The CCCryptor is disposed of via destructor, or it can be
reused (with the same key data as provided to Constructor()) by calling
Reset().

One option for block ciphers is padding, as defined in PKCS7; when padding
is enabled, the total amount of data encrypted does not have to be an even
multiple of the block size, and the actual length of plaintext is
calculated during decryption.

Another option for block ciphers is Cipher Block Chaining, known as CBC
mode. When using CBC mode, an Initialization Vector (IV) is provided along
with the key when starting an encrypt or decrypt operation. If CBC mode is
selected and no IV is provided, an IV of all zeroes will be used.

CCCryptor also implements block bufferring, so that individual calls to
Update() do not have to provide data whose length is aligned to the block
size. (If padding is disabled, encrypting with block ciphers does require
that the *total* length of data input to Update() call(s) be aligned to the
block size.)

A given CCCryptor can only be used by one thread at a time; multiple
threads can use safely different CCCryptors at the same time.

Property Algorithm As CommonCryptoMB.CryptoAlgorithm
Property Operation As CommonCryptoMB.CryptoOperation
Property Options As Integer
Property Padding As CommonCryptoMB.CryptoPadding

End Class

Encryption Kit Manual, Page � of �17 25

ZipMB

Module ZipMB
Const kEndOfStream = 1
Const kErrorBuffer = -5
Const kErrorData = -3
Const kErrorOK = 0
Const kErrorOutOfMemory = -4
Const kLibrary =
Protected Function Compress(Data as MemoryBlock) As MemoryBlock

Compresses the source buffer into the destination buffer.

As you see we always use best compression and calculate buffer size with compressBound

compress returns kErrorOK if success, kErrorOutOfMemory if there was not
enough memory, kErrorBuffer if there was not enough room in the output
buffer. (should never happen)

Protected Function Compress(t as string) As MemoryBlock
convert string in current encoding to MemoryBlock

Protected Function Compress(t as text) As xojo.Core.MemoryBlock
Protected Function Compress(Data as xojo.Core.MemoryBlock) As xojo.Core.MemoryBlock

Compresses the source buffer into the destination buffer.

As you see we always use best compression and calculate buffer size with compressBound

compress returns kErrorOK if success, kErrorOutOfMemory if there was not
enough memory, kErrorBuffer if there was not enough room in the output
buffer. (should never happen)

Protected Function Decompress(Data as MemoryBlock) As string
decompress data and return new MemoryBlock

Protected Function Decompress(Data as xojo.Core.MemoryBlock) As xojo.Core.MemoryBlock
decompress data and return new MemoryBlock

Protected Sub test()
End Module

ZipExceptionMB

Class ZipExceptionMB Inherits RuntimeException
Sub Constructor(m as string, e as Integer = 0)

The exception class if something went wrong with encryption
Sub Constructor(m as text, e as Integer = 0)

The exception class if something went wrong with encryption
End Class  

Encryption Kit Manual, Page � of �18 25

AES with 28 rounds
AES can work with 14 rounds (default) or 28 rounds (better).

// test encryption with AES 28 rounds

dim HelloWorldText as text = "Hello World, this is just a test."
dim HelloWorldXCMem as xojo.Core.MemoryBlock = _

xojo.core.TextEncoding.UTF8.ConvertTextToData(HelloWorldText)

dim KeyText as text = "secret"
dim KeyXCMem as xojo.Core.MemoryBlock

KeyXCMem = CommonCryptoMB.Hash(CommonCryptoMB.Hashes.MD5, KeyText)

// Operation as CommonCryptoMB.CryptoOperation, Mode as CommonCryptoMB.CryptoMode,
// Algorithm as CommonCryptoMB.CryptoAlgorithm, Padding as CommonCryptoMB.CryptoPadding,
// key as Xojo.Core.MemoryBlock, Tweak as xojo.core.Memoryblock = nil, iv as xojo.core.MemoryBlock = nil,
// NumRounds as Integer = 0, Options as Integer = 0

dim tweak as xojo.Core.MemoryBlock
dim iv as xojo.Core.MemoryBlock
dim c as new CommonCryptorMB(CommonCryptoMB.CryptoOperation.Encrypt, _

CommonCryptoMB.CryptoMode.kCCModeECB, _
CommonCryptoMB.CryptoAlgorithm.AES, _
CommonCryptoMB.CryptoPadding.PKCS7, _
KeyXCMem, _
tweak, _
iv, _
28, 0)

dim m as new xojo.Core.MutableMemoryBlock(0)

m.Append c.Update(HelloWorldXCMem)
m.Append c.Final1

Break

Encryption Kit Manual, Page � of �19 25

Example for AES CBC
// AES 256-bit CBC test code

system.DebugLog "Testing started..."

dim MyVal as text = "If you can read this text then process of encryption and decryption is working well."
dim mbMyVal as xojo.Core.MemoryBlock = xojo.core.TextEncoding.utf8.ConvertTextToData(MyVal)

dim MyPwd as text = "Passphrase goes here"
dim mbMyPwd as xojo.Core.MemoryBlock =
CommonCryptoMB.Hash(CommonCryptoMB.Hashes.SHA256,MyPwd)

System.DebugLog "Test value and passphrase created."

dim iv as xojo.Core.MemoryBlock
dim cryptor as new CommonCryptorMB(CommonCryptoMB.CryptoOperation.Encrypt,
CommonCryptoMB.CryptoMode.kCCModeCBC, _
CommonCryptoMB.CryptoAlgorithm.AES, CommonCryptoMB.CryptoPadding.PKCS7, mbMyPwd, iv)

dim enData1 as xojo.Core.MemoryBlock = Cryptor.Update(mbMyVal)
dim enData2 as xojo.Core.MemoryBlock = cryptor.Final1
dim enData as new xojo.Core.MutableMemoryBlock(enData1)
enData.Append enData2

System.DebugLog "Encrypted data value created."

System.DebugLog "Encrypted data: '" + CommonCryptoMB.EncodeHex(enData) + "'"

dim decryptor as new CommonCryptorMB(CommonCryptoMB.CryptoOperation.Decrypt,
CommonCryptoMB.CryptoMode.kCCModeCBC, _
CommonCryptoMB.CryptoAlgorithm.AES, CommonCryptoMB.CryptoPadding.PKCS7, mbMyPwd, iv)

dim result1 as xojo.Core.MemoryBlock = Cryptor.Update(enData)
dim result2 as xojo.Core.MemoryBlock = cryptor.Final1
dim result as new xojo.Core.MutableMemoryBlock(result1)
result.Append result2

System.DebugLog "Result: '" + xojo.core.TextEncoding.UTF8.ConvertDataToText(result) + "'"

Encryption Kit Manual, Page � of �20 25

Version History
Tip: If you want to update your existing code with new release, you‘d best compare
projects with Arbed (http://www.tempel.org/Arbed) and copy modifications to your project.

1.1, 31st July 2019

• DatabaseConnector Server now has a switch in UtilModule to decide if you want to use
SQLiteDatabase or MBS SQL Plugin.

• DatabaseConnector Server defaults now on OS X to not use plugin for encryption.
• Added EncodeBase64 and DecodeBase64
• Added AES example.
• Updated for Xojo 2019r1

1.0, first release

Encryption Kit Manual, Page � of �21 25

http://www.tempel.org/Arbed

Installation
To get your projects working with this Encryption Kit, you need to follow a few steps.

Drop the folder „externals“ into your project and access all the common crypto or zip
modules and classes. Or copy from existing example projects what you need.

Encryption Kit Manual, Page � of �22 25

Requirements
You need Xojo 2015r1 or newer.
We did not test with older versions, but you can if you need.

The encryption parts for desktop can use MBS Plugins to perform similar operations on
Mac OS X, Windows and Linux.

The SQL connection used in the DatabaseConnector uses MBS Xojo SQL Plugin to
connect to database. 

Encryption Kit Manual, Page � of �23 25

License
Summary:
• You may use Encryption Kit only with one licensed Xojo installation.
• You agree not to share the Encryption Kit or use someone else's Encryption Kit copy.

Christian Schmitz Software GmbH, of Nickenich Germany is the owner, developer and
sole copyright holder of this product, which is licensed -not sold- to you on a non-exclusive
basis.
You agree not to share your MBS Xojo Encryption Kit with anyone.

You may transfer your license to another person only after receiving written authorization
from Christian Schmitz Software GmbH and only if the recipient agrees to be bound by the
terms of this agreement.
Christian Schmitz Software GmbH reserves the right to cancel the license key(s) of any
user who Christian Schmitz Software GmbH determines is in violation of this agreement.
THE WARRANTIES IN THIS AGREEMENT REPLACE ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE IS PROVIDED "AS IS"
AND Christian Schmitz Software GmbH DISCLAIMS AND EXCLUDES ALL OTHER
WARRANTIES. IN NO EVENT WILL Christian Schmitz Software GmbH BE LIABLE FOR
ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING LOST
PROFITS, EVEN IF WE HAVE KNOWLEDGE OF THE POTIENTIAL LOSS OR DAMAGE.
If you are located in Germany this agreement is subject to the laws of Germany. If you are
located outside Germany local law may apply. Some states do not allow the exclusion of
warranties, so the above exclusion may not apply to you.
Christian Schmitz Software GmbH does not charge royalties or deployment fees for Xojo
applications.

Access to updates is included for one year. After that time you can order an update or
keep using the old version you have.

Encryption Kit Manual, Page � of �24 25

Contact
Christian Schmitz Software GmbH  
Eckertshohl 22  
56645 Nickenich  
Germany

Email: support@monkeybreadsoftware.de

Phone: +49 26 32 95 89 55 (Office) or +49 17 58 36 37 10 (Mobile)

Encryption Kit Manual, Page � of �25 25

	MBS Xojo Encryption Kit
	About the MBS Xojo Encryption Kit
	CommonCrypto
	Zip
	Database Connector
	Interfaces
	CommonCryptoExceptionMB
	CommonCryptoHashMB
	CommonCryptoHMACMB
	CommonCryptoMB
	CommonCryptorMB
	ZipMB
	ZipExceptionMB
	AES with 28 rounds
	Example for AES CBC
	Version History
	Installation
	Requirements
	License
	Contact

