CRC function in FileMaker using JavaScript

Recently a client asked how to leverage JavaScript in FileMaker to do a specific
calculation. For this blog post we replace the client's function with a CRC function
to show you how to do it.

Up until a few weeks ago we would have pointed to loading JavaScript in a web
viewer and using WebView.RunJavaScript to run the JavaScript. But now we
would point to WebView.Evaluate and just run it. See the example script in our
documentation for this CRC function.

With MBS FileMaker Plugin in version 10.0 we got our own JavaScript functions
using the DukTape engine. We have an example in the documentation to run the
CRC function right in a Let command and the JS.Evaluate command. But instead
of initializing it each time in a Let statement, you may prefer to split this into three
scripts, so you do the initialization only once.

The following script initializes the JavaScript environment once and uses a call to
JS.Evaluate to pass the JavaScript functions:

If [Length($$js) =0]
Set Variable [$$js ; Value: MBS("JS.New")]
Set Variable [$r ; Value: MBS("JS.Evaluate"; $3js;
"function makeCRCTable(){
var c;
var crcTable =];
for(var n =0; n < 256; n++X
Cc=n,
for(var k =0; k < 8; k++)X
c = ((c&1) ? (OxEDB88320 A (c>>> 1)) : (c>>>1));
}
crcTable[n] =c;
¥

return crcTable;

}

function crc32(str) {
var crcTable = crcTable Il (crcTable = makeCRCTable());
varcrc =0 " (-1);

for (vari = 0; i< strlength; i++) {
crc = (crc >>> 8) A crcTable[(crc * str.charCodeAt(i)) & OxFF];

}

return (crc A (-1)) >>> 0;

https://www.mbs-plugins.com/archive/2020-01-15/CRC_function_in_FileMaker_usin/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/WebViewRunJavaScript.shtml
https://www.mbsplugins.eu/WebViewEvaluate.shtml
https://www.monkeybreadsoftware.com/filemaker/
https://www.mbsplugins.eu/component_JavaScript.shtml
https://www.mbsplugins.eu/JSEvaluate.shtml
https://www.mbsplugins.eu/JSEvaluate.shtml
https://www.mbsplugins.eu/component_JavaScript.shtml

5]
End If

As you see we store the JavaScript environment in a global $$js variable, so we
can refer to it everywhere in this file. Instead of letting JS.Evaluate define the
functions, we could alternatively use JS.AddFunction if you prefer:

If [Length($$js) =0]
Set Variable [$$js ; Value: MBS("JS.New")]
Set Variable [$r ; Value: MBS("JS.AddFunction"; $$js; "makeCRCTable";
"function makeCRCTable(){
var c;
var crcTable =];
for(var n =0; n < 256; n++X
c=n;
for(var k =0; k < 8; k++)X
c = ((c&1) ? (OxEDB88320 A (c >>> 1)) : (c>>>1));
}

crcTable[n] = c;

}

return crcTable;

¥]
Set Variable [$r ; Value: MBS("JS.AddFunction"; 3js; "crc32"; "function
crc32(str) {
var crcTable = crcTable Il (crcTable = makeCRCTable());
varcrc =0 A (-1);

for (var i =0; i< strlength; i++) {
crc = (crc >>> 8) A crcTable[(crc str.charCodeAt(i)) & OxFF];

}

return (crc A (-1)) >>>0;
3]
End If

Next we have a script to process data and use JS.CallFunction to run our function.
This allows us to pass the argument as JSON data and avoid building JavaScript
on the fly where wrong escaping could cause a JavaScript injection by an user:

If [Length($$js) >0]
Set Variable [$p ; Value: MBS("JSON.CreateString"; test::Input)]

Set Field [test::Output ; MBS("JS.CallFunction"; $3js; "crc32"; $p)]
End If

https://www.mbsplugins.eu/JSEvaluate.shtml
https://www.mbsplugins.eu/JSAddFunction.shtml

When the solution closes you can cleanup the JavaScript environment:

If [Length(3js) >0]
Set Variable [$r ; Value: MBS("JS.Free"; $$js)]
Set Variable [$$js ; Value: "]

End If

If you have questions, please do not hesitate to contact us.

