
Xojo team development with Subversion, SmartSVN and Arbed (http://www.xplatdev.com/xdcdenhaag.pdf)

Xojo Developer 
Conference

Den Haag (Scheveningen)

http://www.xplatdev.com/xdcdenhaag.pdf


Why version control?
❖ Working together in a team (central repository)

❖ Keeping track of changes to your code (diffs)

❖ Adding comments to the changes (commit)

❖ Ability to undo changes if you made a mistake  
(revert and rollback)

❖ Create several versions of your software (branches)

❖ Helps with cross-platform development (PC/Mac/Linux)

❖ Having a backup of your project on the server



Which version control do we choose?

The ones most used are Subversion and GIT
(according to Duck Software Open Hub, formerly ohloh.net)

The Black Duck Open Hub (formerly Ohloh.net) is an online community and public directory of free and open source software (FOSS), offering analytics and search 
services for discovering, evaluating, tracking, and comparing open source code and projects. Open Hub Code Search is free code search engine indexing over 

21,000,000,000 lines of open source code from projects on the Black Duck Open Hub.

http://ohloh.net


Which version control do we choose?

Subversion and GIT are both popular and under active development.



Which version control do we choose?

GIT is available for:
Mac OS X
Windows
Linux
Solaris



Which version control do we choose?

Subversion is available for:

Mac OS X
Windows
Linux
Solaris
AIX
HP-UX
FreeBSD
NetBSD
OpenBSD



Which version control do we choose?

❖ Both Subversion and Git are used by developers in 
combination with Xojo  
(see https://forum.xojo.com/8379-version-control-git-and-xojo)

❖ Both can be used from the command line  
(http://svnbook.red-bean.com/en/1.7/svn.ref.svn.html)  
(http://git-scm.com/book/en/v2/Getting-Started-The-Command-Line)

❖ Both have clients available to make life easier  
(https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients)  
(https://git-scm.com/downloads/guis)

https://forum.xojo.com/8379-version-control-git-and-xojo
http://svnbook.red-bean.com/en/1.7/svn.ref.svn.html
http://git-scm.com/book/en/v2/Getting-Started-The-Command-Line
https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients
https://git-scm.com/downloads/guis


Why did we choose Subversion?

The Xojo dev team uses SVN.



Why did we choose Subversion?
❖ Easy to install  

(https://help.ubuntu.com/community/Subversion#Installation)

❖ Easy to find documentation  
(http://svnbook.red-bean.com/)

❖ Easy to use client available for Mac/Windows  
(http://www.smartsvn.com/)

❖ Part of command line developer tools for Xcode on Mac  
(http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/)

❖ It’s possible to require locks on files for the developers  
(http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-dug-locking.html)

https://help.ubuntu.com/community/Subversion#Installation
http://svnbook.red-bean.com/
http://www.smartsvn.com/
http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/
http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-dug-locking.html


Installing Subversion on Ubuntu 14.04 LTS

If you will access subversion over http, make sure your Apache is installed first (won’t do that here)
sudo tasksel install lamp-server
(http://howto.blbosti.com/2010/02/4-easiest-ways-to-install-lamp-server-on-ubuntu/)

install subversion

sudo apt-get install subversion

or if you will access subversion over http

sudo apt-get install subversion libapache2-svn

make a directory for svn and one for the repositories

sudo mkdir /usr/local/svn

sudo mkdir /usr/local/svn/repos

http://howto.blbosti.com/2010/02/4-easiest-ways-to-install-lamp-server-on-ubuntu/


Installing Subversion on Ubuntu 14.04 LTS

Make a group for you svn users

sudo groupadd svn

Change group ownership of the repositories directory to the new group

sudo chgrp svn /usr/local/svn/repos

Give members of the svn group write access to the repositories directory

sudo chmod g+w /usr/local/svn/repos

Set the group-ID of the repositories directory so that new files created here 
will be owned by the group

sudo chmod g+s /usr/local/svn/repos



Installing Subversion on Ubuntu 14.04 LTS

Add yourself to the svn group (add other users as necessary)

sudo usermod -a -G svn dirk

Log out and back in to check you belong to the group

groups 

(you should see the svn group among the groups of which you are a member)

Create a repository for your project (change umask so users of the svn group will 
have write access)

svnadmin create /usr/local/svn/repos/myproject  
sudo chgrp svn /usr/local/svn/repos/myproject  
sudo chmod g+w /usr/local/svn/repos/myproject  
sudo chmod g+s /usr/local/svn/repos/myproject



Installing Subversion on Ubuntu 14.04 LTS

configure subversion to allow access through the custom protocol (svn://)

We do this by editing svnserve.conf. Each repository has its own settings file.  
nano /usr/local/svn/repos/myproject/conf/svnserve.conf  
 
Put the following rules in the svnserve.conf file:

anon-access = none  
auth-access = write  
password-db = passwd

After changing the .conf file you can add the user list to the passwd file that can be found in 
the same directory.

nano /user/local/svn/repos/myproject/conf/passwd 
 
Add users using the following syntax.

username = password



Installing Subversion on Ubuntu 14.04 LTS

Make sure the svn server runs on startup

Download the svnserve script from http://odyniec.net/articles/ubuntu-subversion-
server/  
Place the script in /etc/init.d 
Make the script executable

sudo chmod +x /etc/init.d/svnserve

If you chose anything other than /usr/local/svn/repos for the repository directory, 
make sure to change the path in the init script

run update-rc.d to install the script

sudo update-rc.d svnserve defaults

That’s it. svnserve will be started automatically when your system boots up.  
To start it manually, run

sudo /etc/init.d/svnserve start

http://odyniec.net/articles/ubuntu-subversion-server/


Install SmartSVN

Free foundation edition available, Professional version (max. 99$/license/yr, volume discounts)

Download and install SmartSVN  
(available for Windows 7+, Mac OS 10.7.3+ and Linux)  
(http://www.smartsvn.com/download)

After installing, prepare a folder with your Xojo project

❖ Make a new folder

❖ Save your project to this folder as a .xojo_project (VCP format)

http://www.smartsvn.com/download


Import project into repository

❖ Start SmartSVN

❖ Select ‘Import project into repository’

❖ Select the folder with your project

❖ Select your repository  
(for instance svn://192.168.128.94/myproject)

❖ Enter your svn username and password

svn://192.168.128.94/myproject


Import project into repository

❖ Make a folder in the repository for your project  
Check ‘Create default project structure for trunk, branches and tags’

❖ Select the trunk

❖ Add your new project in group <sorted group>

❖ Import



Import project into repository
❖ Commit your project

❖ Select Depth ‘Fully recursive’

❖ Type ‘initial commit’ as your Commit Message

❖ Select all files in the toplevel (show subdirectories and unchanged)

❖ Under ‘Locks’ select ‘Change Needs Lock’

❖ Commit the changes with ‘needs lock’ as your commit message

You are now ready to start using SVN



Start using SVN
If you are on a new PC, first check out the repository

❖ Start SmartSVN

❖ Check out project from repository (repositories are already set up)  
(for instance svn://192.168.128.94/myproject)

❖ Enter your username and password

❖ Select the trunk of the project

❖ Select a local directory for your project

❖ Checkout Depth: fully recursive

❖ Check out a working copy

svn://192.168.128.94/myproject


SmartSVN functionality 

If you will use locks, make sure you can see the column in SmartSVN



SmartSVN functionality 

In the Lock column you can see if a file is locked and who locked it

As long as you haven’t locked a file, the file 
will be read-only. If you want to edit a file, 

you therefore need to lock it.

You do this by selecting the files and then 
choosing ‘Locks, Lock’ in the right-click 

menu.



SmartSVN functionality 

see http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-dug-locking.html

Don’t steal locks!

http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-dug-locking.html


SmartSVN functionality 

When you make changes, you will see that the local state of the file changes to Modified.  
You can see the changes made to the file in the ‘Changes’ section



SmartSVN functionality 

If you want to have a better view of the changes, you can open the revision screen by clicking the 
‘Changes’ button in the main menu.



SmartSVN functionality 

When you are happy with your code, you need to commit the code to the repository.  
Don’t forget to add a commit message that explains what was changed and why. After committing 

you will be asked if you want to unlock your files.

If you made a mistake, you can revert to the code that is in the repository. You need to confirm that 
you want to undo your changes. This will only roll back your local copy.



SmartSVN functionality 

If there are any changes, you will see ‘Modified’ in the Remote State column. You can then click 
Update and choose ‘Update to HEAD’ to get the latest version of the project’s code.

To see if something changed on the server, you choose ‘Query, Refresh Remote State’ in the menu.

If you just want to see the changes on the server instead of updating, you can use ‘Query, Compare 
with HEAD’. Then you can see what changed to the code on the server side and compare it with your 

local code in the File/Revision screen.



SmartSVN functionality 

If you made a mistake and you already checked the file into the repository, you can go to the history of 
the file by clicking ‘Log’. You will then get a list of all the revisions of the selected file(s). If you want to 

go back to an earlier copy of your code, you select ‘Rollback’ in this screen



Potential issues
Main project file is read only

Solution: Save your project under another name. Then put this file on the SVN ignore list.

Outside files get overwritten (feedback://showreport?report_id=11725)
 
To completely understand the danger as the implementation is now:

1) Export a window to an xml file
2) Add it to source control

3) Person A and B get the latest changes from that file (they have the same file now) and open their IDE

4) Person A checks the file out
5) Person A makes some changes and saves
6) Person A checks the file in (changes are now in Sourcecontrol and in the version of Person A)

7) Person B checks the file out (now the file has the new code, but the IDE still has the old code)
8) Person B makes some changes and saves (the new code is overwritten with the old code and the changes of person B)
9) Person B checks the file in (the changes of Person A are completely ignored and gone from Sourcecontrol now)

This all goes without any warning at all and is dangerous when you work in team.

Solution: close the IDE, checkout the file that was changed on the server side, open the IDE again

feedback://showreport?report_id=11725


Potential issues
No externals in VCP (feedback://showreport?report_id=3624)

When sharing code between projects, we normally make an external that we share between 
the different projects. You cannot save an external in VCP format though.

Solution:

Save externals in .xojo_xml format and share this between the projects.

Additional problem:

A diff between xml files is not as nice as a diff between VCP format.

Solution to this:

Use Arbed to show the diffs.  
You can add Arbed as a tool for ‘File Compare’ under SmartSVN Preferences, Tools.  
(http://www.tempel.org/Arbed) Free version available, basic license 29$, complete 89$

feedback://showreport?report_id=3624
http://www.tempel.org/Arbed


Potential issues
No externals in VCP (feedback://showreport?report_id=3624)

When sharing code between projects, we normally make an external that we share between the 
different projects. You cannot save an external in VCP format though.

Alternative solution: (not yet tested by us)

Use advanced externals in SVN. For additional information read:

the feedback ticket

the discussion on the forum

https://forum.xojo.com/12202-why-use-make-external/0 

‘sharing code between projects’ on Bob Keeney’s website 

http://www.bkeeneybriefs.com/2012/06/sharing-code-between-projects/

feedback://showreport?report_id=3624
https://forum.xojo.com/12202-why-use-make-external/0
http://www.bkeeneybriefs.com/2012/06/sharing-code-between-projects/


Potential issues

Externals or external files in different source folder

Solution: Use Arbed to assemble the external files.  
You can use Arbed’s convert function for this.

Files that need to be ignored (.xojo_uistate, build folder,…)

Solution: Use the right click menu in SmartSVN and select ‘ignore’.  
You can ignore a file explicitly, ignore by pattern and ignore folders.  
(http://blogs.wandisco.com/2013/04/22/ignoring-files-with-smartsvn-2/)

Commit too many files in one commit

Committing too many files in one go makes it confusing to keep track of changes. Make sure you 
commit often and enter commit messages that make it clear what was changed and why. 

http://blogs.wandisco.com/2013/04/22/ignoring-files-with-smartsvn-2/


Potential issues

Don’t forget to lock

Your files are read-only as long as you don’t lock a file. After locking, make sure you click another 
window or class in Xojo and then click back so that the IDE knows you can now write to this file. If you 
forget to do this, you won’t be able to edit the code in Xojo, since the IDE will think the file is readonly 
still.

Watch out for breakpoints

Remembering breakpoints 
Do you use breakpoints often, would you like to keep them when you save and re-open your project? 
Note that only the XML and RBP project file formats preserve breakpoints, the VCP format doesn’t. 
(http://www.realsoftwareblog.com/2012/05/ide-tips-and-tricks.html)  
 
The other developers probably won’t want to have your breakpoint stop their debug run. Therefore if 
you use our way to save to Subversion, don’t forget to clear your breakpoints before checking in.

http://www.realsoftwareblog.com/2012/05/ide-tips-and-tricks.html


Xojo, Subversion, SmartSVN, Arbed

Enjoy Team development.

Dirk Cleenwerck

Use IT Group NV


